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Goals of the talk
• What machine learning implies for actuarial science

• Understand the problems solved by deep learning

• Discuss the tools of the trade

• Discuss recent successes of deep learning in actuarial science

• Discuss emerging challenges and solutions



Deep Learning in the Wild

An exciting part of the world of finance is insurance

I think we all know that the insurance industry is exciting. I see it everywhere - the airlines, the cars, most 

all the businesses in the world. The insurance industry can really drive the economic innovation.

But one area of insurance that I really want to see develop more is financial advice. It might be a private 

sector service but insurance companies are not really there anymore. In general we are not allowed to talk 

to clients about financial solutions - we need to find a new solution. It would be fun to see what a private 

sector insurance can deliver.

• Man from www.thispersondoesnotexist.com/

• Mona Lisa from Samsung AI team

• Text from https://talktotransformer.com/

• Self- driving from NVIDIA blog

• Cancer detection from Nature Medicine

http://www.thispersondoesnotexist.com/
https://talktotransformer.com/


Actuarial Data Science

• Traditionally, actuaries responsible for statistical and financial management of 
insurers 

Today, actuaries, data scientists, machine learning engineers and others work alongside 

each other

• Actuaries focused on specialized areas such as pricing/reserving
Many applications of ML/DL within insurance but outside of traditional areas

• Actuarial science merges statistics, finance, demography and risk management 
Currently evolving to include ML/DL

• According to Data Science working group of the SAA:
Actuary of the fifth kind - job description is expanded further to include statistical and 

computer-science 

Actuarial data science - subset of mathematics/statistics, computer science and actuarial 

knowledge 

• Focus of talk: ML/DL within Actuarial Data Science – applications of machine 
learning and deep learning to traditional problems dealt with by actuaries

Definitions and Diagram from Data Science working group of the Swiss Association of Actuaries (SAA)



Agenda

• From Machine Learning to Deep Learning

• Tools of the Trade

• Selected Applications

• Stability of Results

• Discrimination Free Pricing



Machine Learning

Reinforcement Learning

Regression

Deep Learning

Machine Learning

Unsupervised LearningSupervised Learning

Classification

• Machine Learning “the study of algorithms that 
allow computer programs to automatically improve 
through experience” (Mitchell 1997) 

• Machine learning is an approach to the field of 
Artificial Intelligence

Systems trained to recognize patterns within data to 
acquire knowledge (Goodfellow, Bengio and Courville 
2016). 

• Earlier attempts to build AI systems = hard code 
knowledge into knowledge bases … but doesn’t 
work for highly complex tasks e.g. image 
recognition, scene understanding and inferring 
semantic concepts (Bengio 2009)

• ML Paradigm – feed data to the machine and let it 
figure out what is important from the data!

Deep Learning represents a specific approach to ML. 



Supervised Learning

• Supervised learning = application of machine learning to datasets that contain features and outputs 

with the goal of predicting the outputs from the features (Friedman, Hastie and Tibshirani 2009).

• Feature engineering - Suppose we realize that Claims depends on Age^2 => enlarge feature space 

by adding Age^2 to data. Other options – add interactions/basis functions e.g. splines
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Goal: Explaining or Predicting?
• Which of the following are an ML technique?

Linear regression and friends (GLM/GLMM)

Generalized Additive model (GAM)

Exponential Smoothing

Chain-Ladder and Bornhuetter-Ferguson 

• It depends on the goal:
Are we building a causal understanding of the world (inferences from unbiased coefficients)? 

Or do we want to make predictions (bias-variance trade-off)?

• Distinction between tasks of predicting and explaining, see Shmueli (2010). Focus on predictive 

performance leads to:

Building algorithms to predict responses instead of specifying a stochastic data generating model 

(Breiman 2001)…

… favouring models with good predictive performance at expense of interpretability. 

Accepting bias in model coefficients if this is expected to reduce the overall prediction error.

Quantifying predictive error (i.e. out-of-sample error)

• ML relies on a different approach to building, parameterizing and testing statistical models, 

based on statistical learning theory, and focuses on predictive accuracy.



Recipe for Actuarial Data Science
• Actuarial problems are often supervised regressions =>

• If an actuarial problem can be expressed as a regression, then machine and deep learning can 

be applied.

• Obvious areas of application:

P&C pricing

IBNR reserving

Experience analysis

Mortality modelling

Lite valuation models

• But don’t forget about unsupervised learning either!



