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The majority of the presented material is based on recent and
ongoing joint work with

I Richard Verrall

I Felix Wahl

I Henning Zakrisson

in particular the manuscript

“Machine Learning, Regression Models, and Prediction of Claims
Reserves”

which is accepted for publication in CAS E-Forum, see Lindholm
et al. (2020)



Aim for today

Introduce reserving models that can produce separate RBNS
and IBNR reserves

...

...and discuss how these can be combined with machine
learning techniques

Focus will be on general concepts and intuition rather than rigour

(i.e. prepare for some abuse of notation, for more details see
Lindholm et al. (2020))
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Outline of the talk:

I Regression models: Double Chain-Ladder (DCL) type models

I Parametrisations and machine learning estimation

I Numerical illustrations: Gradient Boosting Machines and
Neural Networks

I Closing remarks



Regression models – initial considerations

I Aggregated payment data used by e.g. the std chain-ladder
technique is not sufficient in order to produce separate IBNR
/ RBNS reserves

I Highly detailed (continuous time) micro level data is often
cumbersome to work with (“bespoke” models)

I Compromise: Use discrete time aggregated incremental
payment data and claim count data

⇒ “Double Chain-Ladder” (DCL) type models
I DCL type models are similar to standard chain-ladder

technique models, that
I can produce separate RBNS / IBNR reserves
I have parameters with constructive interpretations
I are easy to bootstrap
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Regression models – DCL type models

Some notation

: Let

I Xij denote the incremental claims payments from accident
year i = 1, . . . ,m paid during development year
j = 0, . . . ,m − 1 + d , where d corresponds to the maximal
reporting delay since claim reporting

I Nij denote the incremental number of claims from accident
year i = 1, . . . ,m reported during development year
j = 0, . . . ,m − 1

I N denote all information about the Nijs corresponding to that
contained in a standard claims triangle

We will not present the standard DCL model from Miranda et al.
(2012), but rather the so-called Collective Reserving Model (CRM)
from Wahl et al. (2019) which is an over-dispersed Poisson model
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Regression models – DCL type models

Model 1
The CRM based on Xi,j and Ni,j data from Wahl et al. (2019) can be
written on the form

Xi,j | N ∼ ODP

(
j∧d∑
k=0

ψi,j−k,kNi,j−k , ϕ

)
,

and
Ni,j ∼ ODP (νi,j , φ) ,

that is,

E[Xi,j | N ] =

j∧d∑
k=0

ψi,j−k,kNi,j−k = Var(Xi,j | N )/ϕ,

and
E[Ni,j ] = νi,j = Var(Ni,j)/φ.

All Xi,j are assumed to be conditionally independent, given N , and all
Ni,j are assumed to be independent.



Regression models – DCL type models

(i) ϕ and φ are over-dispersion parameters – setting these to 1 is
equivalent to standard Poisson

(ii) The Nijs act as exposures in the Xij part of the model, and
the Nijs are modelled following a standard ODP
cross-classified Chain-Ladder model

(iii) The ψijks describe the average amount paid for claims from
accident year i that where reported in development period j ,
and paid k periods after reporting

(iv) The RBNS reserves are obtained by conditioning on
knowledge of Nijs, and the IBNR reserves are obtained by
also predicting future Nijs, i.e. (for combinations of (i , j)
corresponding to the future, with allowed values of k)

RBNS contribution: E[Xi ,j | N ] =
∑

k ψi ,j−k,kNi ,j−k

IBNR contribution: E[Xi ,j ] =
∑

k ψi ,j−k,kE[Ni ,j−k ]
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Regression models – DCL type models

Note that (iii) discusses (i,j,k)-information, which is something
needed in the derivation of the CRM (and DCL):

I Let Xijk denote the total amount of payments from accident
year i , that come from claims that are reported with j years
delay, and that are paid k years after reporting

...

