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Abstract

The paper defines plausible ways to measure sampling error within efficient frontiers, particularly when they are derived using dynamic financial analysis.  The properties of an efficient surface are measured both using historical segments of data and using bootstrap samples.  The surface was found to be diverse, and the composition of asset portfolios for points on the efficient surface was highly variable.

The paper traces performance of on-frontier and off-frontier investment portfolios for different historical periods.  There was no clear cut superiority to the on-frontier set of portfolios, although lower risk/return on-frontier portfolios were generally found to perform better than those at higher risk levels.  It is questionable whether practical deployment of optimization methods can occur in the presence of both high sampling error and the relatively inconsistent historical performance of on-frontier portfolios. 

Introduction

Companies choose among investments often with the purpose of optimizing some goal and always limited by constraints.  Assets are divided among competing investment alternatives with the hope that risk will be minimized for a desired level of return, either investment return or overall return.  When the allocation fulfills the goals within the boundaries of constraints, it is thought to be efficient.  The allocation is deemed to be a member of the efficient set at a point on an efficient frontier.  It is efficient because it dominates off-frontier, interior points in the risk/return space.  

This paper investigates this popular investment allocation strategy in two ways.  First, it seeks to determine what the sensitivity of the frontier is to possible sampling error in risk/return space.  It uses the bootstrap as a way of assessing this error.  Efficient frontiers are constructed from bootstrap samples in an attempt to understand the shape of an efficient surface.  Secondly, the paper addresses the performance of efficient frontiers that emanate from different points within the efficient surface.  Both on-frontier and off-frontier portfolio allocations for actual series of returns are tracked for their respective performance.

Scenario Generation in DFA

Dynamic Financial Analysis (DFA) involves scenario generation.  There are many types of scenarios that are simulated so that the model builder can measure a hypothetical state-of-the-world with accounting metrics.  Asset generators typically create returns for invested assets.  They model exogenous economic conditions.  Each modeler sees the forces of the financial markets unfolding according to a set of rules.  The rule set is almost as diverse as the number of modelers.  Some DFA model builders prefer stochastic differential equations with various degrees of functional interrelatedness.  The transition of returns over time, as well as the correlations among different asset components, always is represented in multiple simultaneous equations.  

Other DFA modelers use multivariate normal models, which conjecture a covariance matrix of investment returns.  These models do not have time-dependent transition modeling information.  Such an efficient frontier, by definition, has no time transition properties.  A sample taken from any sub-period within the time-series would contain sampling error, but otherwise, the investment allocation would be unaffected.  

Both approaches begin with a single instance of reality.  They both purport to model it.  One approach, stochastic equations, uses largely subjective methods to calibrate the fact-to-fiction process.
  Another approach to modeling clings to assumptions that seem to be or are taken to be realistic.
  Both produce scenarios that are deemed sufficiently similar to reality to represent it for the purpose at hand.  

The efficient frontier (EF) calculation can be a constrained optimization either based on a sample from a historic series of returns or a derived series with smoothing or other ad hoc adjustment.  Alternatively, an EF may be created from simulated DFA results.  Both the efficient frontier and DFA asset-based modeling are using the same set of beliefs regarding the manner by which reality-goes-to-model and model-goes-to-conjecture.
  They both start with a single historic time-series of returns for various component assets. 

Two Viewpoints on the Use of Efficient Frontiers

The practitioner has a straightforward objective: define investment allocation strategy going forward.  Today’s portfolio allocation leads to tomorrow’s result.  The portfolio is then rebalanced relative to expectations.  The new one leads to new results.  The cycle repeats.  Where does the chicken end and the egg begin?  In practice, the practitioner has only one instance of yesterday’s reality and tomorrow’s expectations from which to construct a portfolio and a model.

There are at least two approaches.  In one, a DFA analyst might set up an initial allocation of assets using an efficient frontier obtained from quadratic optimization on a prior historical period.  A DFA model would be repeatedly run—a different state-of-the-world would ensue each time, and a different reading obtained for the metric.  These simulations produce endpoints in the modeled risk/return space.  In this approach, one beginning asset allocation leads to many different observations about endpoints.  The reason they are different is that, although each starts with the same state, the model simulates various outcomes.  Each hypothetical one probably leads to a different endpoint for the planning horizon. 

But, another viewpoint exists.
  We refer to it as the hybrid approach.  Suppose that history serves a valid purpose in calibrating a model, but should not be used to define a beginning allocation.  In this viewpoint, the investment mix is provided independent of any actual state of the world; it is suggested by the optimizer.  DFA serves only to measure what could happen with some hypothetical starting allocation.  The optimizer deals the cards in this deck, and DFA traces where the cards lead.
,
 
The optimizer, not the modeler, submits an initial allocation for review.  In this hybrid approach, there is no initial portfolio based on optimization using prior history.  In the hybrid model, the optimizer finds a portfolio, which leads to an ex post optimal result.  The metric used in this optimization is part of the DFA model—it is calculated by the accounting methodology of the model as it generates future states of the world .  It may be difficult to reconcile the use of efficient frontiers for investments within hybrid-DFA modeling that, on the one hand, believes there is a historically dependent component that can be used for calibration, but rejects the use of data to define a starting portfolio.  Yet, on the other hand, simulations of that model are derived to construct an efficient frontier.  It seems like history is rejected as information for the purposes of decision-making, yet indirectly it is used to represent the future.  The hybrid model seems to be sub-optimal because it does not use the prior data available to it to create an initial portfolio allocation.

In DFA work, a performance metric is chosen.  This metric is measured within a risk/return space.  The metric must be measurable according to the chosen accounting framework.  Risk might be variance, semi-variance or some chance-constrained function of the metric.  In the real world, the corporate manager is rewarded for favorable performance of the metric and often penalized by unwanted risk in the metric.  The volume of investment in various stochastic components affects a metric’s performance.  The operational question is how should an allocation be made in investments so that performance of the metric is optimized.