Actuarial Modelling

• Actuarial modelling tasks vary between:

Empirically/data driven

NL pricing

Approximation of nested Monte Carlo

Portfolio specific mortality 

Model Driven

IBNR reserving (Chain-Ladder)

Life experience analysis (AvE)

Capital modelling (Log-normal/Clayton copula)

Mortality forecasting (Lee-Carter)

• Feature engineering = data driven approach to enlarging a feature space using human 

ingenuity and expert domain knowledge 
Apply various techniques to the raw input data – PCA/splines

Enlarge features with other related data (economic/demographic)

• Model specification = model driven approach where define structure and form of model (often 

statistical) and then find the data that can be used to fit it

Feature engineering

Human input

Model Specification



Issues with Traditional Approach

• In many domains, including actuarial science, traditional approach to designing machine learning 

systems relies on human input for feature engineering or model specification.

• Three arguments against traditional approach:

Complexity – which are the relevant features to extract/what is the correct model specification? Difficult with 

very high dimensional, unstructured data such as images or text. (Bengio 2009; Goodfellow, Bengio and 

Courville 2016)

Expert knowledge – requires suitable prior knowledge, which can take decades to build (and might not be 

transferable to a new domain) (LeCun, Bengio and Hinton 2015)

Effort – designing features is time consuming/tedious => limits scope and applicability (Bengio, Courville and 

Vincent 2013; Goodfellow, Bengio and Courville 2016)

• Within actuarial modelling, complexity is not only due to unstructured data. Many difficult problems 

of model specification arise when performing actuarial tasks at a large scale:
Multi-LoB IBNR reserving 

Mortality forecasting for multiple populations



Complexity: Multi-population Mortality Modelling

• Diagram excerpted from Villegas, Haberman, Kaishev et al. (2017)



Representation Learning

• Representation Learning = ML technique where algorithms automatically design features 

that are optimal (in some sense) for a particular task

• Traditional examples are PCA (unsupervised) and PLS (supervised):

PCA produces features that summarize directions of greatest variance in feature matrix

PLS produces features that maximize covariance with response variable (Stone and Brooks 1990)

• Feature space then comprised of learned features which can be fed into ML/DL model

• BUT: Simple/naive RL approaches often fail when applied to high dimensional data



Example: Fashion-MNIST (1)
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• Inspired by Hinton and Salakhutdinov (2006)

• Fashion-MNIST –70 000 images from Zolando of 

common items of clothing

• Grayscale images of 28x28 pixels

• Classify the type of clothing 

• Applied PCA directly to the images - results do not 

show much differentiation between classes



Deep Learning

• Deep Learning = representation learning technique 

that automatically constructs hierarchies of 

complex features to represent abstract concepts
Features in lower layers composed of simpler features 

constructed at higher layers => complex concepts can 

be represented automatically 

• Typical example of deep learning is feed-forward 

neural networks, which are multi-layered machine 

learning models, where each layer learns a new 

representation of the features.

• The principle: Provide raw data to the network and 

let it figure out what and how to learn.

• Desiderata for AI by Bengio (2009): “Ability to learn 

with little human input the low-level, intermediate, 

and high-level abstractions that would be useful to 

represent the kind of complex functions needed for 

AI tasks.”



Example: Fashion-MNIST (2)

• Applied a deep autoencoder to the same data 

(trained in unsupervised manner)
Type of non-linear PCA

• Differences between some classes much more 

clearly emphasized

• Deep representation of data automatically captures 

meaningful differences between the images 

without (much) human input

• Automated feature/model specification

• Aside – feature captured in unsupervised learning 

might be useful for supervised learning too. 

• Goodfellow, Bengio and Courville (2016) : “basic 

idea is features useful for the unsupervised task 

also be useful for the supervised learning task”
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Fashion-MNIST – Density Plot

autoencoder pca
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Deep Learning for Actuarial Modelling

• Actuarial tasks vary between Empirically/data driven and Model Driven

• Both approaches traditionally rely on manual specification of features or models

• Deep learning offers an empirical solution to both types of modelling task – feed 

data into a suitably deep neural network => learn an optimal representation of 

input data for task

• Exchange of model specification for a new task => architecture specification

• Opportunity – improve best estimate modelling 

• Deep learning comes at a (potential) cost – relying on a learned representation 

means less understanding of models, to some extent



Agenda

• From Machine Learning to Deep Learning

• Tools of the Trade

• Selected Applications

• Stability of Results

• Discrimination Free Pricing



Single Layer NN = Linear Regression

• Single layer neural network
Circles = variables

Lines = connections between inputs and outputs

• Input layer holds the variables that are input to the 

network…

• … multiplied by weights (coefficients) to get to 

result

• Single layer neural network is a GLM!



