A New Categorization Scale for Global ropical Cyclones and the 2020 Atlantic Hurricane Season

> Steve Bowen Impact Forecasting Aon

Phil Klotzbach Department of Atmospheric Science Colorado State University

Casualty Actuarial Society Annual Meeting

November 10, 2020

<u>Outline</u>

- 2020 Atlantic Hurricane Season Recap
- 2020 Continental US Hurricane Landfalls
- Long-Term Trends in Atlantic Hurricane Activity
- Proposed New Hurricane Categorization Scale

Atlantic Hurricane Activity Through November 4

Forecast Parameter	2020 Observed	1981-2010 Average Thru 11/4	2020 % of 1981- 2010 Average
Named Storms (NS)	28	11.3	247%
Named Storm Days (NSD)	102	54.8	186%
Hurricanes (H)	12	5.9	203%
Hurricane Days (HD)	32	22.7	141%
Major Hurricanes (MH)	5	2.6	192%
Major Hurricane Days (MHD)	7.50	6.0	125%
Accumulated Cyclone Energy (ACE)	156	99	158%

1981-2010 average is current NOAA 30-year climate base period. This 30-year base period will change to 1991-2020 next year.

August-October 2020 Sea Surface Temperature Anomaly

NCEP/NCAR Reanalysis Surface Skin Temperature(SST) (K) Composite Anomaly 1981-2010 climo

Zonal Wind (u) ms⁻¹

La Niña is Here!!!

In Memory of Bill Gray (1929-2016)

Klotzbach, P. J., J. C. L. Chan, P. J. Fitzpatrick, W. M. Frank, C. W. Landsea, and J. L. McBride, 2017: The science of William M. Gray: His contributions to the knowledge of tropical meteorology and tropical cyclones. *Bull. Amer. Meteor. Soc*, **98**, 2311-2336.

"It's tough to make predictions, especially about the future"

HOWEVER...

"You can see a lot by looking"

Yogi Berra

Colorado State University

August – October SSTs: Ten Most Active minus Ten Least Active Atlantic Hurricane Seasons since 1950

NOAA Extended SST V4 (ERSST) Surface SST (C) Composite Anomaly 1981-2010 climo 60N NOAA/ESRL Physical Sciences Division. 50N 40N 30N 20N 10N EQ 10S-20S 30S -12⁰W 60E 120E 180 60W -1.5 -1.3 -1.1 -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.5 0.3 0.7 0.9 1.1 1.3 1.5

Post-31 July Seasonal Forecast Predictors

CSU – NOAA: August 2020 Atlantic Hurricane Seasonal Forecast Comparison

	CSU	NOAA	Observed 2020 Thru	1981-2010
Forecast Parameter	Forecast	Forecast	11/4	Avg.
Named Storms (NS)	24 (21-27)	19-25	28	12.1
Hurricanes (H)	12 (10-14)	7-11	12	6.4
Major Hurricanes (MH)	5 (3-7)	3-6	5	2.7
Accumulated Cyclone Energy (ACE)	200 (149-255)	129-212*	156	106

CSU 70% Confidence Intervals Included in Parentheses * Converted NOAA % of Median ACE Forecast to Actual ACE (10⁴ kt²)

Figure courtesy of Ethan Gibney, NOAA

Atlantic Ocean: Most Named Storms

Atlantic Ocean: Most Hurricanes 1851-2020

U.S. Mainland Landfalls 2020 YTD Atlantic Season Dates in UTC

Economic loss estimates subject to change

Data: NOAA Graphic: Aon (Catastrophe Insight)

□ Category 4

Category 2

Category 1

Tropical Storm

Named Storms	Hurricanes
2020 (11)	2020 (6)
1916 (9)	1985 (6)
2004 (8)	1886 (6)
1985 (8)	2005 (5)
2005 (7)	2004 (5)
2002 (7)	1893 (5)
1998 (7)	
1959 (7)	
1893 (7)	

U.S. Mainland Landfalls 2020 YTD Atlantic Season

Housing Density by Coastal County

Data: NOAA Graphic: Aon (Catastrophe Insight)

Hurricane Laura Notable Facts/Records

Cameron, Louisiana Landfall: 150 mph, 937 hPa

- Tied with Last Island Hurricane of 1856 for strongest hurricane (by maximum sustained wind) on record to make landfall in Louisiana
- Tied for 4th strongest hurricane on record to make landfall in Louisiana by pressure trailing Katrina (2005), Last Island (1856) and Rita (2005)
- 42 fatalities in the United States, 31 fatalities in Haiti, 4 fatalities in Dominican Republic
- \$14 Billion USD in economic damage in the United States

