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Machine Learning /

4

« Machine Learning “the Study of algdrith

. allow computer progr to automatic ; —
' ' Mhine
- through experience” (Mitchell 1997)

' Machine learning is
~ Artificial Intelligenc

Supervised Learing Unsupervised Leaming Reinforcement Learning

Regression Classification

+ Earlier attempts to build Al systems = hard code
knowledge into knowledge bases ... but doesn’t
work for highly complex tasks e.g. image
recognition, scene understanding and inferring Deenlear
semantic concepts (Bengio 2009)

* ML Paradigm - feed data to the .,r":nachine and let it
figure out what is important frq-'m the datal



Supervised Learning'

» Supervised learning = lication of mac tlearning to datasets that contain featur'és and o

with the goal of predic

= Feature engineering -/ hppose we reali _-e that Claims depends on Age/r2 => enlarge feature
by adding Age?2 to data Other optlons add interactions/basis functions e.g. spllnes

EXxposure Area VehPower vehage Drivage BonusMalus vehBrand wehGas Density Region Drivage_2
0.100000000 D 5 55 50 BE12 Regular 1217 RE2 3025
0. 770000000 55 50 B12 Regular 1217 RE2 3025
0. 750000000 52 50 B12 Diesel RZ22 2704
0.090000000 46 30 BE12 Diesel R72 2116
0. 840000000 46 50 B12 Diesel R72 2116

e B = I |

1 6114326 0.002739726
T 6114327 0.002739726
;6114328 0.002739726
1 6114329 0.002739726
3: 6114330 0.002739726

54 50 B12 Regular 33 R93 2918
41 95 B12 Regular R11 1681
45 50 B12 Diesel 323 RE2 2025
60 50 B12 Regular R26 3600
29 54 Bl2 Diesel R72 841

e = I S 2
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" Actuarial Modellin

. .,."’"Actuarial modelling tasksivary betw

Human input

; approach'wher :
 that can be used



Iséues vIth Traditi

. In many domains, includihg actuaria
systems relies on huma put for f

approach to designi 2 learni

br model specificatio

specification? Difficult with
soodfellow, Bengio and

able prior;’i(_ . ' to build (and might not be
eCun, Beng
plicability (Bengio, Courville and

. Wlthm actuaria
- of model specif
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Relative Lee-Carter + Cohorts
logml, = 0t + Bl K + Hat
eeh + Bt o)
Willegas and Haberman (2014)

Angmented Common Factor
+ Cohorts

logre, = o + fug+
» LA L] (0}
1 P Ry + B,
YWang ot al. (Z016) i

Multipopulation GLM
Hatzopoulos and Habermman (2013},
Ahmadi and Li (2014)

Flat + Lee-Carter
Wan and Bertachi (2015

!
l'.,.-"' Co-integrated Lee-Carter
Aungmented Common Factor s logm, = o+ By
logml, — l:l'{ + Buws + ﬂyi‘ﬂ' ll_.-' 1.3_:1,1:: and Lee [I";";:EJ,
/ ; / Li and Hardy {200 1},
Li and Lee (2H¥5),Li and Hardy (2011} lII.- v g i1
Hyndman et al. (2003}, Li (2012) / ang and Wang ( ¥
- """--..____\_H_ ..-'I. / _____-""-_-
Stratified Lee-Carter e B /f T
logmi, = oz + o' + fuig S Lo Coarter o
Butt and Hakberraan {2009, —_— Extensions of TR VARVECM
Dichdn et al (2011} 1 )
o et ey ‘_  the Lee-Carter - tog miy — oty + By
P ey Fheona en al, (20147

Common Factor
logm, — o) + B -
Carter and Lea {1992]),
Li and Les (2005),
Li amd Hardy (2011)

T~ T

Common Age Effect

logml, = atf + E,; B )
Eleinorar (2015)

Three-way Lee-Carter
logmt, = af + B4
Eussolillo et al. (2011}

/

Bayesian
two-population APC

logmt, = ot + & + ¥ _,
Gravity model - Cairns et al. (201 1a)
yd Two-population ATC
Joint-x logm}, = 6 + & + %
Ko Dowd ct al. {2011) —
logmi, = op — Bix g T
Carter and Lee (1992), T - -
Li and Hardy (2011), _ T —
Wilmoth and Valkonen (2001}, Two-population CBD (M) r

Delwarde et al. (2006) logitg, = Y+ (x — @)t

Li et al. (2015)