Deep Feedforward Net

• Deep = multiple layers

• Feedforward = data travels from left to right

• Fully connected network (FCN) = all neurons in 

layer connected to all neurons in previous layer

• More complicated representations of input data 

learned in hidden layers - subsequent layers 

represent regressions on the variables in hidden 

layers



FCN generalizes GLM

• Intermediate layers = representation 

learning, guided by supervised objective.

• Last layer = (generalized) linear model, 

where input variables = new 

representation of data

• No need to use GLM – strip off last layer 

and use learned features in, for example, 

XGBoost

• Or mix with traditional method of fitting 

GLM

F e a t u r e  e x t r a c t o r

L i n e a r  m o d e l



Example – Lee-Carter Neural Net

• Multi-population mortality forecasting 

model (Richman and Wüthrich 2018)

• Supervised regression on HMD data (inputs 

= Year, Country, Age; outputs = mx)

• 5 layer deep FCN

• Generalizes the LC model



Features in last layer of network

• Representation = output of last layer (128 

dimensions) with dimension reduced using PCA

• Can be interpreted as relativities of mortality 

rates estimated for each period 

• Output shifted and scaled to produce final 

results

• Generalization of Brass Logit Transform where 

base table specified using NN (Brass 1964)
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𝑦𝑥 = 𝑎 + 𝑏 ∗ 𝑧𝑥
𝑛 , where: 

𝑦𝑥 = logit of mortality at age x
a,b = regression coefficients
𝑧𝑥
𝑛 = logit of reference mortality



Specialized Architectures

• Most modern examples of DL achieving state of the art results on tasks rely on using specialized 

architectures i.e. not simple fully connected networks

• Key principle - Use architecture that expresses useful priors (inductive bias) about the data => 

Achievement of major performance gains

Embedding layers – categorical data (or real values structured as categorical data)

Autoencoder – unsupervised learning

Convolutional neural network – data with spatial/temporal dimension e.g. images and time series

Recurrent neural network – data with temporal structure

Skip connections – makes training neural networks easier

• Recently, specialized architectures have begun to be applied to actuarial problems

• Section ends with example of fine tuning a specialized architecture for a new task



(Some) Actuarial Applications of DL



Embedding Layer – Categorical Data
Actuary Accountant Quant Statistician Economist Underwriter

Actuary 1 0 0 0 0 0

Accountant 0 1 0 0 0 0

Quant 0 0 1 0 0 0

Statistician 0 0 0 1 0 0

Economist 0 0 0 0 1 0

Underwriter 0 0 0 0 0 1

Finance Math Stastistics Liabilities

Actuary 0.5 0.25 0.5 0.5

Accountant 0.5 0 0 0

Quant 0.75 0.25 0.25 0

Statistician 0 0.5 0.85 0

Economist 0.5 0.25 0.5 0

Underwriter 0 0.1 0.05 0.75

• One hot encoding 

expresses the prior that 

categories are orthogonal 

=> similar observations not 

categorized into groups

• Traditional actuarial 

solution – credibility

• Embedding layer prior –

related categories should 

cluster together:
Learns dense vector 

transformation of sparse 

input vectors and clusters 

similar categories together

Can pre-calibrate to MLE of 

GLM models, leading to 

CANN proposal of Wüthrich 

and Merz (2019



Learned embeddings
• Age embeddings extracted from LC NN model

• Five dimensions reduced using PCA

• Age relativities of mortality rates

• In deeper layers of network, combined with other 

inputs to produce representations specific to: 
Country

Gender

Time

• First dimension of PCA is shape of lifetable

• Second dimension is shape of child, young and older 

adult mortality relative to middle age and oldest age 

mortality 



Agenda

• From Machine Learning to Deep Learning

• Tools of the Trade

• Selected Applications

• Stability of Results

• Discrimination Free Pricing



Selected Applications
• Following examples chosen to showcase ability of deep learning to solve the issues with the 

traditional actuarial (or ML) approaches.

• In most of these instances, deep learning solution outperforms the traditional actuarial or 

machine learning approach 

• Complexity – which are the relevant features to extract/what is the correct model specification?