In the forecast period, the modeler generates a scenario of unfolding rates of return using, say, a multi-variate, time-dependent asset model.  An example would be any of the multi-factor mean reversion models in use today.  The simulated progression of returns for a scenario generated by one of these models is affected by an underlying mechanism that forces unusual deviations in the path back towards an expected trajectory of returns.  The DFA model typically ties in some way the business operations to the simulated economic environment.
  This economic scenario typically generates other economic rates such as the rate of inflation.  A scenario that is generated by the economic model is taken to be exogenous; it is mingled with expectations about corporate performance.  The company’s operations are tied to the exogenous influences of the economic scenario.

In the end, this modeling process is repeated many times for the optimizer in the hybrid model.  The optimizer requires an answer to the question: given an initial investment allocation, what is the end-horizon performance of the metric.  The optimizer forces the model to measure the result of a simulation experiment given only an initial investment allocation.  The model takes the allocation and produces an experimental point in risk return space.  All that is required of the model is its ability to measure the trajectory of the metric within the company’s business plan and a beginning allocation of assets.  The efficient frontier traces the allocations necessary to achieve various points in this risk/return space.  The EF user hopes that the EF points truly dominate the performance of off-frontier frontier points—portfolios that are thought to be inefficient and have higher risk for the same return level. 

The reason that this is a hybrid approach is that DFA modeling is not deployed on an optimal asset allocation derived directly from the prior time-series.  Rather, DFA is combined with optimization to answer the single question: how should the portfolio be immediately rebalanced to achieve an optimal point in risk/return space over the future DFA planning horizon.  

At least two t0 portfolios can be devised through optimization procedures in different ways—one is based on historical results prior to the start of the simulated future time periods.  Another one involves allocations that are selected and tried by the optimizer—the DFA model is integral to this second approach.  The latter hybrid optimization uses DFA-measured metrics in the optimizer goal function.   If applied over the course of the simulated future time periods, and according to the plan of the DFA model, the hybrid approach would seem to yield optimal results at the end of the simulated time horizon.  There is no reason to suppose that these two approaches produce the same initial portfolios.  Which one is the real optimum?

During the planning horizon, the hybrid model may ignore imperfections that, in real life, might have (and, probably would have) been dealt with by on-going decision making.  The EF could have been recalculated with realized data and the portfolio rebalanced.  The published state-of-the art in DFA modeling is unclear in this regard; but, it may be that no intra-period portfolio optimization is done by DFA models between the time the analysis starts with an allocation posited by the optimizer and when it ends, say, five-years later with a DFA-derived metric.  It is inconceivable that an organization would mechanically cling to an initial, EF-optimal result for an operational period of this length without retesting the waters.
 

Limitations of this Study for Use of the Efficient Frontier in DFA

The title of this study is a bit of a red herring.  We do not do DFA analysis.  We do not use a liability component, and we do not have a conventional DFA metric such as economic value of a business enterprise.  Rather, the data is limited entirely to marketable, financial assets.  Nevertheless, we believe there is value in DFA work to our findings.  If the efficient frontier produced solely within a traditional investment framework has unstable properties, these instabilities will apply to its use in DFA work.  Conversely, findings of stability will reinforce the decision to deploy efficient frontiers within DFA.

The Efficient Surface

An efficient frontier consists of points within risk/return space that have minimum risk for a return.  Often these points are couched in terms of expectation.  The frontier is seen as efficient because the portfolio for an on-frontier point is risk optimized for expected return.  The expectation operator is illusory.  The frontier represents expectations only to the extent that the multivariate probability distribution for future returns within the market is understood and suitably modified for future expectations.  If there were a time-stationary, multivariate probability distribution for prior history, then history is a sample from it.  History, therefore, would have sampling error.  If there were conjecture, the multivariate distribution would be subjective, and the efficient frontier would be the subjective frontier.  A subjectively derived EF, then, has no sampling error, but it may lose operational appeal when represented in this manner, because subjectivity requires difficult reconciliation within a corporate, decision-making framework.  

Were the instance of reality to be a sample, what is the sampling error?

Figure 1  Comparison of Efficient Frontiers for Different Time Periods
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Figure 1 shows efficient frontiers for random, possibly overlapping, 5-year blocks of history.  The EFs were derived from monthly returns beginning in January, 1988.  Each particular line is derived from nine quadratic optimizations using an empirically derived covariance matrix for its 5-year history of returns.  The juxtaposition of the EFs displays a tangle of overlapping, crisscrossing line segments.
  This illustration can be viewed as sampling with replacement from a historical sample; it is appropriate, then, to view the figure as illustrative of a probability surface.  It is a surface showing the extent of sampling error provided there has been a stationary, multivariate distribution of components’ returns.
  Figure 1 indicates that it may be hazardous to accept any particular segment of history as the “best estimator.”   This figure shows several of the EF strings that build up an efficient surface.  Examples of efficient surfaces appear later in Figures 6 and 8.  The distribution of a cross-sectional slice of this efficient surface also is reviewed at a later point in the paper.

Figure 1 casts question over the operational validity of a particular efficient portfolio actually producing optimal performance.  Off-frontier portfolios may perform as well or better than on-frontier portfolios.  The portfolio compositions are wildly different for each historical EF.  Two of the compositions are illustrated in Figures 22

 set figComposition  
2
.  Each chart is categorical— a tic mark on the x-axis is associated with one of nine optimization points.  Each chart shows a stacked area rendering of the proportion of an asset component within the efficient set.  If the reader views the chart from left-to-right, the unfolding change, and possible collapse, of a particular component is illustrated.  This type of chart is a useful way to show a component’s contribution to the efficient set moving along the EF from low-risk/return to high risk/return portfolios.  

Figures 2  Portfolio Compositions for Different Efficient Frontiers
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There is faint hope that the two different EF portfolio compositions shown in Figures 2 will operationally produce the same result when put in practice—were this to be a reasonable representation of the effects of sampling error, the operational use of efficient frontiers would be questionable; sampling error swamps operational usefulness and forecast responsiveness.