I ...but when using Xi ,j ,k data the Ni ,js are not needed to
produce separate RBNS and IBNR reserves, since the
outstanding claim payments

RRi :=
m−i∑
j=0

∑
k>m−(i+j)

Xi ,j ,k ,

and

RIi :=
m−1∑

j=m−i+1

∑
k

Xi ,j ,k .
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Regression models – DCL type models
This suggests two additional models:

Model 2
The CRM based on Xi,j,k and
Ni,j data from Wahl et al. (2019)
can be written on the form

Xi,j,k | N ∼ ODP (ψi,j,kNi,j , ϕ) ,

and

Ni,j ∼ ODP (νi,j , φ) ,

and in particular,

E[Xi,j,k | N ] = ψi,j,kNi,j ,

All Xi,j,k are assumed to be
conditionally independent, given
N , and all Ni,j are assumed to
be independent.

Model 3
Let Xi,j,k be defined as an
over-dispersed model according
to

Xi,j,k ∼ ODP (ψi,j,k , ϕ) ,

with

E[Xi,j,k ] = ψi,j,k = Var(Xi,j,k)/ϕ,

where all Xi,j,k are assumed to
be independent.



Parametrisations and machine learning estimation

I Model 1 – 3 are very general regression models and
consequently hard to estimate unless restrictions are imposed
on the ψijks

I E.g. ψijk := γk , ψijk := αi+jγk or ψijk := αiβjγk ...

I ...or ψijk := f (i , j , k ;θ), where f (·) is some suitably chosen
function

I ...“Machine Learning”: Use a very flexible class of functions
f (·) often defined (implicitly) using a very large number of
parameters optimised w.r.t. a suitable loss function

Here: f (·) will be given by Gradient Boosting Machines
(GBM) and Neural Networks (NN) optimised w.r.t. a Poisson
loss (relating to the likelihood for Model 1 – 3)

I Problem: overfitting
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Parametrisations and machine learning estimation –
Calibration and overfitting

I GBMs and NNs are estimated using iterative numerical
procedures

I Ideally: for each iteration in the optimisation

1. estimate all parameters based on complete in-sample (training)
data and evaluate the estimates on complete out-of-sample
(validation) data

2. choose the iteration that performs best w.r.t. out-of-sample
performance

I This procedure is known as “early stopping”

I Problem: In a claims reserving context we don’t have access
to fully developed triangles that are representative for the
future
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Parametrisations and machine learning estimation –
Calibration and overfitting

Following Gabrielli et al. (2019) we instead start from the claims
database and construct

(i) one set of historical triangles to be used as “in-sample” data
for the purpose of estimation

(ii) one set of historical triangles to be used as “out-of-sample”
data for the purpose of evaluation

Note that

I Using these triangles (of Xij ,Xijk and Nij data depending on
model) the procedure from the previous slide can be used

I This procedure is not depending on any specific choice of
machine learning technique

Next: numerical illustration using GBMs and NNs
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Numerical illustrations
The models to be considered are (primarily)

I The (homogeneous) CRM: ψijk = γk
(special case of Model 1)

I The Generalized CRM (GCRM): ψijk = αiβjγk
(special case of Model 2)

I Model 2 and 3 estimated using GBMs and (feed-forward) NNs

Moreover,

I We consider six different portfolios of simulated data
generated by the individual claims history simulation machine
of Gabrielli and Wüthrich (2018), which is a NN model
calibrated to Swiss insurance data

I For reference we will use the standard chain-ladder technique
(CL) and the ODP CL NN model from Gabrielli et al. (2019)
(GRWNN)

I All implementations are done using standard R-packages
(keras and gbm)
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Table: True reserve compared to CL, the CRM and GRWNN reserves.
Relative bias (error) of the predictions in the parentheses. The data is
the same as that used in Gabrielli et al. (2019).

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6
True reserves 39,689 37,037 16,878 71,630 72,548 31,117

CL reserves
38,569
(-2.82)

35,460
(-4.26)

15,692
(-7.02)

67,574
(-5.66)

70,166
(-3.28)

29,409
(-5.49)

CRM reserves
32,485

(-18.15)
29,901

(-19.27)
13,040

(-22.74)
55,782

(-22.12)
59,390

(-18.14)
24,403

(-21.58)

GCRM reserves
38,293
(-3.52)

35,117
(-5.18)

15,448
(-8.47)

66,961
(-6.52)

69,397
(-4.34)

29,104
(-6.47)

GRWNN
39,233
(-1.15)

35,899
(-3.07)

15,815
(-6.30)

70,219
(-1.97)

70,936
(-2.22)

30,671
(-1.43)

The relative bias is calculated based on that we know the true simulated payment outcome
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Figure: Heatmap for the relative biases (errors) of the total payment
prediction within a specific accident year and development year
combination for LoB 1 using the CRM and GCRM.