'l‘w-l:b-pupulatinnh'_lﬁ
logitgl, = &1 + (e — BT g
Li et al, (32015

Diagram excerpted from Villegas, Haberman, Kaishev et al. (2017)

Relative P-Splines

Hiatat and Currie (Z00140)

Baint muodel
Jarmer and Kryger (Z0O11)

Plat Relative model
» Flat (2003 h])

Extensions of r“*
- the CBD model - A

——

HHH""--\_\_\_
HH""‘-\-\.
Two-population M7 o
logitgl, = " 4 (x— ™ 4 ((x— 22— 82) M g,
Li et al. (2015)
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Example: Fashion'MI‘T (1';’)

PCA Decomposition

* Inspired by Hinton and Salakhutdinov (200

“ Ankle boot ¢ Coat ¢ Pullover ¢ Shirt “  T-shirt/top
¢ Bag ® Dress ® Sandal © Sneaker ® Trouser

class_name

*» Fashion-MNIST -70 000

ages from Zolant
common items of clot =

-' i)
'+ Grayscale images of 2,8)}‘28 pixels

» Classify the type of c'lothing

 Applied PCA directly to the images - résults do not
show much differentiation between Q'Iasses

Pullover T-shirtftop

Coat

Pullover E Dress




Deep Learning

that automatically constrlicts hierarchies ¢
ncomplex features to repr€sent abstract cont

Typical example of deep learning is feed-forward
neural networks, which are multi- Iayered machine
learning models, where each layer Iearns a new
representation of the features.

The principle: Provide raw data to the network and
let it figure out what and how to learn.

Desiderata for Al by Bengio (2009): “Ability to learn
with little human input the low-level, intermediate,
and high-level abstractions that would be useful to
represent the kind of complex functions needed for

Al tasks.”

"\ Input Layer € R'S Hidden Layer € B* Hidden Layer € R® Qutput Layer £ R



Example: Fashion-I\/II‘T (2)

Applied a deep autoencoder to the same d
(trained in unsupervised Manner)

Autoencoder Decomposition

“ Ankle boot ¢ Coat ¢ Pullover ® Shirt “ T-shirt/top
class_name

| h Bag ® Dress ® Sandal * Sneaker * Trouser
A .;" P

Differences between some classes much | more LA

clearly emphasized | e,

Deep representation of data automatica-ily captures
meaningful differences between the i |mages
without (much) human input

Automated feature/model specification

Aside - feature captured in unsupervised learning
might be useful for supervised learning too.

Goodfellow, Bengio and Courville (2016) : “basic
idea is features useful for the unsupervised task
also be useful for the supervised learning task”
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Modelling

d Model Driven

Deep Lelrning for

Actuarial taslvary betwieen Empir

tion of features or

Deep Iearr_j{ifﬁg offers
data into a suitably
input data for task

es of modelling tas
optimal representa

Exchang’e’: of mode ificati e!fN task => archi

modelling

- Deep learning c

) | | cost — relying on
means less und

s, to some exten
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Single Layer NN = SINBBBREgrcssion

Single layer neural netwogk

B \7’
/ﬂ

: Input Iayer holds the varlables that are mput to the
network..

« ... multiplied by weights (coefflclents) to get to
result |

* Single layer neural network is a GLM!

Input Layer € R?




Deep Feedforward N

 Deep = multiple layers

from left to ri

* Feedforward = data trav

- ' Fully connected netwo
~ layer connected to all f
i,' ; )f‘\ .

* More complicated représentatlons of mput data
learned in hidden layers - subsequent Iayers
represent regressions on the varlables in hidden

layers

Input Layer € ' Hidden Layer € E? Hidden Layer € R® Output Layer € R



'
FCN generalizes GE

resentation
rvised objective

Intermediate layers =
learning, guided by s

Last layer = (generalized) linear mode
where input variableés = new &
representation of data

No need to use GLM - strip off last I}ayer
and use learned features in, for example
XGBoost

Or mix with traditional method of fitting
G LM Input Layer € R'®

Hidden Layer € R®

Feature extractor

Hidden Layer

Linear mod e

o B®

Cutput Layer € R'




Example - Lee-Ca rter'eu il Net

Multi-population magrtality forecastin . ,.'
model (Richman an uthrich 2018)#.' i
,’f" l;g:( ; ‘y.’.')