Multi-population mortality forecasting

Multi LoB IBNR reserving

Non-life pricing

• Expert knowledge – requires suitable prior knowledge, which can take decades to build

Analysis of telematics data

• Effort – designing relevant features is time consuming/tedious => limits scope and applicability

Lite valuation models



Multi-population mortality forecasting

• Availability of multiple high quality series 

of mortality rates, but how to translate 

into better forecasts?

• Multi-population models (Kleinow 2015; 

Li and Lee 2005)
Many competing model specifications, 

without much theory to guide model 

selection

Relatively disappointing performance of two 

models (CAE and ACF)

• Richman and Wüthrich (2018) – deep 

neural net with embedding layers

• Outperforms both single and multiple 

populations models



Multi LoB IBNR reserving (1)
• Even using triangles, most reserving exercises are more data rich than assumed by traditional 

(widely applied) methods (CL/BF/CC):
Incurred/Paid/Outstanding

Amounts/Cost per Claim/Claim Counts

Multiple LoBs

Multiple Companies

• Traditional solutions:
Munich Chain Ladder (Quarg and Mack 2004) reconciles Incurred and Paid triangles (for single LoB) by 

adding a correction term to the Chain Ladder formula based on regression

Credibility Chain Ladder (Gisler and Wüthrich 2008) derives LDFs for sub-portfolios of a main LoB using 

credibility theory

Double Chain Ladder (Miranda, Nielsen and Verrall 2013) relates incurred claim count triangles to payment 

triangles

• Would assume that multi-LoB methods have better predictive performance compared univariate 

methods, but no study (yet) comparing predictive performance of multi-LoB methods (Meyers 

(2015) compares several univariate reserving models)

• General statistical solution for leveraging multiple data sources not proposed



Multi LoB IBNR reserving (2)
• Recent work embedding the ODP CL model 

into a deep neural network (multi-LoB solution)

• 6 Paid triangles generated using the simulation 

machine of Gabrielli and Wüthrich (2018)
Know true reserves

Relatively small data (12*12*6=478 data points)

• Gabrielli, Richman and Wüthrich (2018) use 

classical ODP model plus neural boosting on 6 

triangles simultaneously
Dramatically reduced bias compared to ODP 

model

Model learns smooth development factors 

adjusting for accident year effects

• Gabrielli (2019) extends model to include both 

paid and count data
Further reduction in bias versus the previous 

model



Non-life pricing (1)

• Non-life Pricing (tabular data fit with GLMs) seems like obvious application of ML/DL 

• Noll, Salzmann and Wüthrich (2018) is tutorial paper (with code) in which apply GLMs, 

regression trees, boosting and (shallow) neural networks to French TPL dataset to model 

frequency

ML approaches outperform GLM

Boosted tree performs about as well as neural network…

….mainly because ML approaches capture some interactions automatically

In own analysis, found that surprisingly, off the shelf approaches do not perform particularly well on 

frequency models

These include XGBoost and ‘vanilla’ deep networks



Non-life pricing (2)

Model OutOfSample 

GLM                0.3217  

GLM_Keras                0.3217  

NN_shallow                0.3150  

NN_no_FE                0.3258  

NN_embed                0.3068  

GLM_embed                0.3194  

NN_learned_embed                0.2925  

 

• Deep neural network applied to 

raw data (i.e. no feature 

engineering) did not perform well

• Embedding layers provide 

significant gain in performance 

over GLM and other NN 

architectures

Beats performance of best non-

deep model in Noll, Salzmann and 

Wüthrich (2018) (OOS Loss = 

0.3141 using boosting)

• Layers learn a (multi-

dimensional) schedule of 

relativities at each age (shown 

after applying t-SNE)

• Transfer learning – use the 

embeddings learned on one 

partition of the data, for another 

unseen partition of data
Boosts performance of GLM



Telematics data (1)
• Telematics produces high dimensional data (position, velocity, acceleration, road type, time 

of day) at high frequencies – new type of data for actuarial science!

To develop “standard” models/approaches for incorporating into actuarial work might take many years 

=> rely on deep learning

• Most immediately obvious how to incorporate into pricing - most approaches look to 

summarize telematics data streams before analysis with deep learning

• From outside actuarial literature, feature matrices containing summary statistics of trips 

analysed using RNNs plus embedding layers such as Dong, Li, Yao et al. (2016), Dong, Yuan, 

Yang et al. (2017) and Wijnands, Thompson, Aschwanden et al. (2018)

• For pricing (within actuarial literature) series of papers by Wüthrich (2017), Gao and Wüthrich 

(2017) and Gao, Meng and Wüthrich (2018) discuss analysis of velocity and acceleration 

information from telematics data feed

• Focus on v-a density heatmaps which capture velocity and acceleration profile of driver but 

these are also high dimensional

• Wüthrich (2017) and Gao and Wüthrich (2017) apply unsupervised learning methods (K-

means, PCA and shallow auto-encoders) to summarize v-a heat-maps - Stunning result = 

continuous features are highly predictive

Unsupervised learning applied to high dimensional data produces useful features for supervised 

learning



Telematics data (2)
• Analysis using deep 

convolutional autoencoder 

with 2 dimensions. 

