DFA Insurance Company Case Study

2001 Casualty Actuarial Society Special Interest Seminar on Dynamic Financial Analysis

Boston, Massachusetts June 7-8, 2001

Stephen Philbrick, Robert Painter, John Burkett

Call Paper Questions

- Is the Company adequately capitalized? Is there excess capital? How much capital should the Company hold as a stand-alone insurer?
- Should the Company buy more or less reinsurance? What type? How efficient is its current reinsurance program?
- How efficient is the asset allocation?
- How should the capital be allocated to line of business?

Agenda

- Introduction
 - Recap of DFAIC
 - 7 Step General DFA Analysis Approach
- Capital Adequacy
- Reinsurance
- Strategic Asset Allocation
- Capital Adequacy Revisited
- Capital Allocation
- Conclusions & Comparisons

Introduction - Recap of DFAIC

1999 Underwriting Summary

- Loss & LAE Reserves \$ 2,330 million
- Direct Written Premium \$ 2,565 million
- Net Written Premium \$ 2,350 million
- Booked Accident Year Loss&LAE Ratio Gross 86.3% Net 82.0%
- Expense Ratio (including policyholder dividends) 29.5%

Asset Summary

\$4,702 million

\$4,746 million

9.2 years

5.3 years

Swiss Re Investors

Average Maturity:

Fixed Income Analysis

Invested Assets

Book Value:

Duration:

Market Value:

Capital Adequacy - Introduction

- Discuss Different Risk Measures
- Coherent Measures of Risk
- Applied to a Risk Variable that takes into account both assets and liabilities
- Compare TCE of Required Capital to other recognized Capital Adequacy Measures
- Later on the Second Iteration of the DFA Spiral: Compare estimates of Required Capital for an alternative Reinsurance/Asset Allocation structure

Capital Adequacy - Risk Measures

Probability of Ruin:

- In the banking industry also known as Value at Risk (VaR)
- <u>Specific Sense</u>: Probability capital falls below zero.
- <u>General Sense</u>: The corresponding value, for a selected qth percentile tolerance, for a given financial variable.

Inverse Cumulative Distribution Function for a given Risk Variable

Capital Adequacy - Risk Measures Expected Policyholder Deficit (EPD):

- Unlike VaR, EPD takes into account the magnitude of insolvency.
- <u>Specific Sense</u>: The amount or percentage of total obligations that will not be met.
- <u>General Sense</u>: The corresponding value, for a selected tolerance percentage Y_E of all summed potential outcomes, for a given financial variable.

Capital Adequacy - Coherent Risk Measures Definition of Terms:

- X_i represent portfolios of risks. (Think of it as the liabilities of a particular insurance company).
- α be some constant
- $\rho(*)$ be a function that assigns a value of risk to a portfolio

Four Axioms of a Coherent Risk Measure:

• $r(X + a) = r(X) + a$	Translation Invariance
• $r(X_1+X_2) fr(X_1) + r(X_2)$	<u>Subadditivity</u>
• r(aX)= a r(X)	Positive Homogeneity
 For X₁<x<sub>2, r(X₁)< r(X₂)</x<sub> 	<u>Monotonicity</u>

Capital Adequacy - Risk Measures Tail Conditional Expectation (TCE):

- Also known as Tail Value at Risk
- Unlike the standard deviation risk measure, TCE concentrates on the tail of the distribution.
- Combination of VaR and EPD
- Unlike VaR and EPD it is a Coherent Risk Measure
- Expected Value of the Largest (1-q) of all possible outcomes

Capital Adequacy - Risk Variables

TCE Required Capital:

- Apply TCE(.99) to the distribution of "required assets" (Ã₁).
- Takes into account the volatility of entire balance sheet.
- $\tilde{A}_1 = E[A_1] \tilde{S}_1$
- \tilde{S}_1 is 1) stochastic and 2) recognizes undiscounted ultimate loss immediately.
- TCE Required Capital = TCE Required Assets - E[L₁]

Capital Adequacy - Results

Estimates of Required Capital for DFAIC TCE Required Capital versus Other Common Measures

Capital Adequacy - Conclusion

- DFAIC is Over-Capitalized
- Select a risk measure, i.e. TCE, that satisfies a set of reasonable axioms.
- Select a risk variable that takes into account all financial risks to solvency, including asset risk.
- Analysis accounts only for financial risk, and not operational contingencies.