Supervised regression on HMD data“‘l_,(':inputs
= Year, Country, Age; outputs = mx) W intermediate Layer 1

5 layer deep FCN
In tennediate; Layer 2

Generalizes the LC model

Intermediate Layer 5



network

Features'in last layer

Country * GBRTENW ® [TA ¢ USA

of last layer (1 ;

* . Representation = out
| q sion reduced uﬁmg PCA

dimensions) with d|

Can be interpreted as relatlwtles of mortallty
rates estimated for each period :

. Output shifted and scaled to produce final
results |

s Generalization of Brass Logit Transform where
base table specified using NN (Brass 1964)




Specialized Archit

Most mod exampleg of DL achi
architectures i.e. not ple fully

t results on tasks re

Al priors (inductive bi

mages and time series

. B‘ia..t::ently, sp



ome) ~F s s OT U
Pricing Reserving Telematics Mortallt_y Quantitative Risk
Forecasting Management
Ferrario, Noll and Castellani, Fiore, Marino et |+ Gao and Withrich (2017) « Castellani, Fiore, Marino
Wthrich (2018) al. (2018) * Gao, Meng and Wuthrich et al. (2018)
Noll, Salzmann and Doyle and Groendyke (2018) « Hejazi and Jackson
Wthrich (2018) (2018) + Gao, Wuthrich and Yang (2016, 2017)
Withrich and Buser Gabrielliand Wthrich (2018)
Feed-forward Nets | (2018) (2018)
Hejazi and Jackson (2016,
2017)
Wiithrich (2018)
Zarkadoulas (2017)

Convolutional

+ Gao and Wuthrich (2019)

Neural Nets
Recurrent Neural Kuo (2018a, 2018b) * Nigri, Levantesi,
Nets Marino et al. (2019)
Richman (2018) Gabrielli, Richman and + Richman and
- Schelldorfer and W thrich (2018) W thrich (2018)
EmbEddmg Wiithrich (2019) Gabirielli (2019)
Layers Withrich and Merz
(2019)
+ Richman (2018) + Hainaut (2018)

Autoencoders

Richman (2018)




One hot encoding
expresses the prior th
categories are orthog
=> similar observatio
categorized into gro

not

Traditional actuarial :
solution — credlblllty/

Embedding layer prior —
related categories should
cluster together:;

Actuary Accountant

Actuary
Accountant
Quant
Statistician
Economist
Underwriter

Finance
Actuary
Accountant

Quant
Statistician
Economist
Underwriter

0.5
0.5
0.75
0
0.5
0

Quant

Math

0.25
0
0.25
0.5
0.25
0.1

Statistician Economist Underwriter

0

0

Stastistics Liabilities

0.5
0
0.25
0.85
0.5
0.05

0.5

0
0
0
0
0
1



Learned embeddings

. Age embeddings extracted from LC NN

. Five dimensions reduééd using PCA
; £ il
L &
E Age relativities of miortality rates
. In deeper layers of network, combine_,-ﬂ with other

inputs to produce'representations sp’ecific to:

. First dimension of PCA is shape of lifetable

. Second dimension is shape of child, young and older
adult mortality relative to middle age and oldest age
mortality
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SelectecIAppllcatl
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traditional actuarial (o

In most of these inst
machine Iearnmg ap

Complej.x.i’ty — whic

Expert knowle

| Effort — desi



Ity fdrecasting

Model Average MSE Median MSE Best Performance
LC_SVD 5.50 2.48
ACF_SVD_region 3.46 2.50
ACF_SVD_country 7.30 4.77

Multi-population mor

. Availability of multiple
of mortality rates, but
into better forecasts?,

igh quality serieS™™
w to translate S

/f;' ) , ACF_BP 6.12 3.00
e Multi- popula‘hon models (Kleinow 2015 | Model Average MSE Median MSE Best Performance
Li and Lee 2005) ‘ LC_SVD 5.50 2.48 33
j 2 CAESVD 4.76 2.35 .
CAE2._SVD 12.01 1.79
CAE2_BP 5.59 3.46
Model Average MSE Median MSE
. } ! ' LC_SVD 5.50 2.48
. Richman and Wiithrich (2018) — deep LC_ACF _region 3.46 2.50

