Climate Change and Risk Management

Extending the Time Horizon

Cody Webb, Milliman Brandon Katz, KatRisk David D. Evans

OCTOBER 2020

The Future is Uncertain and Full of Terrors

We manage risk.

The future is uncertain and full of risk. Risk is the chance that an undesirable event will occur, but risk is also opportunity. That's where we come in.

Actuaries are experts in:

- Evaluating the likelihood of future events—using numbers, not crystal balls.
- Designing creative ways to reduce the likelihood of undesirable events.
- Decreasing the impact of undesirable events that do occur.

We are the leading professionals in finding ways to manage risk. It takes a combination of strong analytical skills, business knowledge, and understanding of human behavior to manage today's complex risks facing our society.

Source: <u>https://www.beanactuary.org/</u> "what we do" Milliman

 Climate-related challenges are now seen by many as the most significant global risk.

Source: World Economic Forum, Global Risks Report http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf

 Widespread awareness of the significance of the issue is a recent phenomenon.

Economic	Environmental	Geopolitical	
Asset bubble	Biodiversity loss Global governance fr		
Deflation	Climate action failure	National governance failure	
Energy price shock Financial failure	Human-made environmental disaster	State collapse Terrorist attacks	
Fiscal crises Illicit trade	Natural disasters	Weapons of mass destruction	
Unemployment Unmanageable inflation			
Societal	Technological		
Failure of urban planning Food crises	Adverse technological advances Cyberattacks		
Infectious diseases Involuntary migration Social instability Water crises	Data fraud or theft Information infrastructure breakdown		

Source: World Economic Forum, Global Risks Report http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf

Much of the Emerging Risk is Uninsured

Is climate risk insurable?

Large number of similar exposure units:

Since insurance operates through pooling resources, the majority of insurance policies are provided for individual members of large classes, allowing insurers to benefit from the law of large numbers in which predicted losses are similar to the actual losses.

Definite Loss:

The loss takes place at a known time, in a known place, and from a known cause.

Accidental Loss:

The event that constitutes the trigger of a claim should be fortuitous, or at least outside the control of the beneficiary of the insurance.

Large Loss:

The size of the loss must be meaningful from the perspective of the insured.

Affordable Premium: If the likelihood of an insured event is so high, or the cost of the event so large, that the resulting premium is large relative to the amount of protection offered, it is not likely that anyone will buy insurance, even if on offer.

Calculable Loss: There are two elements that must be at least estimable, if not formally calculable: the probability of loss, and the attendant cost.

Limited risk of catastrophically large losses: Insurable losses are ideally independent and non-catastrophic, meaning that losses do not happen all at once and individual losses are not severe enough to bankrupt the insurer.

Milliman Source: https://en.wikipedia.org/wiki/Insurability

Climate Risk Presents an Array of Vulnerabilities

Climatio	c Impacts	Socio-Economic Impacts		Socio-Economic Impacts		Impacts on Actuarial Work
Direct Heatwaves Storms Floods Sea level rise Bush fires Droughts 	Indirect Air pollution Water and food supply Diseases 	 Social Migration Health infrastructure Emergency and social services Consumer behavior 	Economic GDP growth Investor preferences Infrastructure investment Employment Housing Energy Taxation	 Changes to modelling and assumptions Development of products including re- design, pricing, exclusions, etc. Changes to risk management practices Changes to capital management practices Prevised/new investment management practices Changes to financial stability management Disclosure that allows for climate risk Broader application of actuarial work 		

C Milliman

Source: International Association of Actuaries, Importance of Climate Related Risks for Actuaries https://www.actuaries.org/IAA/Documents/Publications/Papers/CRTF_ImportanceClimateRelatedRisksActuaries_FINAL.pdf

Actuarial Organizations are Making Climate a Top Priority

CASUALTY ACTUARIAL SOCIETY (CAS)

The primary purpose of the Climate Change Committee (created in November 2008) is to recommend, support and perform research on climate change and assess the potential risk management implications for the insurance industry.

AMERICAN ACADEMY OF ACTUARIES (THE ACADEMY)

The Academy conducts climate activities through its Property/Casualty Extreme Events Committee. Successive editions of its magazine, *Contingencies*, feature articles on climate-related issues, including a cover story on rising sea levels.

CANADIAN INSTITUTE OF ACTUARIES (CIA)

The Climate Change & Sustainability Committee (CCSC) dates from April 2014. Presentations on climate issues are made by the committee at each annual meeting as well as periodic CIA Board meetings.