Numerical illustrations

I So there seems to be room for improvement for the RBNS /
IBNR split models!

I Focus on GBMs – parameters to be tuned:
I Shrinkage factor (or learning rate)
I Bagging fraction
I ...

I The important part here is not what these parameters are, but
rather to illustrate how this may be done

I That is, to decide on the number of trees to be used (= no.
of iterations in the numerical optimisation) for a given set of
tuning parameters

I Loss function used is the unscaled Poisson deviance
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Figure: Training and validation loss for our tuning of the GBM for the
payment part of Model 2 when varying the shrinkage factor (upper
left),the bagging fraction (upper right), the minimum number of
observations per node (lower left), and the tree depth (lower right).



Numerical illustrations

I In the remainder we use shrinkage 0.1, bagging fraction 1,
min. observation per node 1, and tree depth 1 or 2, depending
on LoB

I Number of trees: 200 and 900 trees, depending on LoB

I We use an analogous procedure for the NN models, see
Gabrielli et al. (2019); Lindholm et al. (2020)

I The best performing model turns out to be Model 2 which is
illustrated next using 100 simulated datasets, see Lindholm
et al. (2020) for more details
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Figure: Boxplots of relative biases for total reserves from 100 simulations.
Here GBM and NN refers to Model 2.
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Closing remarks

I We have introduced regression based reserving models that
can be used to produce separate RBNS and IBNR reserves

I We have described how these models can be estimated using
machine learning techniques with illustrations on complex
simulated data

I The numerical illustrations show how the use of machine
learning techniques may improve the predictive performance

I All implementations are done using standard publicly available
software packages (in R)

For more details about the regression modelling aspects, see e.g.
Wahl et al. (2019); Lindholm and Verrall (2020), and for a more
detailed account of the presentation (including MSEP), see
Lindholm et al. (2020)
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network embedding of the over-dispersed poisson reserving
model. Scandinavian Actuarial Journal, pages 1–29.
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Appendix

Table: True reserve compared to benchmark models and the GBMs and
NNs. Relative biases of the reserve predictions in the parentheses. The
data is the same as that used in Gabrielli et al. (2019).

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6
True reserves 39,689 37,037 16,878 71,630 72,548 31,117

CL reserves
38,569
(-2.82)

35,460
(-4.26)

15,692
(-7.02)

67,574
(-5.66)

70,166
(-3.28)

29,409
(-5.49)

CRM reserves
32,485

(-18.15)
29,901

(-19.27)
13,040

(-22.74)
55,782

(-22.12)
59,390

(-18.14)
24,403

(-21.58)

GCRM reserves
38,293
(-3.52)

35,117
(-5.18)

15,448
(-8.47)

66,961
(-6.52)

69,397
(-4.34)

29,104
(-6.47)

GRWNN
39,233
(-1.15)

35,899
(-3.07)

15,815
(-6.30)

70,219
(-1.97)

70,936
(-2.22)

30,671
(-1.43)

GBM (Model 2)
39,697
(0.02)

37,253
(0.58)

16,508
(-2.19)

72,679
(1.46)

71,828
(-0.99)

31,941
(2.65)

GBM (Model 2) without inflation
38,324
(-3.44)

37,053
(0.04)

16,327
(-3.26)

73,386
(2.45)

70,486
(-2.84)

32,100
(3.16)

GBM (Model 3)
40,114
(1.07)

35,729
(-3.53)

15,761
(-6.62)

69,448
(-3.05)

72,418
(-0.18)

30,061
(-3.39)

NN (Model 2)
41,587
(4.78)

37,587
(1.48)

15,680
(-7.10)

71,155
(-0.66)

71,309
(-1.71)

28,984
(-6.86)

NN (Model 3)
39,757
(0.17)

38,719
(4.54)

16,245
(-3.75)

70,916
(-1.00)

74,600
(2.83)

28,943
(-6.99)