1926 Great Miami Hurricane (145 mph winds, 930 hPa) – Category 4

Miami-Dade County Population: ~100,000 Damage: \$76,000,000

Miami-Dade County Population: ~2.7 Million Inflation Multiplier: 11.5, Wealth Multiplier: 6.6, South Florida Population Multiplier: 38.8

1926

2020

1926 Great Miami Hurricane - >\$222 Billion Economic Damage (if it were to occur today)

A Proposed New Hurricane Categorization Scale - What Predicts Damage Better: Wind or Pressure?

Hurricane Katrina (2005) – Cat. 3 125 mph, 920 hPa

Hurricane Charley (2004) – Cat. 4 150 mph, 941 hPa

Average 60 mph wind radii: ~105 nm Maximum Storm Surge: ~28 ft Average 60 mph wind radii: ~35 nm Maximum Storm Surge: ~7 ft

Klotzbach, P. J., M. M. Bell, S. G. Bowen, E. J. Gibney, K. R. Knapp, and C. J. Schreck III, 2020: Surface pressure a more skillful predictor of normalized hurricane damage than maximum sustained wind. *Bull. Amer. Meteor. Soc.*, **101**, E830-E846, doi: 10.1175/BAMS-D-19-0062.1

<u>Motivation</u>

 MSLP much easier to measure and has less uncertainty than V_{max} both via aircraft and with surface observations (Landsea and Franklin 2013)

 MSLP is a more robust metric of overall storm intensity (Chavas et al. 2017)

 MSLP a better predictor of damage than V_{max} in global damage survey (Bakkensen and Mendelsohn 2016)

Relationship between MSLP and Continental US Normalized Hurricane Damage (2007-2019)

Normalized Damage Rank

105 120

135 150 165

Relationship between V_{max} and Continental US Normalized Hurricane Damage (1900-2019)

Relationship between MSLP and Continental US Normalized Hurricane Damage (1900-2019)

Relationship between V_{max} and GA to ME Normalized Hurricane Damage (1900-2019)

Hurricane/Superstorm Sandy: 75 mph winds, 942 hPa MSLP

Storm Surge Inundation from Hurricane/Superstorm Sandy (2012)

Saffir-Simpson Scale (Includes Proposed MSLP Addition)

Category	V _{max} (kt)	Revised MSLP (hPa)	Original MSLP (hPa)
1	64-82 (52%)	976-990 (55%)	>980 (n/a)
2	83-95 (31%)	961-975 (32%)	965-979 (38%)
3	96-112 (21%)	946-960 (20%)	945-964 (24%)
4	113-136 (13%)	926-945 (12%)	920-944 (12%)
5	>=137 (4%)	<=925 (4%)	<=919 (3%)

CONUS Major Hurricanes Using V_{max} Definition (1999-2019)

CONUS Major Hurricanes Using MSLP Definition (1999-2019)

© 2020 Mapbox © OpenStreetMap

Relationship between MSLP and 50 kt Wind Radii (1988-2019)

Hurricane Katrina: Category 3 by V_{max} , Category 5 by MSLP

Storm Surge Inundation from Hurricane Katrina (2005)

Hurricane Katrina Peak Storm Surge Inundation Mapping

Turnipseed et al. (2007)

Hurricane Ike: Category 2 by V_{max} , Category 3 by MSLP

Galveston County Storm Surge from Ike – Areas in Red > 10 ft. of Inundation

Chambers County Storm Surge from Ike – Areas in Red > 10 ft. of Inundation

Summary

MSLP has a stronger relationship than does
V_{max} with normalized continental US hurricane
damage since 1900

 MSLP also has a stronger correlation than does Vmax for:

- 50-kt wind radii
- Fatalities

Future Work

- Compare MSLP with other recently proposed Saffir-Simpson Scale replacements such as the Hurricane Severity Index and Integrated Kinetic Energy
- Investigate the relationship between rainfall footprint and $V_{\text{max}}/\text{MSLP}$

Contact Info:

Steve Bowen

Phil Klotzbach Email: philk@atmos.colostate.edu Web: http://tropical.colostate.edu Twitter: @philklotzbach

Email: steven.bowen@aon.com Web: http://catastropheinsight.aon.com Twitter: @SteveBowenWx