• Within these dimensions (left 

hand plot):

Right to left = amount of density 
in high speed bucket

Lower to higher = 
“discreteness” of the density

• Another application is to 

identify drivers for UBI at 

correct rate (and use resulting 

features for pricing). See Gao 

and Wüthrich (2019) who apply 

CNNs to identify drivers based 

on velocity/acceleration/angle

75% accuracy on 180s of data

7 8 9

4 5 6

1 2 3

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

v

a

0.002

0.004

0.006

0.008
Density



Lite Valuation Models (1)

• Major challenge in valuation of Life business with embedded options/guarantees or with-profits 

is run time of (nested) stochastic models

• In general, for Variable Annuity business, guarantees are priced and hedged using Monte Carlo 

simulations

• Under Solvency II, Life business with options/guarantees must be valued using nested Monte 

Carlo to derive the Solvency Capital Requirements (SCR)

Outer loop - MC simulations to derive risk factors at t+1 under the real world measure

Inner loops - MC simulations to derive valuation given risk factors at t+1 under risk neutral measure

• Running full MC valuation is time consuming; common solutions are:

High performance computing

Replicating portfolios

Least Squares Monte Carlo (LSMC), where regression fit to results of inner loop conditional on outer loop 

“Lite” valuation models, see work by Gan and Lin (2015)



Lite Valuation Models (2)
• Recent work using neural networks to enhance 

this process 

• Hejazi and Jackson (2016, 2017) provide novel 

approach based on matching prototype contracts

• For VA valuation and hedging, Doyle and 

Groendyke (2018) build a lite valuation model 

using a shallow neural network that takes key 

market and contract data and outputs contract 

value and hedging parameters. 

Achieve highly accurate results versus full MC 

approach. 

• For modelling with-profits contracts in SII, Nigri, 

Levantesi, Marino et al. (2019) replace inner loop 

basis function regression of LSMC with SVM and a 

deep neural network, and compare results with 

full nested MC. 

Find that DL beats the basis function regression and 

SVM, producing highly accurate evaluations of the 

SCR.

Diagram from Nigri, Levantesi, Marino et al. (2019
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Stability of results
• The training of neural networks contains some 

randomness due to:

Random initialization of parameters

Dropout

Shuffling of data

• Leads to validation and test set results that can 

exhibit variability. Not a “new” problem; see Guo 

and Berkhahn (2016).

• Problem worse on small datasets (where other ML 

techniques are stable) and autoencoders

• Example – validation and test set results of 6 DL 

models run 10 times on LC NN model applied to 

full HMD dataset.

• Solutions - Average models over several runs or at 

several points in the training (see Gabrielli (2019))

• Results of network might not match portfolio 

average due to early stopping. See Wüthrich (2019) 

for analysis and solutions



Recent Examples

Neural networks fit to French MTPL 
dataset

Richman and Wüthrich (2020)

Neural networks fit to HMD dataset

Perla, Richman, Scognamiglio and 
Wüthrich (2020)



Nagging Predictors 

Richman, Ronald; Wüthrich, Mario V. 2020. "Nagging Predictors." Risks 8, 
no. 3: 83.

Aggregating is a statistical technique that helps to reduce noise and uncertainty in predictors and is justified 
theoretically using the law of large numbers.

An i.i.d. sequence of predictors is not always available thus, Breiman (1996) combined bootstrapping and 
aggregating, called bagging.

This paper aims to combined networks and aggregating to receive the nagging predictor.

Each run of the network training provides us with a new estimated network.

Explore the statistical properties of the nagging predictors at a portfolio and at a policy level.



Crucial Difference between Bagging and Nagging

Bagging

Performs re-sampling on observations, thus, it tries to create new observations from the data D that follow a similar law as this original data. The 

re-sampling involves randomness and, therefore, bootstrapping is able to generate multiple random predictors Ƹ𝜇𝑖
(𝑗)

. 