neural net with embedding layers ACF_BP 6.12 3.00

1 CAE_BP 5.59 3.46

DEEP 2.68 3

. Outperforms both single and multiple
populations models




Multi LoB IBNR re

Even using triangles, most reservi
(widely ap ‘

e data rich than ass

riangles (for single LoB) by
portfolios of a main LoB using

d claim count triangles to payment

Iparing predictive
ate reserving moc

. _‘ Would assu
- methods, bu
(2015) comp

:,.-":General st



Multi LoB IBNR reser'g (2)
!Recent work embedding the ODP CL mogls _| 8] LB) LB3 LB LB: LeBs

true reserves R 30680 37037 16878 71630 T2 3LLLT
CL reserves RO 38560 35460 15,69 67574 70166 29,409
BOCNN reserves A% (LoBs ndividually) | 30283 35800 15815 70219 70036 30671
bOCNN reserves R (multiple LoBs) 0L 3100 16400 70363 T334 30730

cumulative dewvelopment factors of LoB 1 cumulative dewvelopment factors of LoB 4

machine of Gabrlelllland Wiithrich (2018)

- Gabrielli, Richman and Wiithrich (2018) use
classical ODP model plus neural boostmg on 6
triangles simultaneously ‘

LoB5 LoB6

i | W60 37037 68T TU60 TN 3ULIT

: Gabrielli (2019) extends model to include both i) | CL reserves R 38560 39460 15692 6774 TO'I66 20°409
paid and count data i) | singl serves R [ 30407 36983 1613 7047 70873 31002

iy L1 T Y i



N..c’;n-lii‘e ricing (1)-

Non-life Pr e obvious applicatio

Noll, Sal
regressi
frequenc '

Ji

works to French TP

brm particularly well on




Non-life pricing (2)/

. Deep neural network applied to
raw data (i.e. no featu
, engineering) did not pérform well
. Embedding layers provide
significant gain in pgrformance
over GLM and other NN
architectures '

variable —+ dm? - dm?

. Layers learn a (multi-
dimensional) schedule of
relativities at each age (shown
after applying t-SNE)

. Transfer learning — use the
embeddings learned on one
partition of the data, for another
unseen partition of data




Telemat'ls data (1

Telematicsggroduces i
of day) at {1 gh freque

Most immediately
summarize telema
From outside act
analysed using R

. Focus on v-a i -hp‘ch capture velo
these are als

‘means, PC 0-encoders) to sumr
- continuou re highly predictive




Telematics data (2)f

. Analysis using deep
convolutional autoenéoder
with 2 dimensions.

"« Within these dimen
o hand plot):

ns (left

1030 h0e

t2 v 4 0B

Group )

T
fr2Ll
¢ L
it
e

o

;
§

. Another application is to
identify drivers for UBI at
correct rate (and use resulting
features for pricing). See Gao
and Wiithrich (2019) who apply
CNNs to identify drivers based
on velocity/acceleration/angle




Lite Valuation Mo

Major challenge in valdation of Lif
is run time of (nested

pedded options/gua

for Varia
S

In gener
simulati

J J
fod
SRSy

Under Solvency I,
Carlo to derive th

. : -
, | | ner loop conditiong



Lite Valuation I\/Iodelsl)

+  Recent work using neural networks to enhi
this process K

. Hejazi and Jackson (2016, 2017) provide noy

approach based on n'/: ching prototypé«:ontracts
For VA valuation and hedglng, Doyle and
Groendyke (2018) bgild a lite valuation' model
using a shallow neural network that takes key

market and contract data and outputs contract
value and hedging parameters.

w
m]
a
©
2
o
€@
L
5
E
c
o
ke
7]
(m]

. For modelling with-profits contracts in Sll, Nigri,
Levantesi, Marino et al. (2019) replace inner loop
basis function regression of LSMC with SVM and a
deep neural network, and compare results with
full nested MC.
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Stab“ity of reSUltS

. The training of neural networks contams
randomness due to: |

| Leads to validation i d test set resul .«‘:".' can
exhibit variability. I\fdt a “new’ probl m ‘see Guo
and Berkhahn (2016). g

. Problem worse on small datasets (where other ML
techniques are stable) and autoenchers

. Example - validation and test set résults of 6 DL
models run 10 times on LC NN model applied to
full HVID dataset. |

