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Predictive Modeling is Not New!

o Traditional actuarial responsibility

* Predict the losses per unit of exposure for
next year

 Involves trending, loss development and
credibility




A CAS Midlife Example

* Xj = Loss per unit of exposure
— Construction class |
— Protection class |

* Model X;; = a; + b;
 Choose a; and b; so that

sz:”ij (Xij -8 —b, )2

IS minimized.




Look at the Normal Equations
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“Unbiased in the Aggregate” - From Balley
“Insurance Rates with Minimum Bias” (PCAS 1963)

Bailey solves for the a's and b's iteratively
SAS Proc GLM (70’s) solves with matrix algebra




Introduce “What’s New” with an Example

e X~lognormal with u=5and c =2
 Two ways to estimate E[X] (= 1,097)

N\

- Straight Average — E [ X|= . > X
=1

Lognormal Average — EL [X] _ @fi+8°/2




Which Estimator is Better?
EX] or E|[«]7?

Straight Average, Ey[X], Is simple.

Lognormal Average, E,[X] Is complicated.
— But derived from the maximum likelihood

estimator for the lognormal distribution

Evaluate by a simulation
— Sample size of 500
— 2,000 samples

Look at the variability of each estimator




Results of Simulation

Straight Average

Frequency

2000 3000 4000 5000 6000

95% Confidence Interveal=(719.5,1821.3)
Maximum = 7320.5

Lognormal Average

o Confidence interval 1s narrower

* NO outrageous outliers

Frequency

1000 2000 3000 4000 5000 6000

95% Confidence Interveal = (823.4,1505.7)
Maximum = 1953.4




Lesson from Example 1

 Knowing the distribution of the observations
can lead to a better estimate of the mean!

« Actuaries have long recognized this.
— Longtime users of robust statistics

 Calculate basic limit average severity
 Fit distributions to get excess severity




Fitting Multivariate Models by
Direct Maximum Likelihood Estimation

* Most statistical software packages have
generic optimizers

— Excel “Solver”
— R “optim”
e Use to solve for maximum likelihood




Example 2 — Pareto Distribution

Claim severity “data” taken from various cities
over the years 2004-2007.

— Simulated from known model

F(2) - 1_( Scale ja

Scale + z

Model 1 - Scale = 0-Trend(Year - 2004)
Model 2 - Scale = (0+y-log(Pop))-Trend(Year—2004)

Parameters to be estimated
—Trend, a, 0, vy




Parameter Estimates

Parameter

True

Model 1

Model 2

25,000

27,834

27,476

2.500

2.403

2.607

1.050

1.079

1.064

<10]0)

408




Plot of Expected Loss

Year-2005
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Log of Population
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Is the log(Pop) Term
Statistically Significant?
e Use the likelihood ratio test

— L(0,,a,,,Trend,,y,) = Log Likelihood for Model 2
—L(0,,0,,Trend,) = Log Likelihood for Model 1

e 2-(L(6,,a,,Trend,,y,) — L(6,,a,,Trend,))~x2(1)

e P-Value for test = 0.034
— Significant at 0.05 level, but not at 0.01 level




Test Goodness of Fit with P-P Plots

» Calculate percentile, p,, of each data point

Pi :1_( i ] ,bi :(9+Y'|OQ(POpi))Yeari_2004

b +z
* Plot against expected percentiles

[ TRY
\pi, N "‘111

e Straight 45° line indicates a good fit




P-P Plot for Example 2

Fit should be good — | knew the model

P-P Plot for Goodness of Fit

I I
0.4 0.6

Expected Percentiles




Lesson From Example 2

 Maximum likelihood Is practical for
multivariate models with today’s PCs with
the right software installed!

— SAS, R and others.

— Personal best — 20 parameters on a loss
reserve model




Generalized Linear Models

e Generalization of the “General Linear Model”

— The General Linear Model

o Least-squares analysis of continuous and categorical
variables.

e | first encountered it in SAS In late 70’s.

e First book — 1989, McCullagh and Nelder

e Latest book — Good introduction for actuaries

— Generalized Linear Models for Insurance Data
* De Jong and Heller




Properties of GLM’s

o Efficient maximum likelihood estimation for a
specific (but broad) class of distributions.

 For most common problems

— Convergence takes a single digit # of iterations

— For generic maximum likelihood optimizers it
takes a triple digit number of iterations




Properties of GLM’s

e Link function - g (Monotonic and smooth)
— Let u be the mean of the independent variable

g(p)=o0,+ ) a;-X
1=1

Some Common Links

dentity g(w) = p
nverse g(p) = 1/u

nverse squared | g(u) = 1/p?

