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Overview
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Today’s presentation will cover the following:
Aggregate Generalized Linear Models
I. General Introduction to Method

II. GLM Basics

III. GLM Reserving Example

IV. Conclusion

Individual Claim Reserving

V. Predictive Modeling Overview
VI. Traditional Reserving Development Methods
VII. Reserving with Predictive Modeling
VIII. Aggregate Reserving Methods
IX. Individual Claim Reserving Methods
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I. General Introduction to Method
Generalized Linear Models



Actuarial Reserving in a Nutshell
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§ Traditional actuarial reserving methods has been conceptually described as a 
process of squaring up a triangle:

§ The GLM Reserve method is no different.  Estimate future results based on 
information from historical.

HISTORY HISTORY

FUTURE



Why GLM ?
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§ Traditional Chain Ladder method focuses on the development Lag dimension 
to derive estimates:

§ Each future estimate can be derived based on the selected development 
factors.

HISTORY HISTORY

FUTURE

Dimension 2:
Development Lag

D
im

ension 1:
A

ccident Year

Select LDFs



Why GLM ?
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§ However, one major limitation with chain ladder is that it does not adjust for 
accident or calendar year effects
§ Examples include:
§ New claims handling process
§ Changing settlement pattern
§ Legislative/Regulatory changes
§ GLM Reserving allows us to introduce two additional dimensions
§ Dimension 1: Accident Year
§ Dimension 2: Development Lag
§ Dimension 3: Calendar Year



Case Study Example
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§ Let’s quickly go through an illustrative example to demonstrate the impact of 
calendar year effects using a chain ladder method vs GLM reserving method
§ Case Study introduces a calendar year trend in the most recent periods
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Case Study Example
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§ Comparing results for GLM Reserving vs. Chain Ladder
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Case Study Example

© 2016 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. 8

§ Impact can be significant.  In this example, the difference from unpaid is only 
4% for GLM Method versus -22% difference for Chain Ladder

§ Improved estimates

CL Method

GLM Method

True Ultimate

2010 2011 2012 2013 2014
Accident Year
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II. GLM Basics
Generalized Linear Models



Section Introduction
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§ Overview of Predictive Models
§ Explaining the GLM Framework
§ Basic GLM Example

Before going into the GLM Reserve 
Method, we will cover some basic GLM 

concepts that will help us down the 
road…



Predictive Models
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§ Multivariate statistical model to predict a response variable using a series of 
explanatory variables

§ We will use the explanatory variables to try and explain the behavior of 
incremental losses

GLM
Model

Response variables
Incremental Losses

Explanatory variables
Accident Periods
Development Lag
Calendar Periods

Explanatory variables
• Variables that help 

explain what we are 
seeing

Response variables 
• Variables that 

respond to 
explanatory variables 
and we are trying to 
predict



Practical User Considerations
Selecting a Link Function & Error Structure
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Options for Error Structure

l Normal distribution 
assumes that all 
observations have the 
same fixed variance

l Gamma distribution 
assumes that the 
variance increases with 
the square power of the 
expected value of each 
observation

l A.k.a. “Over-dispersed 
Poisson” Distribution

l Mean = λ
l Variance = λ x Scale 

factor
l Allows variance to be 

lesser/greater than the 
mean

Poisson Scale Free

l Strict definition of 
Poisson distribution is 
applied, mean must 
equal the variance

l It assumes that the 
variance increases with 
the expected value of 
each observation

Poisson – Scale = 1Normal or Gamma



GLM Building Blocks
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y = h(Linear Combination of Parameters) + Error

Linear Combination of Parameters 

Accident Year Parameters
β14, β13, β12,�, β05

Development Lag Parameters
β12m, β24m, β36m,�, β120m

Calendar Year Parameters
βCY14, βCY13, βCY12,�, βCY05

Model
Error

Link

2
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III. GLM Reserving Example
Generalized Linear Models



Section Introduction
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In this section, we will cover the following:
§ Start with 2-dimensional approach
§ Show all years volume weighted average vs GLM
§ Show how any cell in the historical triangle is linear combination of beta 

parameters



A simple example
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§ In order to “demystify” the GLM reserve model, we will walk through a basic 
example and show how future estimates are calculated:
§ Start with building a 2 dimensional GLM reserve model:

̵ Dimension 1 = Accident  Year
̵ Dimension 2 = Development Lag

§ Show that results are comparable to Chain Ladder Method using all years volume 
weighted average



A simple example
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Incremental Paid Loss Triangle

§ GLM reserve method is based on predicting the response variable, incremental
losses.