Typically, these bootstrap predictors are i.i.d. by applying the same algorithm using i.i.d. seeds, but this i.i.d. property has to be understood 
conditionally on the given observations D.

Nagging

Not based on re-sampling data, but it always works on the same data set, and multiple predictors are obtained by exploring multiple models, or 
rather multiple parametrizations of the same model using gradient descent methods combined with early stopping. 

Naturally, this involves less randomness compared to bootstrapping because the underlying data set for the different predictors is always the same.



Regression Design for Predictive Modelling 1

The canonical link is given by the log-link, and we chose links (𝐾′
𝑃
−1
)(∙) = g(∙) = log(∙). 

These choices provide the network regression function on the canonical scale:
The network predictor on the RHS 

gives the canonical parameter 

under the canonical link choice 

for g(∙).



Nagging Predictors
Author: Ronald Richman (FIA, FASSA, CERA), Associate Director, R&D & Special Projects at 

QED Actuaries & Consultants

Regression Design for Predictive Modelling 2

Almost ready to fit the model to the data, i.e., to find a good network parameter β ℝ𝑟 using the gradient 

descent algorithm.

As objective function for parameter estimation we choose the Poisson deviance loss  function:



Learning and Test Data

Features are pre-processed analogously to the example in Section 3.3.2 of Wüthrich 

(2019), i.e., use MinMaxScaler for continuous explanatory variables and two-

dimensional embedding layers for categorical covariates.

Having this pre-processed data, we specify the choice of learning data D on which the 

model is learned, and the test data T on which we perform the out-of-sample analysis. 

To keep comparability with the results in Noll et al. (2018); Wüthrich (2019) we use 

exactly the same partition. Namely, 90% of all policies in Listing 1 are allocated to 

learning data D and the remaining 10% are allocated to test data T . This allocation is 

done at random, and we use the same seed as in Noll et al. (2018); Wüthrich (2019).



Gradient Descent Fitting 1

Need to ensure that the network does not over-fit to the learning data D. 

To ensure this, we partition at random 9:1 into a training data set 𝐷(−)

and a validation set V.

Network parameter is learned on 𝐷(−) and over-fitting is tracked on V.

Run the nadam gradient descent algorithm over 1000 epochs on 

random mini-batches of size 5000 from 𝐷(−). Using a callback 
we retrieve the network parameter that has the smallest loss on 

V – stopping rule in place.

The fact that the resulting network model has been received by 

an early stopping of the gradient descent algorithm implies that 

this network has a bias w.r.t. the learning data D.



Gradient Descent Fitting 2

Additionally applied the bias regularization step proposed in Section 3.4 of Wüthrich (2019). This 

gives us an estimated network parameter ෡𝜷(1) and corresponding mean estimates Ƹ𝜇𝑖
(1)

for all 

insurance policies in D and T . This procedure leads to the results on line (d) in the table below:

We compare the network results to the ones received in Table 11 of Noll et al. 

(2018), and we conclude that our network approach is competitive with these 

other methods (being a classical GLM and a boosting regression model), see 

the out-of-sample losses on lines (a)–(d).



Comparison of Different Networks 1

The issue with the network result now is that it involves quite some 

randomness. 

We run the calibration procedure under identical choices of all hyper-

parameters, but we choose different seeds for the random choices 

(R1)-(R3).

The boxplots below shows the in-samples losses L(D; ෠𝛽(𝑗)) and out-of-

samples losses L(T ; ෠𝛽(𝑗)) over 400 network calibrations ෠𝛽(𝑗).

(R1) - randomly split the learning data into 

𝐷(−) and V.

(R2) - randomly split 𝐷(−) into mini-batches of 

size 5000.

(R3) - randomly choose the starting point of 

the gradient descent algorithm.



Comparison of Different Networks 2

These losses have a rather large range which indicates that results of single network 

calibrations are not very robust.

We can calculate empirical mean and standard deviation for the 400 seeds j given by:

The first gives an estimate for the expected generalization loss averaged 

over the corresponding portfolios. We emphasize in notation ෠𝛽(1:400) that we 

do not average over network parameters, but over deviance losses on 

individual network parameters ෠𝛽(𝑗). The resulting numbers are given on line 

(e) from the table above. This shows that the early stopped network 

calibrations have quite significant differences, which motivates the study of 

the nagging predictor.