However, another illustration, Figure 3, indicates that if history is a sample from a multivariate distribution, there should be optimism that the efficient frontier evolves slowly, at least measured in monthly metrics.  This figure shows EFs calculated from consecutive, overlapping historical blocks of time.  The stability deteriorates fastest at higher risk/return levels.  The result was found to hold for a wide variety of consecutive historical blocks starting at various points since 1977.   This stability may provide an operational basis for investing in an on-frontier portfolio and seeing its performance prevail over off-frontier portfolios, at least for relatively short planning horizons.

Figure 3  EFs for Consecutive Time Periods
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There are other ways to use the historical record.  The paper shortly will turn to the use of the bootstrap as a method of measuring sampling error.  First, the data and manipulation methods are described in more detail.

Data Manipulation

This study uses the time series described in Appendix A:  Review of Data Sources.  Except where gaps were present in the historical record, the portfolio returns are actual.
,

The data were used in two ways: (1) bootstrap samples were made from the original time series in an attempt to approximate sampling error phenomena, and (2) various backcasts of the data were used for performance analysis.  The study examines period segmentation, and the performance of efficient and inefficient portfolios for different forecast durations.

Historical Performance Analysis

In this section of the paper, data for an efficient frontier are extracted for a backcast period and used to evaluate the efficient frontier.  The on-frontier portfolios are minimum variance portfolios found using quadratic programming.
  Off-frontier portfolios also were calculated.
  The study is concerned with whether the performance of off-frontier portfolios really were inefficient compared to the performance of on-frontier portfolios.

Bootstrap Sampling

A bootstrap sample is developed using sampling with replacement.  An n-tuple describing the actual values for asset components at a point in time is drawn and recorded as an “observation.”   This process is repeated for each observation in the original sample.  Sampling determines whether a particular n-tuple in the original series will or will not appear in the bootstrap sample.  An actual n-tuple may appear more than once in the bootstrap sample or not at all.  Any two bootstrap samples will not necessarily have the same covariance matrix.  The marginal distributions for any particular asset component will vary among bootstrap samples.

Each bootstrap sample has a measurable efficient frontier.  The study asks whether the frontier is stable across the samples.  Instability is measured in two ways.  First, the bootstrapped efficient frontier may fluctuate from sample to sample.  This means that the distribution of risk for a return point on the EF is not a degenerate distribution that collapses to a single point.  Rather, there is a range of different portfolio risks among the bootstrap samples at a given return.  There is a probability distribution associated with risk, given a return among the bootstrap samples.   In other words, the study attempts to measure the distribution, and the study views that distribution as a measure of sampling error in risk/return space as it impacts on the calculation of an efficient frontier.  Bootstrapping is a proxy for sampling error.

Second, the portfolio allocations may diverge among bootstraps.  Were portfolio allocations to be about the same in an arbitrarily small region of risk/return space among different bootstrap samples, the practical effects of sampling error would be small.

Sampling Error within Risk/Return Space

There is no clear-cut method for estimating sampling error that may exist in risk/return space.  We do not know whether there is a population distribution from which reality was sampled.  We do not know whether a population distribution, were it to exist, is stationary over any time segment.  We might, however, view reality as an experimental sample, particularly if we want to use it to forecast corporate strategic decisions using DFA.

Sampling error can be envisioned and approximated in different ways for this hypothetical unfolding of reality.  One way is to break the actual time series into arbitrary time segments and ask whether a random selection among the subsets of time leads to different, operationally disparate results—these would be EFs based on the arbitrary backcast for each sub-segment of time that have portfolio allocations disparate enough to be viewed as operationally dissimilar.  If they are dissimilar enough to warrant different treatment, a sampling distribution of importance is the one measured by the effects of these time-period slices.   

Another approach is to envision prior history as an instantiation, period-to-period, from an unknown multivariate distribution.  The sampling error in this process is driven by a multi-variate distribution.  Depending on our model, we may or may not place dependencies from prior realizations on this period’s realization.  That is, for DFA investment return generation and intra-period portfolio rebalancing, the multivariate model may be stationary or non-stationary with respect to time.

Importance to DFA Scenario Generation

This paper cannot and does not attempt to rationalize the process underlying investment yields over time.  Rather, the model builder should be careful to design the DFA model to be in accordance with perceptions about how a sampling methodology may apply.  The use of the model will invariably mimic that viewpoint. 

If, for example, one views history in the fashion imagined by a bootstrap of n-tuples, and if that view does observe operational differences, than one can create scenarios from bootstrap samples.  No more theory is required.  Hypothetical investment returns are just a bootstrap sample of actual history.

Similarly, if EFs based on backcasts of historical periods produce superior performance in forecasting (compared to portfolios constructed from off-frontier portfolios derived from the same data), then the use of an empirically determined covariance model and multivariate normal simulation makes a great deal of sense.

Importance to DFA Optimization

Optimization often is used within DFA and cash flow testing models to guide portfolio rebalancing.  The DFA model usually grinds through the process of business scenario and liability scenario simulations before the optimizer is deployed.  But, accounting within the model often is done while the optimizer seeks a feasible solution.  

The sequence of model events runs like this:

1. Independently model many instances of exogenous states of the business world (e.g., asset returns, inflation, measures of economic activity, monetary conversion rates).  Number these instances, B1, B2, B3,...,Bn.  Note that each of these instances is a vector containing period-specific values for each operating fiscal period in the analysis.

2. Model many instances of the company’s performance.  Number these instances C1, C2,...,Cn.  C1 often is dependent on B1 because it may use an economic aggregate such as inflation or economic productivity to influence C1’s business growth or loss and expense inflation.  Each C is a vector spanning the same fiscal periods as B.

3. Observe that in some DFA models neither B nor C is necessarily scaled to the actual volume of business.  They are unit rates of change for underlying volumes that are yet to be applied.