YAY,DL =  Incremental loss
AY = Accident Year AY, 
DL = Development Lag, DL 

Example:
Y2011,12m= 80

Accident Year 12m 24m 36m 48m 60m 72m 84m 96m 108m 120m
2005 92 265 47 24 14 7 5 5 6 3 
2006 95 273 49 25 12 8 6 6 7 
2007 98 281 50 22 14 9 7 7 
2008 100 290 46 24 15 10 8 
2009 103 288 51 27 17 11 
2010 72 321 57 30 19 
2011 80 357 64 33 
2012 89 397 71 
2013 98 441 
2014 110 



A simple example
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Incremental Paid Loss Triangle

§ Any cell in the historical triangle is linear combination of “beta” parameters
§ Incremental losses are related to explanatory variables multiplicatively
§ Resulting model gives exactly the same forecast as the chain ladder model

Accident Year 12m 24m 36m 48m 60m 72m 84m 96m 108m 120m
2005 92 265 47 24 14 7  5 5 6 3 
2006 95 273 49 25 12 8 6 6 7 
2007 98 281 50 22 14 9 7 7 
2008 100 290 46 24 15 10 8 
2009 103 288 51 27 17 11 
2010 72 321 57 30 19 
2011 80 357 64 33 
2012 89 397 71 
2013 98 441 
2014 110 

YAY,DL = EXP (β0 + βAY + βDL) + ε

Log link
function

Linear combination of explanatory variables predicts 
incremental losses, based on AY and DL



A simple example
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Begin with a Base Parameter, β0

We will choose Accident Year 2005, Development Lag 12 months as the base parameter

Why use a Base Parameter?
Needed to allow for model convergence
Setting a base parameter reduces the number of variables by 1

Accident Year 12m 24m 36m 48m 60m 72m 84m 96m 108m 120m
2005 92 265 47 24 14 7 5 5 6 3 
2006 95 273 49 25 12 8 6 6 7 
2007 98 281 50 22 14 9 7 7 
2008 100 290 46 24 15 10 8 
2009 103 288 51 27 17 11 
2010 72 321 57 30 19 
2011 80 357 64 33 
2012 89 397 71 
2013 98 441 
2014 110 

β24 β36 β60 β72 β84 β96 β108β48β12 β120

β06

β05

…

β11

β09
β10

…

β14

β13



A simple example
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Explanatory Variables
Dimension 1 = Accident Year

β11 = Multiplicative parameter that describes accident year 2011
Y11,DL = EXP(β0 + β11 + βDL) + ε

Accident Year 12m 24m 36m 48m 60m 72m 84m 96m 108m 120m
2005 92 265 47 24 14 7 5 5 6 3 
2006 95 273 49 25 12 8 6 6 7 
2007 98 281 50 22 14 9 7 7 
2008 100 290 46 24 15 10 8 
2009 103 288 51 27 17 11 
2010 72 321 57 30 19 
2011 80 357 64 33 
2012 89 397 71 
2013 98 441 
2014 110 

β06

…

β11

β09
β10

…

β14

β13



A simple example
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Explanatory Variables
Dimension 2 = Development Lag

β48m = Multiplicative parameter that describes development lag 48 months
YAY,48m = EXP(β0 + βAY + β48m) + ε

Accident Year 12m 24m 36m 48m 60m 72m 84m 96m 108m 120m
2005 92 265 47 24 14 7 5 5 6 3 
2006 95 273 49 25 12 8 6 6 7 
2007 98 281 50 22 14 9 7 7 
2008 100 290 46 24 15 10 8 
2009 103 288 51 27 17 11 
2010 72 321 57 30 19 
2011 80 357 64 33 
2012 89 397 71 
2013 98 441 
2014 110 

β24 β36 β60 β72 β84 β96 β108β48 β120



A simple example
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Here’s another example.
Example 1. Y12,36m = EXP(β0 + β12 + β36m) + ε
Example 2. Y12,48m = EXP(β0+ β12+ β48m) + ε