Source: The Actuary Magazine https://theactuarymagazine.org/the-challenges-of-climate-change/

Thank you

Cody Webb, FCAS, MAAA Cody.webb@milliman.com

KatRisk CAS Annual Meeting

Climate Change and Risk Management -Extending the Time Horizon

11/12/2020

Climate Change Scenarios (IPCC)

- The Intergovernmental Panel on Climate Change (IPCC) is the international authority on climate science and climate change scenarios. Future scenarios are typically described as Representative Concentration Pathways (RCP).
 - RCP scenarios define the concentration of greenhouse gas emissions given different international mitigation strategies (or lack thereof)
 - Increases in greenhouse gasses are known to increase mean average global temperatures which has downstream effects on meteorological peril magnitude and frequency
 - Hurricanes
 - Inland flooding
 - Wildfire
 - Severe convective storm
 - Etc.

Climate Change by the Numbers

- Hurricanes (US)
 - Impact of sea level rise on storm surge losses in the US
 - KatRisk: sea level rise will cost about \$20 million per year (~0.4% increase p.a.)
 - Impact of higher temperature on tropical cyclone precipitation
 - Literature: increase of 1 degree Celsius of SST leads to significant increase
 - Amount of increase varies in recent papers, need more studies
 - Impact of the slowdown of tropical cyclones
 - Would lead to increases in precipitation

Figure 14, Average annual KSL for New York City (The Battery), Miami (Virginia Key), Fila, Gaveston, Tex, and San Francisco, Calif, with their respective (median-value) RSL under the six scenarios. The NOAA RSL observations (tidesandcurrents.noaa.gov/sltrends) are shown relative to the midpoint (year 2000) of the 1991–2009 epoch (1994–2009 at Virginia Key), which is the reference level for the scenarios.

*National Oceanic and Atmospheric Administration (January 2017). Global and Regional Sea Level Rise Scenarios for the United States. Available at:

https://tidesandcurrents.noaa.gov/publications/techrpt83_Global_and_Regional_SLR_Scenarios_for_the_US_final.pdf

KatRisk

Climate Induced global sea level rise in the US has the most effect on

- a) Coastal Florida
- b) Coastal New York
- c) Coastal Texas
- d) Coastal North Carolina

Medium Sea Level Rise vs. Current Sea Level

High Sea Level Rise vs. Current Sea Level

Climate change will do the following to precipitation in the US

- a) Increase annual total precipitation everywhere
- b) Decrease annual total precipitation everywhere
- c) Increase annual total precipitation in some places, and decreased it in other places

Climate Change by the Numbers

RCP 8.5 Scenario - 2050

RCP 2.6 Scenario - 2050

*https://nca2014.globalchange.gov/report/our-changing-climate/precipitation-change

- Inland Flood (US)
 - Temperature increases
 - Increases holding water capacity of air, increases magnitude of precipitation events
 - Increased droughts
 - Decreases number of rain
 events
 - Decreased snowpack
 - Decreases spring flood events, shifts seasonal event frequency
 - Extreme events are expected to increase, overall precipitation frequency is less certain

RCP 4.5 Scenario - 2050

RCP 8.5 Scenario - 2050

* Accounting for increase in temperature effect only

RCP 4.5 Scenario - 2100

A sport A s

RCP 8.5 Scenario - 2100

* Accounting for increase in temperature effect only

Climate Change by the Numbers

- Droughts/Wildfire
 - Increased temperature
 - Decreased mean average water table
- Sunny day flooding
 - Sea level rise increases repetitive losses

KatRisk

Inland Flood (11M Locations, \$82T Nationwide Exposure)

	Loss in \$B					
	OEP AEP					
Return	NAIF	RCP4.5	RCP8.5	NAIF	RCP4.5	RCP8.5
Period	Standard	2050	2050	Standard	2050	2050
10	28	31	32	50	56	58
20	44	48	49	72	80	82
50	73	78	80	108	118	122
100	102	108	110	142	154	157
200	136	143	146	182	195	200
500	193	202	205	248	264	268
1k	243	255	258	306	324	330
2k	302	312	315	370	385	391
5k	398	412	417	470	489	496
500k	1030	1053	1058	1036	1061	1067
AAL	22	25	26	22	25	26

Storm Surge (11M Locations, \$82T Nationwide Exposure)

	Loss in \$B					
		OEP			AEP	
		NASS 0.5	NASS 1.5		NASS 0.5	NASS 1.5
Return	NASS	MED	HIGH	NASS	MED	HIGH
Period	Standard	2050	2050	Standard	2050	2050
10	14	20	30	17	24	38
20	26	34	48	30	41	59
50	48	60	79	54	69	94
100	68	83	108	76	93	125
200	91	109	139	100	123	159
500	128	150	185	141	167	210
1k	165	189	224	179	207	251
2k	208	234	268	219	249	295
5k	262	289	326	277	305	356
500k	466	529	626	591	684	824
AAL	7	9	14	7	9	14