4. Let the optimizer search mechanism posit a vector of weights that distribute the volume of assets at 
[image: image5.wmf]0
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5. Apply the accounting mechanisms used by the DFA model to beginning assets and account for the unit activities expressed in B and C.
  Do this accounting for each vector pair {B1,C1}, {B2,C2},...,{BnCn} over the range of its time span.

6. Calculate the metric used for the goal and any constraints as of the end of the fiscal period if it is a stock-based metric such as economic value or surplus.  If it is a flow-based metric such as portfolio duration or discounted GAAP income, derive the metric for the holding period results.  This calculation is done for each business/company scenario pair.  There are n results; collectively they constitute a simulated sample.

7. Return the required metrics for the sample to the optimizer.  If the optimizer is deployed for EF calculation, the goal will be a sample statistic for risk such as variance, semi-variance, or chance-constrained percentile or range.  The sample average for the distribution developed in step (6) for the metric will be used within the constraint set.

8. The optimizer will repeat steps (4)-(7) until it has obtained a feasible set.

The optimizer uses a sample.  The optimizer results have sampling error.  Steps (1) and (2) are experiments.  Let there be 10 repetitions of this experiment.  Application of steps (1)-(8) will result in 10 efficient frontiers, each derived from a different experimental sample.   It is likely that they will have different characteristics.  

In a DFA experiment there are many draws from the urn; each simulation is another draw.  The modeler gets distributional information about the contents of the urn by the experimental grouping of all the simulations.   When enough simulations within each experiment are run, convergence of the distribution of results can be achieved.  Since it is unlikely for the output distribution to be known, or necessarily capable of being parameterized, no a priori estimate is available.  Instead, an empirical

measure of convergence must be used. 

The allocation of company assets among competing investment alternatives using a single efficient frontier calculation (based on a single experimental result) may seem to be similar to betting on the allocation among balls of different colors within the urn based on a single sample from the urn containing them.  One may, or may not, be lucky.  But, you improve your luck by increasing the number of simulations.

One still may become victimized by a faulty decision, which ignored sampling error.  This may arise in calibrating a model to history.  The historical record is a single draw from the "reality" urn.  We may be lucky that the number of periods in the sample of reality contains sufficient information about the underlying process for unfettered decision-making.  But, we could be victims of sampling error, which we are impotent to control or even limit.

Historical Performance Comparison

Figure 4 illustrates the performance of several portfolios over increasingly longer forecast periods.  It shows results for portfolios, which, a priori, have different levels of risk for the same return.
  The multipliers shown in the legend of Figure 4 are multiples of the minimum variance risk.  The line for Mutiplier-1 traces the performance of the on-frontier, EF, portfolio.  Other lines in the figure with multipliers > 1 show performance of portfolios with the same expected return, but higher variance.  

Figure 4  Comparison of Performance for On-Frontier and Off-Frontier Portfolios
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Figure 4 traces performance using a variation of the Sharpe performance measure.  It is known as the information ratio.  The Sharpe performance ratio, which measures excess return to risk, is adjusted in the denominator of the information ratio.  The denominator of the Sharpe performance indicator is changed to excess risk.  The information ratio is given by (1.1)

:
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where,
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= monthly return on the portfolio,
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= monthly return on the risk free component of the portfolio
,

E = expectation operator,

SD = standard deviation operator.

Although the information ratio was computed with monthly data, it is expressed as an annual measure in the paper.

EF Performance Is Better for Low Risk/Return Portfolios

The off-frontier portfolios, so-called inefficient portfolios, achieve performance that rivals or betters that of the EF portfolio.
  There is no concept of “significance” that can be attached to the observed differences.  However, it is clear that the performance differences are great and that inefficient portfolios out-perform the efficient one in the Figure 4.  When performance is measured by geometric return, the under-performance of the EF portfolio is more than 100 basis points.

The performance varies considerably with the level of return and backcast period.  For example, Figure 5 illustrates an earlier backcast period and  a lower expected return level.  Here, the EF portfolio, does, indeed, out-perform the off-frontier portfolios for about ten years.  Thereafter, it reverses and performance falls below off-frontier porfolios..

Figure 5  EF Portfolio Performance at Low Risk/Return Levels
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Overall Behavior of On-Frontier Portfolios for Information Ratio 

The historical record was examined from several perspectives to see whether an EF portfolio continues to out perform off-frontier portfolios.  Equi-return portfolios were examined.  These are portfolios whose backcast returns are the same, but they have increasing risk.  The forecast period immediately following the end of the backcast was examined to determine how long the on-frontier portfolio maintained superior performance.  This forecast horizon extended to the end of the data, December, 1999.  Backcasts where made at different times.  In each case, the backcast consists of a 5-year block of 60 observations from the historical record.

Several adjustments were made for this analysis.  The first six-month period was ignored because the ratio is highly volatile and computed from few observations.  The extreme low return levels also were removed from the analysis because higher ones shown in the table dominated them.

Table 11

 set InfoRatio  
1
 shows the relative behavior of the information ratio at the return level indicated at the top of the column.  Each row block includes the time for subsequent row blocks.  For example, the forecast beginning January, 1980 covers the period ending December, 1999.  All of the other blocks begin at a later point but also end in December, 1999.
  

Missing cells in Table 1 indicate that a feasible set was not found at that return level for one or more of the on or off-frontier portfolios.  There were five portfolios with risk up to two times the risk of the on-frontier point.  The interval of measurement is a month.  
Table 1  Information Ratio Behavior 