Accident Year 12m 24m 36m 48m 60m 72m 84m 96m 108m 120m
2005 92 265 47 24 14 7 5 5 6 3 
2006 95 273 49 25 12 8 6 6 7 
2007 98 281 50 22 14 9 7 7 
2008 100 290 46 24 15 10 8 
2009 103 288 51 27 17 11 
2010 72 321 57 30 19 
2011 80 357 64 33 
2012 89 397 71 ??_ 
2013 98 441 
2014 110 

β0
β06

…

β11

β09
β10

…

β14

β13



A simple example
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Accident Year 
Parameter Value

β2005 n/a

β2006 0.029

β2007 0.056

β2008 0.082
β2009 0.105

β2010 0.124

β2011 0.225

β2012 0.325

β2013 0.424
β2014 0.338

Base 
Parameter Value

β0 4.358

Development 
Lag Parameter Value
β12m n/a 
β24m 1.260 
β36m (0.485)
β48m (1.177)

β60m (1.704)
β72m (2.244)
β84m (2.533)
β96m (2.612)
β108m (2.470)
β120m (3.143)

Example 1:
Y12,36m = EXP(β0 + β12 + β36m)
= EXP (4.358 + 0.325 - 0.485)
= 67 (vs actual 71)

Example 2:
Y12,48m = EXP(β0 + β12 + β48m)
= EXP (4.358 + 0.325 – 1.177)
= 33



A simple example

© 2016 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. 24

§ When excluding the calendar year dimension, as we did in this example, the 
results are the same as chain ladder method using all year volume weighted 
average

Accident Year
2-D GLM 
Unpaid

Chain
Ladder 
Unpaid Difference

Prior 470 470 0
2008 484 484 0
2009 497 497 0
2010 510 510 0
2011 522 522 0
2012 532 532 0
2013 589 589 0
2014 651 651 0
Total 5,632 5,632 0



Incorporating the Calendar year effect
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Problem:

The model is now over-parameterised – there is a relationship between origin, 
development and calendar time, one dimension is a linear combination of the 
other two. A unique solution is not identifiable.

Log “link” function

2
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Linear predictor

Calendar time



The Optimal Model
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§ Use stepwise procedures to reduce the number of parameters and find the 
optimal model
§ Several optimisation schemes could be proposed
§ Optimise backward – iteratively tests each parameter and removes the ones that are 

not statistically significant
§ Optimise forward – Iteratively tests each parameter and adds in the ones that are 

statistically significant
§ Optimise backward/forward – Optimise backward first and Optimise forward second
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IV. Conclusion
Generalized Linear Models



Conclusion
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§ Model Limitations
§ Still working with limited set of data points; i.e. a 10 x 10 triangle only has 55 data 

points
̵ Run the risk of “Overfitting” if too many parameters included – Model explains 

historical experience but poor future predictive value
§ Origin, development and calendar period effects are interlinked, so it can be 

very difficult to interpret the parameters
§ When calendar period effects are included, it is always necessary to 

extrapolate in the calendar period direction
§ The results will be sensitive to the assumptions regarding extrapolation
§ A model that fits the observed data well may not be good for forecasting!
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V. Statistics 101
Bayesian Models



Statistics 101 – Bayes Theorem
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§ Bayes theorem indicates how prior subjective belief changes based on 
evidence

§ P(A/B)  = P(B/A)P(A) ,   where
P(B)

§ P(A) is the prior belief

§ P(A/B) is the posterior belief accounting for B

§ P(B/A)/P(B) represents the support B provides to A



Statistics 101- Likelihood function
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§ Usually we think in terms of probabilities, i.e., the probability of an outcome X 
given a parameter Θ; P(X| Θ)

§ The Likelihood instead is a function of Θ given an outcome, i.e. L(Θ|X)

§ With an observed outcome X the maximum likelihood principle chooses the 
parameter Θ that maximizes the P(X| Θ)

§ The GLM model in ResQ produces a maximum likelihood function



Statistics 101 – Posterior Probability
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§ Given prior belief p(θ) and observation x with likelihood P(x / θ) the posterior is:

§ Posterior probability ∝ Likelihood x Prior Probability



Statistics 101 – MCMC stochastic methods 
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§ MCMC methods are a class of algorithms for sampling from a probability 
distribution
§ This distribution is usually difficult to approximate with analytical functions
§ MCMC constructs a random process that undergoes transition from one state 

to another, called Markov Chain
§ This process is memoryless, i.e. the next state is based only on the current state but 

not the sequence of the preceding states
§ The quality of the convergence to an equilibrium distribution improves with the number 

of steps employed in the process
§ The first few draws are usually thrown away (called burn-in) to ensure target is 

independent of starting point and improve convergence



Statistics 101 – MCMC compared to Bootstrapping
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Result 
Selection