The scatter plot shows the in-sample and out-of-sample losses 

over the 400 different runs of the gradient descent fitting 

(complemented with a natural cubic spline).
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The Nagging Predictor

Able to calculate the nagging predictors Ӗ𝜇𝑡
(𝑀)

over the test data set T . For M → ∞ this 

provides us with empirical counterparts of Propositions 3 and 4. We therefore 

consider for M ≥ 1 the sequence of out-of-sample losses:

The figure gives the out-of-sample losses of the nagging 

predictors L(T ; Ӗ𝜇𝑡=1,..,𝑚
(𝑀)

) for M = 1, . . . , 100. Most noticeable is 

that nagging leads to a substantial improvement in out-of-

sample losses, for M → ∞ the out-of-sample loss converges to 

31.272. From this we conclude that nagging helps to improve 

the predictive model substantially.



Pricing of Individual Insurance Policies

Should also ensure that we have robustness of prices on an individual insurance policy level. We 

analyze by how much individual insurance policy prices may differ if we select two different 

network calibrations ෡𝜷(𝑗) and ෡𝜷(𝑗′) . This will tell us whether aggregating over 20 or 40 network 

calibrations is sufficient. 

We expect that we need to average over more networks because the former statement includes an 

average over T , i.e., over m = 67, 801 insurance policies (though there is dependence between 

these policies because they simultaneously use the same network parameter estimate ෡𝜷(𝑗).

We calculate for each policy t = 1, . . . ,m of the test data T, Ӗ𝜇𝑡
(𝑀)

over M = 400 different network 

calibrations ෡𝜷(𝑗), j = 1, . . . ,M, and we calculate the empirical coefficients of variation in the 

individual network predictors given by:



Observations on Coefficients of Variation

We plot a histogram for the coefficients of variation against the nagging 

predictors for each single insurance policy t = 1,..., m (out-of-sample on T):

Observe most policies (73%) have a CoV of less than 0.2, however, 

on 11 of the m = 67, 801policies have a CoV bigger than 1. Thus, for 

the latter, if we average over 400 different network calibrations 
෡𝜷(𝑗) we still have an uncertainty of Τ1 400, i.e., the prices have a 

precision of 5% to 10% in these latter cases (this is always 

conditional given D). 

From this we conclude that on individual insurance policies we 

need to aggregate over a considerable number of networks to 

receive stable network regression prices.



Focus on Observations with CoV > 1

We list the 11 policies in the table below: 

Striking is that all these policies have 

vehicle age VehAge = 0.

We will proceed to analyse policies with VehAge = 0 and VehAge > 0 

separately.



Nagging Predictors
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Uncertainty in VehAge = 0

VehAge = 0 :  VehAge > 0 :  

We indeed confirm that mainly policies with VehAge = 0 

are difficult to price.



Meta Network Regression Model

Although the nagging predictor substantially improves the predictive model, it may not be fully 

satisfactory in practice. The difficulty is that it involves aggregating over M = 400  predictors Ƹ𝜇𝑖
(𝑗)

for 

each policy i.

For this reason we  propose to build a meta model that fits a new network to the nagging 

predictors Ӗ𝜇𝑖
(𝑀)

, i = 1,…, n – “model distillation”. 

Since these nagging predictors are aggregated over M network models, and since the network 

regression functions are smooth functions in input variables (continuous features), the nagging 

predictors describe smooth surfaces. 

Comparably simple to fit a network to the smooth surface described by nagging predictors Ӗ𝜇𝑖
(𝑀)

, i = 1,…, 

n , and over-fitting will not be an issue.
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Optimal Model

The resulting in-sample and out-of-sample losses are in the table below:

The weighted version (g2) has 

a better loss performance than 

the unweighted version.

It is slightly worse than the 

nagging predictor model, 

however substantially better 

than the individual network 

models and easier in handling 

than the nagging predictor.

For this reason, we are quite satisfied by the meta model, and we 

propose to hold on to this model for further analysis and insurance 

pricing.



Nagging Predictor vs Meta Model Predictor

The scatterplot below presents the two predictors:

The models are reasonably equal with the biggest 

differences highlighted in blue.

These refer to the policies with vehicle age 0 – the 

feature component within the data that is the most 

difficult to fit with the network model.
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• From Machine Learning to Deep Learning

• Tools of the Trade

• Selected Applications

• Stability of Results

• Discrimination Free Pricing



Discrimination Free Insurance Pricing

M. Lindholm, R. Richman, A. Tsanakas, and M. V. Wüthrich, “Discrimination-Free Insurance Pricing,” 

SSRN Electron. J., Jan. 2020, doi: 10.2139/ssrn.3520676 Available:  https://bit.ly/38huODw.