. Solutions - Average models over;"several runs or at

|
%E%EQ%%

several pomts in the tralnlng (se_-e Gabrielli (2019)) DEEP1 DEEP? DEEP3 DEEP4 DEEPS DEEPS - DEEP1 DEEP? DEEP3 DEEP4 DEEPS DEEPS
3 L Model
. Results of network might not match portfolio :

average due to early stoppmg ‘See Wiithrich (2019)
for analysis and solutions



Recent Examples

out-of-sample: boxplot over 400 calibrations

—— 400 calibrations
— selected calibration

L}

o
?
)]
=]
@
[= N
E
P
I
=
o

LCCONV relu”

s N -~
Neural networks fit to French MTPL Neural networks fit to HMD dataset

dataset Perla, Richman, Scognamiglio and
Richman and Withrich (2020) Withrich (2020)
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Nagging{ﬁDredictor

Richman, Ronald; Wuthrich, Mario V. 2020. "Nagging Predictors." Risks 8,

no. 3: 83.
i I .|
LA T S
T




fference b

A

Crucial D

ging and mgging

Bagging

to create new observations frg lar law as this original data. The
ootstrapping is able to genera l.U).

pplying the same algorithm us operty has to be understood

Nagging

d by exploring multiple models, or

different predictors is always the same.



l{',

ctive Modelling 1

Regression Design/fofPredi
. .

Owr goal is to build a predictive model for the claim counts N; (Claimlib) in Listing 1. We choose
a Poisson regression model for data (N;, x;, v;) satisfying

N; ~ Poi (p(x)v;), with expected frequency function x; — ji(x;).

The Poisson distribution belongs to the family of Tweedie's CP models with power variance
| parameter p = 1, effective domain © = &, cumulant function k1(#) = exp(#) and dispersion parameter
¢ = 1. In fact, if we define ¥; = N;/7;, we have the following density w.r.t. the counting measure
on My /o
Yi ~ f(y:6;,v; p) = exp {v; (y6; —exp(6;)) + a1 (y;7;)} -

This prm-'ides the first two moments as

wi = E[Y;] = exp(8;) and Var(Y;) = %exp[:ﬂ,- ) = E% Wi
d | I

P T ., {oid+1) ) LT
xi = 0 =0(x;) = (k1) (u(xi)) = iﬁﬁ’"‘iﬂ', (z'-i-' o0 z‘-'-) {_:rf_.l:},




J

Regression Design'ﬂsfo'red:iéctive Modelling 2

y M -
Y i [Yilog(Y;) — i — Y;6; + exp(6;)]
=

y N
Y u(xi)vi — N; — N;log (m(x;)vi/N;),
i—1

for regression function x; — j; = p(x;) defined through Equation (14), and where the terms under the

summations are set equal to 2j(x; )v; in case N; = 0.

Nagging Predictors



Learning and Test

the example in Sectio
ous explanatory variah
orical covariates.

ify the choice of learn
which we perform the
in Noll et al. (2018); W
0% of all polici
% are alloca
e seed as ir

Mumbers of Observed Claims Empirical Size of
Frequency Data Sets
empirical probability onD?  94.99% 4. 748 1.36%  0.01% [.002 % 10.,02% n =610 212
empirical probability on T 94.83% 4. 859% 1.31% 0.01% 0.003% 10.41% m = 67,801
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Gradient Descent Fﬁitt’ 1

stochastic gradient descent algorithm

—— training loss
o yalidation loss

Run the nadam gradient descent algorithm over 1000 epochs on
random mini-batches of size 5000 from D). Using a callback
we retrieve the network parameter that has the smallest loss on

V — stopping rule in place.

@
o
§
o
g

800

training epochs




Gradient Descent Fltt

. tep propose " Wiithrich (2019):

A
corr

In-Sample Out-of-Sample
Loss on D Loss on T

(a) homogeneous model 32.935
(b) generalized linear model 31.267

(c) boosting regression model 30.132
(d) network regression model (seed j = 1) 30.184
(e) average over 400 network calibrations 30.230 (0.089) (0.061)
(f) nagging predictor for M = 400 30.060




&
Comparison of Differ works 1

(R1) - randomly split the learning data into
D) and V.

(R2) - randomly split D) into mini-batches of
size 5000.

(R3) - randomly choose the starting point of
the gradient descent algorithm.

33

in-sample: boxplot over 400 calibrations out-of-sample: boxplot over 400 calibrations

—— 400 calibrations

400 calibrations —— selected calibration

—— selected calibration

out-of-sample losses

0
O
7]
%]

i=l

@
[= %
£
@
0
|

£



Comparison of Diff

ah b
0
o

iy
|

Z{.T;Bu:mo)) - ; SN | 4 . _ﬂ.(1:4oo}) B 13{'7';3(”)‘)4_

out-of-sample losses

400 calibrations
cubic spline

303

in-sample losses



The Nagging Predibt’

nagging predictors for M>=1

—— nagging predictor
- - 1 standard deviation

o
o
E
o
r

‘5
L
S
o

The figure gives the out-of-sample losses of the nagging

predictors L(T ; ut 1 m)forM=1,...,100. Most noticeable is

that nagging leads to a substantlal |mprovement in out-of-
sample losses, for M —» o the out-of-sample loss converges to
31.272. From this we conclude that nagging helps to improve
the predictive model substantially.