- Compute global climate risk indices by
 - Year
 - Season
 - Month
 - Climate state (El Niño/AMO/etc.)
- Method:
 - Compute current day risk metrics for:
 - Inland flood
 - Hurricane surge/wind
 - Severe convective storm (tornado/hail/wind)
 - Extreme temperature
 - Winter storm
 - Compute same metrics using future climate states
 - Create Δ metrics

Tornado Annual Frequency

Brandon Katz, MSc. Executive Vice President, Member 310 Comal Street BLDG A Suite 200, Rm 250, Austin, TX 78702 Office : +1 512 593 1760 Mobile : +1 901 262 0107 brandon.katz@KatRisk.com www.KatRisk.com

Society of Actuaries study by Milliman and KatRisk

https://www.soa.org/resources/research-reports/2020/soa-flood-report/

Key mortgage questions:

- How could major flood events stress individual homeowners' abilities to pay their mortgages?
- What is the downstream exposure for lenders, GSEs, mortgage guaranty insurers, and investors?

Methodology and assumptions:

- Merged single-family property data with loan data
- Estimated flood insurance take-up rates and applied policy terms
- Ran loan level underlying mortgage collateral through flood model
- Analyzed uninsured impacts of major flood events (100-year and 500-year return periods)
- Adjusted the future house price appreciation scenario for each impacted loan
- Estimated loan level performance for underlying credit risk transfers (CRTs)

Assessing flood and climate risk to mortgages

Application of insurance terms

NFIP Take-Up Rate Estimates

Sea level rise scenario selection

- KatRisk's storm surge model was run with three separate sea level rise scenarios
- In addition to current sea levels, selections for this analysis were made for "medium" and "high" sea level rise scenarios. The medium regional sea level rise by 2050, with 0.5m (1.6 ft) globally by 2100, was selected as the medium scenario. The high regional sea level rise by 2050, with 1.5m (4.9 ft) globally by 2100, was selected as the high scenario.
- According to the Fourth National Climate Assessment*:
 - Global average sea level has risen by about 7–8 inches (about 16–21 cm) since 1900, with almost half this rise occurring since 1993 as oceans have warmed and land-based ice has melted. Relative to the year 2000, sea level is very likely to rise 1 to 4 feet (0.3 to 1.3 m) by the end of the century. Emerging science regarding Antarctic ice sheet stability suggests that, for higher scenarios, a rise exceeding 8 feet (2.4 m) by 2100 is physically possible, although the probability of such an extreme outcome cannot currently be assessed."

High Confidence Range

*National Oceanic and Atmospheric Administration (January 2017). Global and Regional Sea Level Rise Scenarios for the United States. Available at: https://tidesandcurrents.noaa.gov/publications/techrpt83 Global and Regional SLR Scenarios for the US final.pdf

Flood risk to mortgages modeled results

Modeled Increased Credit Losses Due to Extreme Flood Event Relative to Baseline Credit Losses

	Sea Level Scenario			
Loans Analyzed	Current	Medium SLR	High SLR	
Combined Collateral Pool	4.7%	5.8%	8.0%	
Riskiest Tranche	15.2%	18.5%	24.6%	
Impacted Loans	373.4%	447.8%	593.0%	

Percentage increases shown above are for a single extreme flood event modeled across each sea level scenario
About 50% of increased credit losses still remained after considering current mandatory purchase requirements
Significant stress for loans impacted by flood events shown by high estimated default rates post-event. Impacted is defined as homes enduring an uninsured building loss.

Modeled Conditional Default Rate of Impacted Loans

Comparing modeled estimates to historical

Delinquencies have spiked after catastrophic events, but have not materialized in foreclosures as modeled in this study

Why are modeled estimates higher than historical results? Homeowners' desire or ability to avoid default post-disaster may have been greater than during other circumstances

Disaster assistance offered by mortgage investors might have provided effective relief to borrowers

State or federal assistance allowed impacted homeowners to rebuild

Historical events may have tended to occur during periods of relative strength in the housing market

Is the historical record indicative of the future risk?

Source: Keys and Mulder, National Bureau of Economic Research https://www.nytimes.com/2020/10/12/climate/home-sales-florida.html

Thank you

Dave Evans, FCAS, MAAA david.d.evans@milliman.com