- Current Program
 - Per occurrence excess of loss coverage attaching at \$500K.
 - Per risk excess cover on commercial property.
 - Property catastrophe cover attaching at \$50 million.
- Proposed Program
 - Accident Year aggregate stop loss covering 75% of 20 loss ratio points excess of 80.
 - Property catastrophe cover attaching at \$50 million.

DFA Insurance Company Gross versus Net Loss Ratios

Strategic Asset Allocation

- Efficient Frontier Optimal trade off between risk and reward.
 - Economic value vs. standard deviation of economic value.
- Efficient asset allocation.
 - The target fixed-income duration.
 - The target allocation to equities.
 - The target split between taxable and tax-exempt bonds.

Efficient Frontier Analysis

Given a large number of potential asset strategies, how can you determine which are best for your business plan?

- Evaluate current strategy
- Assess some variations (what if we did x or y or z?)
- Try all combinations (usually not possible due to large number)
- Employ computer algorithms to search for best strategies for each level of risk (non-linear optimization) -- The Efficient Frontier

Strategic Asset Allocation

Swiss Re Investors

Ζ

Reinsurance and Strategic Asset Allocation

Efficient Frontiers Under Varied Reinsurance Strategies

Reinsurance and Strategic Asset Allocation

- Focus on enterprise-wide risk.
 - Assets
 - Liabilities
- Risk and reward trade-off.
 - Appropriate risk measures.
 - Appropriate reward measures.

Capital Adequacy - Further Results

Estimates of Required Capital for DFAIC TCE Required Capital versus Other Common Measures

Capital Adequacy - Conclusion

- DFAIC is still Over-Capitalized after revised reinsurance and asset structures implemented.
- DFA generated capital adequacy measures (such as TCE Required Capital) explicitly and consistently account for the interaction and diversification effects of all modeled variables.
- Standard capital adequacy measures (RBC, Best's Net Required Capital) offer a generic approximation of these effects.

Capital Allocation - Introduction

- Identify different Allocation Methods
- Discuss the Methodology we selected to allocate DFAIC's capital:
 - Risk Metric: TCE Required Capital
 - Allocation Method: Shapley Value
 - Explicit allocation to both assets and liabilities
- Compare and contrast 3 different Allocation Methods:
 - Shapley: an axiomatic approach
 - Simple comparative example
- View DFAIC results

Shapley Value Introduction

- The Marginal "First-In" allocation method allocates based on the stand-alone risk of each business segment.
- The Marginal "Last-In" allocation method evaluates the marginal risk addition to the business as a whole.
- The Shapley Value allocation method expands on the Marginal "Last-In" concept by considering all possible permutations of entry.
- Shapley Value <u>evenly splits</u> the mutual covariance between the "With" and "Without" marginal scenarios.

Shapley Value Axioms

- <u>Collective Rationality</u> It does not allow one line of business to subsidize another. Removes incentive for groups of lines of business to act independently of the company as a whole.
- <u>Monotonicity in Costs</u> Given an increase in the overall cost of the company, each line must participate in the rise of the total cost.
- <u>Additivity</u> The subdivision of a line of business into two lines should not affect the total allocation to the combined. line.

Line of	Standalone	Allocated
Business	Capital	Capital
A	1,000	548
В	2,000	1,095
С	3,000	1,643
D	4,000	2,191

Sum	10,000	5,477
Total Company	5,477	
Ratio	54.8%	

Line of	Marginal	Allocated
Business	Capital	Capital
A	92	163
В	378	668
С	895	1,580
D	1,736	3,066

Sum	3,100	5,477
Total Company	5,477	
Ratio	176.7%	

Line of	Standalone	Allocated	Allocated
Business	Capital	Capital	Capital
LOB		"First-in"	"Last-in"
A	1,000	548	163
В	2,000	1,095	668
C	3,000	1,643	1,580
D	4,000	2,191	3,066
Sum	10,000	5,477	5,477

Line of	Standalone	Allocated	Allocated	Allocated
Business	Capital	Capital	Capital	Capital
LOB		"First-in"	"Last-in"	Shapley
A	1,000	548	163	345
В	2,000	1,095	668	906
С	3,000	1,643	1,580	1,654
D	4,000	2,191	3,066	2,572
Sum	10,000	5,477	5,477	5,477

Capital Allocation Methodology

- We selected TCE Required Capital as the Risk Metric
- All 3 identified Allocation Methods allocate capital based on the Marginal Impact of a particular variable (e.g. Difference between <u>With and Without</u> Workers Comp)
 - First-In Marginal Contribution (Standalone)
 - Last-In Marginal Contribution (Marginal)
 - Shapley Value
- We selected the Shapley Value Allocation Method

"Without" Line of Business Definition

On the liability side:

We selected to reinsure the new and existing business away.