Nagging Predictors




Policiﬁ

5 of prices on an indivig el. We
policy prices may diffe ont
| tell us whether aggre twork

Pricing of Individu

AVE more networks becaus includes an
surance policies (thoug between
usly use the sar e B,

'-f?;'

A
.

.,m of the te er M = ¢ ent network
/e calculate t icients on in the

by:
s




Observations on Coe

histogram of coefficients of variations

1 N I |
01 0.2 0.3 04

coefficient of vanations

lénts of Variation

Observe most policies (73%) have a CoV of less than 0.2, however,
on 11 of the m = 67, 801policies have a CoV bigger than 1. Thus, for
the latter, if we average over 400 different network calibrations

BY we still have an uncertainty of 1/4/400, i.e., the prices have a

| precision of 5% to 10% in these latter cases (this is always
. conditional given D).

From this we conclude that on individual insurance policies we
need to aggregate over a considerable number of networks to
receive stable network regression prices.

|
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0

)
)

!

with CoV > 1

{i

Focus on Observatio

Listing 2. Policies with high coefficients of variation CoV.

Area VehPower VehAge DrivAge BonusMalus VehBrand VehGas Density Reglion

A 6 0 51 50 B3 Diesel 2.71 R21
6 51 50 B3 Diesel .71 R21
9 30 B3 Regular .32 R26
15 75 67 Regular .38 R72
6 29 60 B3 Diesel .30 R21
10 29 60 Regular .08 R24
9 51 B4 Diesel .35 R11
7 69 50 Diesel .83 R82
10 59 50 Bl Diesel .33 R21
10 59 50 Bl Diesel .33 R21
10 59 50 Bl Diesel .33 R21
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We will proceed to analyse policies with VehAge = 0 and VehAge >0
separately.
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Uncertainty in VehA

histogram of coefficients of variations (only VehAge=0) histogram of coefficients of variations (VehAge>0)
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Nagging Predictors



Meta Network Re

AIthough the nl

tisfactory in ,ﬁfactice. T
ch pollcy .

predictive model, it
regating over M =

or this reason we pro fits a new network t

predictors ,u( ), i=1,...

Jated over M net

Since thes_;e‘,-‘nagglng |
S in input variabl

regression functions
predictors describe
Comparably simpl e smooth surfac
n, and over-fittin ]



Optimal/Model

In-Sample Out-of-Sample
Loss on D Losson T

(d) network regression model (seed j = 1) 30.184 31.464

(e) average over 400 network calibrations 30.230 (0.089) 31.480 (0.061)
(f) nagging predictor for M = 400 30.060 31.272
(g1) meta network model (un-weighted) 30.260 31.342
(g2) meta network model (weighted) 30.257 31.332

For this reason, we are quite satisfied by the meta model, and we
propose to hold on to this model for further analysis and insurance
pricing.
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Nagging Predictor/vsiMeta Model Predictor

scatter plot: nagging vs. meta model _‘ |

The models are reasonably equal with the biggest
differences highlighted in blue.

These refer to the policies with vehicle age 0 —the |
feature component within the data that is the most
difficult to fit with the network model.
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nagging predictor (log scale)
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Discrimination



Discrim#ation Fr
|

|V|. Lindholm, R. Richman, A. Tsanakas, and M. V. Wuthrich, “Discrimination-Free Insurance Pricing,”
SSRN Electron. J., Jan. 2020, doi: 10.2139/ssrn.3520676 Available: https://bit.ly/38huODw.
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Definiti

Insurance pricing models often take ates plus a risk margi

Best esti ations. Define:




What is the discrimi
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Defining discrimi prices

Intuition - need to ouple X 3

Propose a procedure
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Formally:
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smokers non-smokers

— best—estimate price (women ) — best—estimate price (women)
— best-estimate price (men) — best-estimate price (men)
- — - digerimination—free price - — - digerimination—free price
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P(D = woman|X = smoker) = 0.8
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