0g g(w) = log(w)
ogit g(n) = log(p/(1-p))




Properties of GLM’s

 Distribution Function (with mean n)
— Variance of response distribution is a function of u
— Variance function is determined by the distribution

Some Common Distributions

Distribution Variance
Normal 1/62
Poisson U
Gamma w2/v
Inverse Gaussian ws/c?
Negative Binomial n(1+xp)




Example 3 — Property Claim Size

e Construction
— Frame, Masonry, and Fire Resistive

* Protection
— 1,2, ..., 10 with 1 being the best protection

e Amount of Insurance




Properties of Simulated Data

Scatter Plotof Claim Sizes

1200000

Claim Size

200000 400000 600000 800000

True Mean




Model 1
log(n) = ayt+class.+a,-log(prot)+a,-log(aoi)

Call:
gIlm(formula = z~cons+log(prot)+log(aoi),family = Gamma(link="10g'"))

Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) 8.674263 .155404 55.82 <2e-16
consMasonry -0.204571 .013600 -15.04 <2e-16

log(prot) 0.380237
log(aoi) 0.235316

Signif. codes: O “***” 0.001 “**” 0.01

007967 47.73 <2e-16
-012365 19.03 <2e-16

0
0
consResistive -0.913219 0.013648 -66.91 <2e-16
0
0




Model 1
log(n) = ayt+class.+a,-log(prot)+a,-log(aoi)

 Is the model linear in log(prot) and log(aoi)?
 Test with Partial Residual Plots

(log(prot),log(z)—log(fi) + o, - log( prot))
(log(aoi),log(z)—log(fi) + o, - log(aoi ))

* The plots should be distributed about a
straight line with slope o




Looks straight

log(aoi)
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Partial Residual Plot for log(prot)

Not straight




Dealing with Nonlinear Effects

» Generalized additive model (GAM)
* Allows a spline to replace the linear term

Family: Gamma
Link function: log

Formula:

z ~ cons + s(log(prot)). + log(aoi)

Parametric coefficients:

Estimate Std. Error t value Pr(G|t])
(Intercept) 9.09303 0.14133 64.34 <2e-16
consMasonry -0.20656 0.01240 -16.66 <2e-16
consResistive -0.91135 0.01244 -73.23 <2e-16
log(aoi) 0.24568 0.01128 21.79 <2e-16

Approximate significance of smooth terms:
edf Est.rank F p-value
s(log(prot)) 6.238 8 229.9 <2e-16 ***

Signif. codes: 0 “**** 0.001 “*** 0.01 “** 0.05 “.




Plot of the Spline
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Commentary on GLM

GLM’s represent a significant advance over
the normal/least squares paradigm.

— Based on maximum likelihood estimation

Since It has been around for over a decade,
there Is a lot of supporting software.

—e. g. GAM

Restricts the choice of response distributions.
— Too restrictive ??? Debatable.

Links can be supplied by the user.




The Future - Predicting Ranges

Anybody can predict the future

It Is harder to make the right prediction
How much prediction error should be
tolerate?

Determined by well thought out estimates
of the prediction error.
— Verified by back testing with P-P plots




Back to Example 2
Parameter Uncertainty
and the Gibbs Sampler

Gibbs sampler is often used for Bayesian analyses.

t randomly generates parameters in proportion to
posterior probabilities.

Parameters randomly fed into the sampler In
proportion to prior probabillities.

Likelihood
Maximum Likelihood

Accepted Iin proportion to

Results in the posterior distribution.




Posterior Distribution of Parameters

Frequency

Frequency
500 1000 1500 2000

500 1000 1500 2000

[ ! ! [ ! ! 1
15000 25000 35000 -500 500 1000 1500

Theta Gamma
Prior ~ Gamma with mean 25,000 and CV = 0.5 Prior ~ Gamma with mean 500 and CV = 0.5

Frequency
1000 1500 2000

Frequency

500 1000
500

0

[ I I I ] [ I I I I ]
1.5 2.0 2.5 3.0 3.5 0.95 1.00 1.05 1.10 1.15 1.20

Alpha Trend
Prior ~ Gamma with mean 2.5 and CV = 0.5 Prior ~ Gamma with mean 1.05 and CV = 0.05




Posterior Distribution of Parameters




Posterior Distribution of
E[Loss] for 2007 with log(Pop)=15

0+7v-log(15))-Trend’
o—1

E[Loss|= (

21000 22000 23000 24000 25000 26000 27000

E[Loss]




Methods are New, but What Else?
The Datal

Large data sets and more variables

More variables are statistically significant in
sample!

Statistical significance does not mean “practical
significance.”

Practical significance Is best tested by graphical
methods.

Need to test “out of sample.”




Software — An incomplete list

PC SAS
SAS Enterprise Miner (JMP for Graphics)

R, the examples and graphics for this talk
were done using R.

S-Plus (similar to R)
Statistica
SPSS




Concluding Remarks

* Most of the buzz in predictive modeling
has to do with pricing applications.

e Other insurance applications

|_0ss Reserving

~raud detection

Premium Audit

 What to do with ranges of estimates?

— Accounting issues e.g. loss reserve risk
margins