Current environment

• More advanced techniques becoming widely known and used

• Increasing scrutiny internationally on pricing practices (e.g. FCA 

review)

Legal/ethical 

requirements

• Legal (e.g. EU ban on gender based pricing) and ethical concerns (e.g. 

postal code ~= race in South Africa)

• How to ensure models are not influenced by discriminatory factors?

Naïve 

Solution = Unawareness 

Prices

• Ignore the problem by leaving out discriminatory rating factors

• Could advanced models figure out proxies for these factors?

• Actually, even simple models can do this!

https://bit.ly/38huODw


Definitions

• Insurance pricing models often take the form of best estimates plus a risk margin.

• Best estimates are usually defined as conditional expectations. Define:

• 𝐶𝑙𝑎𝑖𝑚𝑠 𝑐𝑜𝑠𝑡𝑠 = 𝑌
• 𝑁𝑜𝑛 − 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑦 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 = 𝑋
• 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑦 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 = 𝐷

• Best estimate prices take account of both 𝑋 and 𝐷:

𝑢 𝑋, 𝐷 = 𝐸 𝑌 𝑋, 𝐷
• For complex lines of business, we approximate 𝐸 𝑌 𝑋,𝐷 using a regression model

• 𝑢 𝑋,𝐷 discriminates based on 𝐷

• A naïve approach – unawareness prices - ignores 𝐷 and hopes that 𝑋 and 𝐷 are uncorrelated:

𝑢 𝑋 = 𝐸 𝑌 𝑋



What is the discrimination free price?
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Discrimination free price?



Defining discrimination free prices

• Intuition – we need to decouple 𝑋 and 𝐷

• Propose a procedure whereby:

• Best-estimate prices (including 𝐷) are calculated using a model

• Then take a weighted average of prices where the weights are independent of 𝑋

• Formally:

𝑢∗ 𝑋 = ෍

𝑑

)𝑢 𝑋, 𝐷 = 𝑑 𝑃(𝐷 = 𝑑

• It can be shown that:

𝑢 𝑋, 𝐷 = ෍

𝑑

)𝑢 𝑋, 𝐷 = 𝑑 𝑃(𝐷 = 𝑑|𝑋

• Formal definition of 𝑢∗ 𝑋 can be given using measure theory; see the paper for details



Example: Health Insurance (Smoker ~= Woman)

𝑷 𝑫 = 𝒘𝒐𝒎𝒂𝒏 𝑿 = 𝒔𝒎𝒐𝒌𝒆𝒓 = 𝟎. 𝟖



Conclusion
• Deep learning can:

• Open new possibilities for actuarial modelling by solving difficult model specification problems, 

especially those involving large scale modelling problems

• Allow new types of high frequency data to be analysed

• Enhance the predictive power of models built by actuaries

• To benefit fully from machine and deep learning, the goals of actuarial modelling, and 

implications for practice, need to be clarified

• The black box argument should be challenged:

• Learned representations from deep neural networks often have readily interpretable meaning

• The process of learning a hierarchy of concepts can be illustrated – as shown for the LC NN model

• Deep neural networks can be designed for interpretability (with other benefits as well)

• More research is needed on several issues:

• Stability of results

• Interpretability methods

• Uncertainty intervals
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Appendix – Other Techniques
• Dropout (Srivastava, Hinton, Krizhevsky et al. 2014)

used to regularize NNs, can be combined with L1 or L2 regularizers

• Batchnorm (Ioffe and Szegedy 2015)

technique used to make NNs easier to optimize and also provides a regularization effect 

• Attention (Bahdanau, Cho and Bengio 2014)

allows networks to choose most relevant parts of a representation 

• Generative Adversarial Models (GANs) (Goodfellow, Pouget-Abadie, Mirza et al. 2014)

Game between two NNs, whereby a generator network produces output that tries to trick a 
discriminator network. 

Useful for generative modelling, but other interesting applications such as BiGAN (Donahue, 
Krähenbühl and Darrell 2016)

• Variational autoencoders (VAEs) (Kingma and Welling 2013)

Autoencoder with distributional assumptions made on codes

• Neural Network Architecture Search (NNAS)

Techniques used to design NNs automatically 

• Pruning

New technique that takes a trained NN and tries to reduce redundancy (number of layers/parameters) 
while maintaining performance

Part of Tensorflow 2 API
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