Forecast Period
Return Levels

Information Ratio (forecast begins 1/1980)
0.0066
0.008
0.0085
0.009
0.0095
0.01

Periods until on-frontier EF under performs (max=238)
6
6
6
6
6
6

Number periods on-frontier outperforms all others
10
142
148
153
154
151

Average on-frontier rank (5 is highest)
3.05
4.37
4.34
4.33
4.30
4.27

Information Ratio (forecast begins 1/1985)
0.0066
0.008
0.0085
0.009
0.0095
0.01

Periods until on-frontier EF under performs (max=178)
111
110
109
7
119
69

Number periods on-frontier outperforms all others
105
104
103
8
113
124

Average on-frontier rank (5 is highest)
3.46
3.40
3.38
1.92
3.72
3.90

Information Ratio (forecast begins 1/1990)
0.0066
0.008
0.0085
0.009
0.0095
0.01

Periods until on-frontier EF under performs (max=118)
40
6
9
9
9
9

Number periods on-frontier outperforms all others
34
8
66
83
103
111

Average on-frontier rank (5 is highest)
4.18
4.05
4.57
4.72
4.89
4.96

Information Ratio (forecast begins 1/1993)
0.0066
0.008
0.0085
0.009
0.0095
0.01

Periods until on-frontier EF under performs (max=82)
19
6
6
6
6
10

Number periods on-frontier outperforms all others
15
3
5
6
2
4

Average on-frontier rank (5 is highest)
2.10
1.83
1.82
1.81
1.60
1.56

Information Ratio (forecast begins 1/1995)
0.0066
0.008
0.0085
0.009
 


Periods until on-frontier EF under performs (max=58)
53
56
57
Never
 


Number periods on-frontier outperforms all others
47
50
51
53
 


Average on-frontier rank (5 is highest)
4.83
4.94
4.96
5.00
 


The periods until the on-frontier portfolio under performs (in the sense that its information ratio drops below that of an off-frontier point) tends to hold up better for lower return levels.  This effect is reinforced by the larger values shown for the number of periods the on-frontier portfolio does out rank the off-frontier portfolios.

In general, the on-frontier portfolio ranks well compared to the others.  The average rank is generally high, above 3 out of 5.  But, the performance is not consistent.  The average would be expected to degrade with longer performance periods.  For example, the January, 1980 forecast period is long—238 monthly periods.  The January, 1995 forecast average covers only 58 periods, yet the averages are high in both cases—the on–frontier portfolio did well.  However, the low average of the on-frontier for the January, 1993 shows that the performance is greatly influenced by the backcast period.  Perhaps influenced by sampling error.

There also is great inconsistency in the number of periods before an off-frontier portfolio has a higher information ratio.  The scan begins in period 6 of the forecast horizon, so the reversal shown in the table will either be never or a number between 6 and n.  In most cases, the reversal is early, but not permanent.  There are many situations where the on-frontier portfolio wavers between highest rank and something less.  This latter fact is found in the rows, “Number periods on-frontier outperforms.”  In most cases this number is larger than the number of periods before reversion, indicating that the on-frontier waffles in and out of superior performance.  This could be another indication of sampling error.  The choice of an on-frontier point may not, and probably does not, imply superior performance.

Behavior for Other Performance Measures

The information ratio is held to be a valid measure of performance because it adjusts for variation in the return series during the period of measurement.  Were it applied to two consultants’ portfolio allocation recommendations, the consultant with lower excess returns could be ranked higher than the other consultant because of proportionately lower risk in excess return.
  This may be small consolation to holder of the lower wealth portfolio recommended by the higher ranked consultant.

One measure of performance that is not risk-adjusted is geometric return during a holding period.  Results are arrayed in Table 22

 set GeometricReturn  
2
.  The layout of this table is similar to Table 1.

Table 2  Geometric Return Behavior

Forecast Period
Return Levels

Geometric Return (forecast begins 1/1980
0.0066
0.008
0.0085
0.009
0.0095
0.01

Periods until on-frontier EF under performs (max=239)
6
6
6
6
6
6

Number periods on-frontier outperforms
0
107
106
102
102
105

Average on-frontier rank (5 is highest)
2.41
3.35
3.39
3.38
3.38
3.40

Geometric Return (forecast begins 1/1985
0.0066
0.008
0.0085
0.009
0.0095
0.01

Periods until on-frontier EF under performs (max=179)
6
6
6
6
6
6

Number periods on-frontier outperforms
0
0
0
0
0
1

Average on-frontier rank (5 is highest)
1.00
1.00
1.00
1.00
1.03
1.04

Geometric Return (forecast begins 1/1990)
0.0066
0.008
0.0085
0.009
0.0095
0.01

Periods until on-frontier EF under performs (max=119)
21
6
74
89
111
119

Number periods on-frontier outperforms
15
7
68
85
105
113

Average on-frontier rank (5 is highest)
4.11
4.06
4.60
4.75
4.92
4.99

Geometric Return (forecast begins 1/1993)
0.0066
0.008
0.0085
0.009
0.0095
0.01

Periods until on-frontier EF under performs (max=83)
15
15
16
16
16
16

Number periods on-frontier outperforms
11
16
18
18
14
10

Average on-frontier rank (5 is highest)
1.99
2.19
2.22
2.22
1.92
1.73

Geometric Return (forecast begins 1/1995)
0.0066
0.008
0.0085
0.009
 


Periods until on-frontier EF under performs (max=59)
6
6
6
6
 


Number periods on-frontier outperforms
0
2
9
30
 


Average on-frontier rank (5 is highest)
2.44
2.80
2.96
3.35
 


The forecast propensity of the on-frontier allocation is markedly changed.  Wealth growth appears to be unrelated to the on or off-frontier portfolio choice, and often is worse for the on-frontier allocation.  The number of holding periods the efficient frontier portfolio dominates off-frontier portfolios is generally a lower proportion of the possible number of holding periods in Table 2 than in Table 1.

Performance Failure within CAPM

Work with beta has led to various criticisms [Malkiel, pp. 271].
  For example, some low risk stocks earn higher returns than theory would predict.  Other attacks on beta tend to mirror what we see with EF:

1. Capital asset pricing model does not measure up to practice.

2. Beta is a fickle short-term performer and sometimes fails for long periods of time.

3. Estimated betas are unreliable.

4. Betas differ according to the market proxy they are measured against.

5. Average monthly return for low and high betas differs from predictions over a wide historical span.

Malkiel [p. 270] concludes from his survey that, “One’s conclusions about the capital-asset pricing model and the usefulness of beta as a measure of risk depend very much on how you measure beta.”  This appears to be true of EF too.