BUT, what about assets?

"Without" Assets Definition

Determine asset allocation that minimizes risk measure. (ie minimum risk efficient frontier portfolio)

Advantages:

• Eliminates possibility of negative capital allocation

Disadvantages:

- Much more complex
- Need a solution for each marginal run
- Very time consuming, especially for Shapley values

Capital Allocation - Conclusion

- Shapley is based on reasonable axioms.
- Shapley can be time consuming and difficult to calculate.
- Specific allocation of capital to assets (i.e. investment department) can be considered.
- Based on our selected tail sensitive risk measure (TCE Required Capital), DFAIC allocated a relatively greater portion of capital to its longer-tailed more inflation sensitive lines of business.

General Conclusions

- Strategic Issues
 - **<u>Capital</u>** Over-Capitalized.
 - <u>**Reinsurance**</u> Move to more efficient reinsurance structure designed to protect DFAIC at the company level.
 - <u>Asset allocation</u> Shorter Duration Fixed Income, Increase Equity Allocation, some investment in Tax-Exempts in Combination with Revised Reinsurance Strategy.
- Holistic Approach
 - Consistent modeling of variable interactions
 - Allows common evaluation of different strategic decisions.

Comparison of Results - Capital Adequacy

Author	Conclusion	Methodology
Bohra&Weist	Over Capitalized	Probability of Ruin, EPD
Movere		TCE(.99) applied to End of Year
weyers	Over Capitalized	Aggregate Loss
Smith [®] Christofides		Probability Distribution of the Minimum
Smith&Christondes	Over Capitalized	Premium to Surplus Ratio
		TCE(.99) applied to "Required Capital",
Swiss Re Investors		Comparison to other Standard
	Over Capitalized	Measures

Comparison of Results - Reinsurance Efficiency

Author	Conclusion	Methodology
Bohra&Weist	Current Program Inefficient, Replace with Aggregate Stop	Std Dev EOY Surplus, P[Surplus Decline] > 0%, 10%, 25%
Meyers	Stop Buying Reinsurance (if no regulatory/rating impacts), Should not buy reinsurance that removes diversifiable risk	Comparison of Cost of Reinsurance to Change in Cost of Capital
Smith&Christofides	Reduce Current Reinsurance Puchasing Levels	Probability Distribution of the Minimum Premium to Surplus Ratio
Swiss Re Investors	Current Program Inefficient, Replace with Aggregate Stop	P[Surplus] <required rbc,<br="">Mean&StdDev EOY 5 Economic Value</required>

Comparison of Results - Asset Strategy

Author	Conclusion	Methodology
Bohra&Weist	22% Allocation to Stock	Mean&Std Dev EOY Surplus Comparison for 6 runs with different Allocations to Stock
Smith&Christofides	Reduce Stock Exposure it is destroying value	Cost of Capital Evaluation
Swiss Re Investors	20% Allocation to Stock, Portfolio Duration = 4.5, Tax- Exempt Allocation = 22%	Economic Value ALM Efficient Frontier Optimization, Comparison of Surplus Distributions

Comparison of Results - Capital Allocation

Author	Methodology
	Shapley Value Allocation Methodology
Bohra&Weist	using Return on Surplus as the Risk
	Variable
	Marginal Allocation Methodology using
Meyers	Tail Value at Risk @ 99%ile as Risk
	Variable
Smith&Christofides	Apportionment of Systematic, Non-
	Systematic, and Frictional Costs
	Shapley Value Allocation Methodology
Swiss Re Investors	using Tail Conditional
	Expection@99%ile

DFA Insurance Company Case Study

2001 Casualty Actuarial Society Special Interest Seminar on Dynamic Financial Analysis

Boston, Massachusetts June 7-8, 2001

Stephen Philbrick, Robert Painter, John Burkett