Result 
Selection

DFMDFM

Cape CodCape Cod

PPCIPPCI

ACPCACPC

GLMGLM

Bornhuetter-
Ferguson

Bornhuetter-
Ferguson

Deterministic 
Analysis



Statistics 101 – MCMC compared to Bootstrapping (cont’d)
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Result 
Selection

Result 
Selection

DFMDFM

Cape CodCape Cod

PPCIPPCI

ACPCACPC

GLMGLM

Bornhuetter-
Ferguson

Bornhuetter-
Ferguson

Deterministic 
Analysis

Stochastic 
Analysis

MCMCMCMC

BootstrapBootstrap

Bootstrap family of 
methods based on 

chain-ladder (‘DFM’) 
model

Markov-Chain Monte Carlo approach used to 
produce a simulated range around GLM-

based deterministic estimate



Statistics 101 – MCMC compared to Bootstrapping (cont’d)
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Result 
Selection

Result 
Selection

DFMDFM

Cape CodCape Cod

PPCIPPCI

ACPCACPC

GLMGLM

Bornhuetter-
Ferguson

Bornhuetter-
Ferguson

Deterministic 
Analysis

Stochastic 
Analysis

MCMCMCMC

BootstrapBootstrap

Run-off ResultRun-off Result

Practical 
Stochastic
Practical 

Stochastic
‘Bootstrap’ 

Consolidation
‘Bootstrap’ 

Consolidation

As with Bootstrapping, and Practical Stochastic 
methods, produces full predictive distribution of 
outcomes - as well as cashflows – that can be:

...incorporated into Run-off 
Result analysis (re-reserving)

...consolidated to reflect 
uncertainty across multiple LoBs



Statistics 101 – MCMC compared to Bootstrapping (cont’d)
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§ Similarities
§ Both are simulation methods
§ They produce a full predictive 

distribution of outcomes 
including
§ Parameter risk
§ Process risk

§ Differences
§ Bootstrapping
§ Samples with replacement the 

residuals from an actual versus 
expected comparison of historical 
development

§ Simulations are independent from 
one another

§ There is no convergence in the 
simulations

§ MCMC
§ Samples the parameters of the 

resulting GLM likelihood function
§ Simulations are built through a 

Markov chain
§ The simulations converge into an 

equilibrium state
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VI. Bayesian Modeling Steps
Bayesian Models



Bayesian modeling steps
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Step 1: Specify probability distribution for the data given some unknown 
parameters (data distribution)

Step 2: Specify prior probability distribution for the parameters of the data 
distribution (prior distribution)

Step 3: Derive the likelihood function of the parameters, given the data 
(likelihood function)

Step 4: Combine prior distribution and likelihood function to derive posterior joint  
distribution of parameters(posterior distribution)

Step 5: Obtain parameters for posterior distribution

Step 6: Combine data distribution and posterior distributions to obtain forecast of 
predictive distribution



Bayesian modeling steps (cont’d)
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Step 1 & 2: Example is the ODP model.
Prior distributions could assume some distributional shape (i.e. Lognormal, 
Gamma etc.)
Informative priors with small variance that could affect shape of posterior

Step 4: Posterior is based on Bayesian theory and is proportional to prior and the 
likelihood function

Step 5: It is easy to obtain the parameters of posterior when the shape of 
distribution is known. Otherwise special statistical algorithms, like Gibbs MCMC, 
are needed

Step 6: Like step 5 the complexity of the forecasting depends on whether 
predictive distribution is recognizable. Generic sampling algorithms such as 
Adaptive Rejection Sampling (ARS) might be needed
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VII. Bayesian Modeling within the Reserving Context
Bayesian Models



Bayesian modeling within the reserving context
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§ Reserving example

§ C={Cij: i+j<n+1} is the upper-left triangle of observed payments, and the 
reserving problem attempts to estimate the unobserved values in the lower-
right triangle

Origin Development Period

Period 1 2 3 … n

1 C11 C12 C13 … C1n

2 C21 C22 C23 … C2n

3 C31 C32 C33 … C3n

… … … … … …

n Cn1 Cn2 Cn3 … Cnn



Bayesian modeling within the reserving context (cont’d)
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§ Step 1&2: Assumes ∁ij follows a probability density distribution of f(∁ij / θ), 
where θ denotes parameters describing a particular claims generating process 
and �(θ) is the prior distribution function
§ Step 3: The likelihood function L(θ/c ) for the parameters given observe data is:



Bayesian modeling within the reserving context (cont’d)
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§ Step 4: Given the data distribution and the prior distribution, the posterior 
distribution f(θ/c) is proportional to the product of the likelihood and the prior:

§ Step 5: Parameters θ are obtained from the posterior distribution
and are used in Step 6



Bayesian modeling within the reserving context (cont’d)
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§ Step 6: The known data ∁ij for i + j ≤�+ 1 is used to predict unobserved 
values in the lower right triangle ∁ij for i + j > �+ 1 by means of the predictive 
distribution:

§ Predictive distribution can either be obtained in a closed form analytically or 
through a generic sampling algorithm instead
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VIII. Simple Example – No Simulations Needed
Bayesian Models



Simple example – no simulations needed
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§ Step 1&2:  Assume the loss generating process follows a Poisson distribution 
with parameter  and the parameter  follows a Gamma distribution with some 
known parameters a and b

§ ∁ij / θ		~�(θ)

§ θ/ a,b ~ Gamma(a,b)



Simple example – no simulations needed (cont’d)
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§ Step 3: The likelihood function is given by

§ Step 4: The posterior distribution is proportional to the product of the likelihood 
and the prior:



Simple example – no simulations needed (cont’d)
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§ Step 6: The product of the posterior and the data distribution, i.e., the product 
of a Gamma and a Poisson distribution results in a negative binomial 
distribution:

§ No need for complicating sampling here !
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IX. Examples of Popular Sampling Techniques
Bayesian Models



Examples of popular sampling techniques – Gibbs sampler

© 2016 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. 51

§ Gibbs sampler avoids sampling from a complicated bivariate distribution f(x,y) 
by making random draws instead from univariate conditional distributions 
(f(x/y) and f(y/x)) 
§ For two parameters and n iterations it produces an 

n x 2 table where xo is the initial value – Next steps:

§ Eventually (xi,yi) à (x,y) ͂ f(x,y) for sufficient large number of iterations (so 
called burn-in sample)
§ After burn-in, it is common to define a spacing between accepted points, 

maybe every m draws, to ensure independence of random draws



Examples of popular sampling techniques – Adaptive Rejection Sampling
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§ ARS works with log concave 
densities f(x)
§ An envelope function gEn(x) as 

an upper bound of the log 
density function is employed
§ A random draw xi from the x-axis 

is then sampled
§ When the resulting gEn(xi) is 

close to f(xi) the envelope 
function remains unchanged
§ When the resulting gEn(xi) is 

much larger to f(xi) the envelope 
function changes to incorporate 
a line that is tangent to f(xi)

Log space

f(x)

gEn(x)

xi

f(xi)



Examples of popular sampling techniques – Metropolis-Hastings Algorithm
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7. Accept or Reject the Candidate from 
step 4

Data Ultimate

Parameters

Parameters, Error

p ~ Multivariate Normal

Based on a ratio of Likelihood Functions, 
where the fit of µ* is compared to the fit 
of µt-1

set µt = µ* if U<R
Otherwise set µt = µt-1

1. Create GLM with Error distribution 
f(x|µ) (typically Poisson)

2. GLM produces Parameter estimates 
with uncertainty

4. Sample a Candidate Parameter µ*

6. Draw U from Uniform(0,1) Distribution

5. Calculate Markov Transition Probability R

8. Calculate Reserves based on the 
Markov Chain ending value µt

Selected 
Parameters

Selected µt

Data

Simulated 
Ultimate

9. Repeat steps 4-8 10,000 times for 
burn-in period

3. Set Initial Markov Chain µ0 equal to 
parameter estimates from GLM

U ~ Uniform(0,1)

10. Discard the burn-in steps and 
Repeat steps 4-8 10,000 times for final 
result
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X. Conclusions
Bayesian Models



© 2016 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. 55

MCMC Bayesian stochastic reserving method has both

Advantages:
§ Flexible not constrained by any type of model
§ Allows the incorporation of user’s judgment
§ Provides a full distribution of outcomes

Disadvantages:
§ More sophisticated mathematics
§ Can be influenced by judgment
§ Actuaries are “scared” of it



Questions and Discussion
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