Bootstrap Samples

The bootstrap sample of a data set is one with the same number of elements, but random replacement of every element by drawing with replacement from the original set of data.  When this process is independently repeated many times, the bootstrap samples can be used to estimate parameters for functions of the data.  The plug-in principle [Efron and Tibshirani, 1993, p. 35] allows evaluation of complex functional mappings from examination of the same functional mapping on the bootstrap samples.  The function 
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, where the empirical distribution is built up from bootstrap samples.  This technique often is deployed for the derivation of errors of the estimate.

The bootstrap is used in this paper to illustrate the impact of sampling error on the EF.  EF is a complex function of the backcast from which it was calculated.  If the backcast is a sample from a larger, unknown domain, the bootstrap principles apply.  In the case of correlated investment returns, there is no reason why any segment of history should be thought of as a sample.  Yet, the effective use of the historical data in DFA applications treats it as though it were a sample.  In that spirit, we proceed.

The n-tuple observation of correlated returns at time t can be sampled with replacement.  The experiment is similar to drawing packages of colored gum drops from a production lot. Each package contains a mixture of different colors that are laid out by machinery in some correlated manner.  Suppose the lot that has been sampled off the production line contains n packages.  A bootstrap sample of the lot also contains n observations.  It is obtained by draws, with replacement, from the original sample lot.  The n-tuple of investment returns at time t is analogous to a package within the lot of gum drop samples.  The historical sequence of correlated returns is analogous to the mix of different colors of gum drops in a package.  The analogy halts because we know the lot of gum drop packages is a sample.  We never will know whether the sequence of historical, n-tuple-investment returns is a sample in a meaningful sense.

The plug-in features of a bootstrap enable inference from sample properties of the distribution of bootstrap samples.  Each bootstrap sample has a complex derivation of the EF.  The plug-in properties extend to all complex functions of the bootstrap, including standard deviations, means, medians, confidence intervals and any other measurable function.  The EF is one of these functions.

The behavior of the EFs for our bootstrap samples is a proxy for the effect of sampling error, were history to be properly thought of as a sample.  Because actuarial science is built largely on the precept that past history, even of seemingly unique phenomena, really is a sample we continue along this slippery slope too.

Each bootstrap sample of backcast returns has a correlation and covariance matrix.  Each sample can be subjected to mathematical optimization.  Further, these samples can be used in the way a DFA model might have used the original historical data, including their direct use within the calculation of the DFA results as a random instance of investment results.  This paper suggests how that direct use of the bootstrap might unfold in a DFA liability-side simulation, but it does not deploy it in that manner.
,
  The authors have a less ambitious objective of examining just the performance of the efficient frontier built from bootstrapping investment information.

Characteristics of the EF Surface

The bootstrap-generated EF surface rises within the risk/return space.  Views of this surface from two different angles are shown in Figures 66

 set BootstrapSurface  
6
.

Figures 6  Views of EF Surface Created from Bootstrap Samples
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The surface is constructed from monthly returns.  Looking down on the surface of the views, one obtains a projection on risk/return space.  The surface is seen to curve as the efficient frontier curves.  In the low risk/return sector, the surface is more peaked.   The surface flattens and broadens in the risk/return space.  Imagine yourself walking along the ridge starting in the southeast and proceeding northward and then north east.  You would first be clambering down a steep incline and then a vista of a vast plane would unfold along your right. 

There is an artifact of the intervalization that results in a sudden rise in the surface at the highest risk level.  This occurs because higher risk observations were lumped into this final interval.  Were higher levels of risk intervalized over a broader range, this ridge would flatten.

The surface shown in either of the views in Figures 6 is built from many efficient frontiers, each produced from optimizations done on a bootstrap sample.  We already have seen that a tangle of EFs overlay—they can be organized to produce a surface.  The surface develops the same way an empirical probability distribution is built from a sample.  Repeated sampling produces points that are intervalized and counted.  

A frequency count can be made of observations for EFs falling within an arbitrarily small, two-dimensional region of risk/return space.  An example of this mapping for 5,000 bootstrap-simulated EFs appears in Figure 6.  Collectively, this mapping involves the 2-dimensional, intervalization of approximately 45,000 quadratic optimizations constituting the EFs for the underlying bootstrapped samples.

Equi-Return Slice of the Efficient Surface 

A slice through the efficient surface along the return plane produces a histogram of the minimum risk points in for a given return in the EFs used for the EF Surface.  As return increases, this marginal probability distribution becomes more disperse.  An example appears in Figure 7.

Figure 7  Dispersion of Risk Given a Return Level
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The dispersion increases with return for both surfaces constructed from bootstrap samples and from randomly selected blocks of history.  The distributions are positively skewed, increasingly so as return increases.  The statistics both for bootstrapped and historical segment evaluations of sampling error appear in Table 3. 

Table 3  Statistics for Equi-Return Slices of the Efficient Surface

Statistic
Efficient Surface from Bootstrapped Efficient Fontiers

Return Level
.0053
.0066
.0080
.0085
.0090
.0095
.0100

Mean 

(times 1.0E4)
.0125
.0533
3.76
8.86
17.9
33.6
50.7

Standard Deviation

(times 1.0E4)  
.627
3.77
38.2
58.6
81.8
109.7
131.6

Skewness

(times 1.0E8)
.000123
.378
57.8
136.
275.
516.
779.

The statistics are visually apparent in the EF Surface.  The surface is partially bowl-like—sloping downward in a concave fashion.  Its rim encompasses a plane within the risk/return domain that is broad in the risk dimension.

An efficient surface also can be created from EFs calculated for historical time periods.  An example appears in Figure 88

 set HistoricSurface  
8
.  The data are for 5-year, overlapping blocks calculated on a monthly basis starting in 1970.  The same general features are found in this representation of sample error.  However, the surface is less flat than the one developed from bootstrap samples.  The reduced dispersion in the surface of Figure 8 arises in part from the use of overlapping five-year blocks used to construct the underlying EFs from which the surface is built.  A statistical table similar to Table 3 was constructed for this surface.  It appears in Table 4.

Figure 8   Efficient Surface from Historical Samples
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Table 4  Statistics for Equi-Return Slices of the Surface Shown in Figure 8
Statistic
Efficient Surface from Bootstrapped Efficient Frontiers

Return Level
.0053
.0066
.0080
.0085
.0090
.0095
.0100

Mean 

(times 1.0E4)
.663
5.53
21.0
25.5
28.8
33.2
46.5

Standard Deviation

(times 1.0E2)  
.080
.451
.861
.940
.995
1.06
1.23

Skewness

(times 1.0E6)
.00676
.769
2.92
3.54
4.00
4.62
6.46

.

Stability of Portfolio Composition Along an Efficient Frontier

The portfolio allocation changes, usually dramatically, along the efficient frontier.  A component may enter the feasible set at some point, increase in weight, decrease and then drop out at another point along the EF.  This effect was shown in Figure 2.  

The change in composition for an equi-return level was examined among different EFs, constructed both from historical segment EFs and bootstrap EFs.  We refer to this type of comparison as an avalanche chart because when shown in an animation, the change in composition is similar to an avalanche.  An example appears in Figure 9.

Figure 9  Avalanche Chart for Historical Segments
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The vertical bars are stacked columns.  Each segment within a column represents a different component of the portfolio.  A bar, therefore, compares the percentage value each component in the feasible set contributes across all components in the set.  All bars are shown for a constant, equi-return level of an EF; but each bar is for a different historical segment.  In Figure 9, each bar represents the portfolio composition for the equi-return level point on the EF, which was calculated for a five-year block of monthly observations.   The bars are for randomly chosen historical segments.
  Were the blocks within the bars to consist of the same components and were they to be about the same size, the portfolio allocations would be the same regardless of the time frame.  Examination of Figure 9 shows that the composition of the bars and individual component allocations varies considerably.

The portfolio composition is much more stable at lower risk/return levels.  This result is in accordance with other similar findings based on the EF surface. It, too, shows less disperse results for lower return levels.  This approach to measuring sampling error implies that performance of efficient frontiers may not be optimal relative to off-frontier portfolios.  If the mix and composition of portfolios fluctuates considerably both with respect to historical and bootstrap sampling methods, the performance expectations of an ex ante allocation are not apt to hold ex post.

Conclusion

The behaviors shown in both Tables 1 and 2 illustrate a marked tendency towards randomness.  The efficient surface built from bootstrap samples is highly variable within the risk/return domain.  Sampling error helps explain the findings, but it does not prove them.

There appears to be some temporal dominance of on-frontier portfolios for lower risk/return levels, but the historical record is mixed.  The bootstrapping of the single sample of asset returns provided by nature illustrates that sampling error could materially affect the position and shape of the efficient frontier.  The efficient surface for the investments used in this paper appears to be so impregnated with sampling error that its operational deployment may be questionable.

Future study will have to answer the question of whether on-frontier asset allocations that are measured from hybrid DFA models suffer a similar unreliability.  But, the problems with on-frontier asset portfolios raised in this paper are apt to be exacerbated by inclusion of known sampling error in the liability side of DFA models.  

There is no strong support in this paper for the practical deployment of efficient frontiers.  The risk in DFA models stems from model, process and parameter risk.  It fans through all aspects of DFA models of the insurance enterprise.  The existence of model and process risk [Kirschner and Scheel, 1997] thwarts the usual convergence to reality gained by running large numbers of simulations.  When all of these new risk elements are heaped on top of the sampling error derived from asset model calibration or empirically measured covariance matrices, one wonders whether EFs are really useful in DFA analysis.

Appendix A:  Review of Data Sources

This paper uses monthly time series of asset class total returns.  A selection of broad asset classes typical of P&C insurance company asset portfolios was chosen for examination.  The time series all begin January 1, 1970.  However, certain asset classes (e.g. mortgage backed securities) do not have a history that extends back this far.  For these classes the time series were backfilled to the January 1, 1970 start date by an investment consultant.  The backfill process was based on a consideration of the market conditions of the time (e.g. interest rates, fixed income spreads, inflation expectations) and how the particular sector would have performed given those market conditions.  The Start Date in Table 5 refers to the date historical data begins.

Table 5  Asset Components

Class
Code
Source
Start Date

International Equities

EAFEU
MSCI EAFE Index

1/1970

International Fixed Income

INTLHDG
JP Morgan Non-US Traded Index

1/1970

Large Cap Domestic Equities

S&P5
S&P 500 Index

1/1970

Cash

USTB
90 Day US Treasury Bill

1/1970

Mid Cap Domestic Equities

RMID
S&P Mid Cap 400 Index

1/1982

High Yield

HIYLD
CSFB High Yield Bond Index

1/1986

Convertible Securities

CONV
CSFB Convertible Index

1/1982

Corporate Bonds

LBCORP
Lehman Brothers Corporate Bond Index

1/1973

Government Bonds

LBGOVT
Lehman Brothers Government Bond Index

1/1973

Mortgage Backed Securities

LBMBS
Lehman Brothers Mortgage Backed Securities Index

1/1986

Appendix B:  Annualized Returns

The time series used in this study are monthly returns.  With the exception of work relating to performance, all returns are expressed as monthly returns.

For performance measurement purposes, returns have been annualized using the following formulas.

Annualized Expected Return
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where,
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Annualized Variance of Return
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where,
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Annualized Geometric Return

The growth rate, g, for a holding period of n years is given by:
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where,
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� The calibration may depend on examination of stylistic facts, but there seldom is formalized, statistical hypothesis testing to judge whether the facts can be accepted as such or whether the representation of these facts in the model is really a scientific determination.  


� Some models use multivariate normal simulation for rendering investment returns for consecutive periods.  There usually is an assumption that the covariance matrix use for multivariate normal simulation is stationary from period to period in these models.


� DFA and optimization do have a critical junction.  Some DFA modelers believe they understand time dependencies within period-to-period rates of return.  EF attempts to optimize expected return.   If there is a time-dependence conjectured, it should be factored into the expected returns used to build the EF for any period. 


� Correnti, et al, review an approach similar to the hybrid model described here.


� The term, backcast, refers to the use of an historical block of data to empirically measure a covariance matrix and use it to construct an efficient frontier.


�  The backcast can be used to estimate a covariance matrix.  Investment rates are forecasted by the DFA model, which might use multivariate normal simulation.  The covariance matrix used for the multivariate normal simulation is estimated from backcast historical data and generally is assumed to be stationary during the forecast period.


� A typical behavioral pattern for business growth is modeling it as a function of inflation, which was generated by the economic scenario. Another is to tie severity in claims to underlying inflation as unfolded in the economic model simulation.


� There is no reason other than a few computational programming complexities why intra-period optimizations cannot be done within DFA models.  The question is whether they are, or they are not, being done.  For example, the DFA model can simulate a wide variety of rebalancing strategies including the real-life one that involves a rebalancing trigger for simulated portfolios whose allocation has deviated from a recent EF by some amount.  Mulvey, et al [1998, p. 160] describe an n-period simulation wherein such rebalancing is triggered.  In addition, Mulvey, et al, describe the use of optimization constraints in a clever way to achieve an integration of strategic, long-term optimization with short-term tactical objectives.  However, a DFA model that allows intra-period optimization must also capture the transaction and tax costs associated with the intra-period rebalancing and re-optimization.  See Rowland and Conde [1996] regarding the influence of tax policy on optimal portfolios and the desirability of longer term planning horizons.


� Some segments of the figure are incomplete.  This is because the quadratic optimizer could not identify a feasible set of investment alternatives for all of the average returns chosen in the analysis.


� The population distribution is unknown, but it is estimated from the historical record by calculation of an empirical covariance matrix for each historical block.


� The data represent returns for a selected group of investment components.  There was no attempt to filter or smooth the time series in any way.  However, a few gaps in the historical record where interpolated.


� One technique for deploying efficient frontiers within DFA analysis involves removal of actual values from the data series used in optimization.  These points in the actual time series may be deemed abnormalities.  The efficient frontier calculation does not use all available data or uses them selectively.  See Kirschner [2000] for a discussion of the hazards of historical period segmentation.


� All optimization was done using Frontline Systems, Inc. Premium Solver Plus V3.5 and Microsoft Excel.


� It is possible to restate a portfolio optimization problem to produce off-frontier portfolios.  These are asset allocations for points in risk/return space that are within the concave region defined by the set of efficient points.  They are portfolios with variance greater than the minimum variance points for the same expected returns.  They were found by goal equality calculation using the same constraints as were used for minimum variance optimization.  However, the equality risk condition was set to a higher level than found on the efficient frontier.  Non-linear optimization was used for this purpose whereas quadratic optimization was used for minimum variance optimization.


� At this stage, the derivation of taxes would occur. As noted by Rowland and Conde [1996], the determination of federal income taxes is convoluted by the combined effect of discount rates, changes in loss reserves, varying underwriting results, and tax carryforwards and carrybacks.


� Some models may achieve computational efficiencies when economic scenarios are paired with E(C) instead of with direct pairing to C1, C2, .... , Cn.  When this is done, however, the variance of the metric being optimized will be reduced, and the minimum variance portfolio is likely to be different.


� If enough pairs are used, the chance that the model will converge improves.


� Risk in this study is measured as the standard deviation of return.


� The 90-day Treasure bill index is used as the proxy for the risk free return.


� Short holding periods have performance measures calculated with few observations.  The ordinal rankings among the different multipliers are volatile and should be discounted.  The first six monthly periods are generally ignored in this paper.


� The extreme low risk/return observations occur below where the EF curve has a positive first derivative.  A portfolio with a higher return for the same risk can be found above this change in the curve. 


� Each block of rows uses a different set of on and off-frontier portfolios—the respective EFs are derived from optimizations on different backcast periods.  For example, the January, 1980 forecast is based on the performance of EFs derived from a backcast covering the five-year period, January, 1975 - December, 1979).  However, the January, 1995 forecast uses EFs derived from a different backcast, one covering the five-year period, January, 1989 - December, 1994.  The information in the blocks is not cumulative; the number of periods the on-frontier excels or outperforms off-frontier portfolios is a separate measurement for each row block.  The row blocks show performance for portfolios constructed at different points in time.


� All ratios suffer from this phenomenon.  For example, 9/25=.36 —and 11/35=.355.  Do you really like 9/25 better than 11/35?  Scale phenomena also apply.  Are you really indifferent between 9/25-ths and 18/50-ths?  Both equal .36.


� Beta is a measure of systematic risk either for an individual security or for a portfolio.  High beta portfolios, measured ex ante, in theory should have higher returns ex post than low beta portfolios.


� Although the n-tuple used in this paper is a cross-sectional observation of returns, it can be expanded to a cross-section of the entire business environment at time t.  This includes all economic aggregates, not just rates of return.  Any flow or stock business aggregate that can be measured for interval t is a candidate for the n-tuple.  This would include, inflation, gross domestic product or any worldly observation of the business climate prevailing at that time.  A bootstrap sample can be used as a component of a larger simulation requiring simulation of these worldly events.


� DFA model builders spend time modeling empirical estimates of process and parameter risk [Kirschner and Scheel, 1998].  Bootstrapping from the data removes much of this estimation work and leaves the data to speak for themselves.


� Equi-return, minimum variance points for the 5,000 bootstrapped EFs were intervalized based on an overall evaluation of the range of risk among all points on all EFs.  If an efficient set could not be identified for a return level, the observation was ignored.  The marginal probabilities (risk|return) were normalized to the number of viable observations for that risk level.  The number of viable optimizations exceeded 4,500 at each return level.


� There is a small chance that two or more bars in an avalanche chart could be identical.  However, there is a much larger probability that two or more bars have overlapping time periods in the calculation of their respective EFs.
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