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Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter
and spirit of the antitrust laws. Seminars conducted under the auspices of the
CAS are designed solely to provide a forum for the expression of various
points of view on topics described in the programs or agendas for such
meetings.

Under no circumstances shall CAS seminars be used as a means for competing
companies or firms to reach any understanding —expressed or implied —that
restricts competition or in any way impairs the ability of members to exercise
independent business judgment regarding matters affecting competition.

It is the responsibility of all seminar participants to be aware of antitrust
regulations, to prevent any written or verbal discussions that appear to
violate these laws, and to adhere in every respect to the CAS antitrust
compliance policy.
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Disclaimer

Any opinions expressed here are those of the
presenters, not those of Capital Insurance Group
or of Gross Consulting.
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Session Outline

¢ Predictive modeling for diagnostics : case reserve
adequacy example

¢ Developing a complete reserve estimate using
detailed data - summary of the approach, and why to
do it.

¢ Case study from Capital Insurance Group
¢ More details around building a claim life cycle model
* Conclusions
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Case Reserve Adequacy Example

Average
Calendar  Open case case
Period  Count  Reserves Reserve

8 564 4954014 8784

9 568 6198630 10913

10 649 5347576 8240

1 67 6067343 9,002
12 s 531373 9,786
13 590 5666509 9,604
14 e 6927816 10979
15 731 7125765 9748
16 59 6493882 11,007
7697 7773533 11153
18 660 7,020,701 10639
19 678 5778941 8524

20 58 5795501 10976
21 sa1 526899 9739
2 e 711076 7557

23 83 6631955 8,058
24 707 5615405 7,943
3 82 7115139 8,450
2 954 7139176 7483

Combined 12911 119346440 9,244
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Case Reserve Adequacy Example
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Case Reserve Adequacy Example

o| 7425
10| 5418
H 1| 6023
2 12| 6667
E 13| 5647
H 14| 9,031
] 15| 7,333
< 16| 8290
17| 8292
18] 5733
19 6172
20 7,964
21| 5695
22| 5086
23| 5595
24| 6293
25| 5207
26| 4,605

9,161
7,361
7,660
11,333
8,594
8,283
12,039
15,097
14,563
7,960
8,008
10,467
7318
7,900
7,308
9,071
7,730

& CIG . continuousiy:

8555
14,058
12,017
12,659
10,021
12,626

8,452
11,663
12,252

8312

8,994
13,008

9,937

9373

8,055

7,172

15,436
13,784
13,242
11,197
23,137
12,802
30,860
12336
31,963
14,460
17,823

8,360
14,810
15,745
11,351

6572
15,392
22,099

7,531
15,5536
17,409
12,491
19,280
15,778

8,781
17,125
10,024
19,155
23,693

15,662

6,633
11,470
18,592
11,719
33,697
32,925
14,183
15,291
20,298
17,383
19,829
12,661

24,329
10,383
12,114

2,718
12,401

7833
27,371
50,042
15324

7,253
17,468
20,106

13,195
18,718
14,543
20,921

4,084
35,736
13,483
37,200
14,548

7433

8,057

19,990
21,325

4,401
13,429

7,681
11,894
18,818
14,578
15318
15,853

24,451
4,504
6,422
7,004

13,454
16,353
40,260
15,589
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Case Reserve Adequacy Example
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Case Reserve Adequacy Example

* Mix issues

— Different classes of business
— Different causes of loss
— Geography

— Etc.

 Can generate average case reserve triangles at each

of these levels but reduced volume of
data/increased volume of triangles can make the
situation more difficult to see.
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0 @®ROSS CONSULTING




Case Reserve Adequacy Example

pe

Same calendar
period data, but
include
credibility (in
this case based
on rank based t-
statistic of
observations) . —
and smoothing

techniques.
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Case Reserve Adequacy Example

Calendar Perlod with Age of Development

Pradictive Significance

At the very least,

the inclusion of Age

of Development is

appropriate in a

predictive model of

case reserves

In this case it is very VLS lypain
predictive
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Case Reserve Adequacy Example

i+ Age of Davalopment

g o e

Not surprisingly,
the age of
development
has a strong
impact on the
size of the case
reserve.
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Case Reserve Adequacy Example

The calendar
period, when
adjusted for age
of development
(orange dots)
now shows a
more muted
impact on case
reserves, but
still cause for
concern.
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Calendar Period
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Case Reserve Adequacy Example

Multivariste Case Reserve Analysis

Predictive Sigrifemnce

Addition of
other variables
is easy—
particularly
those that are
already on the
claim record.
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Case Reserve Adequacy Example

Characteristic Produst

The policy form
was also
predictive.
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Case Reserve Adequacy Example

Our primary
question
remains. Is there
a change by =
calendar period?

After adjusting
for the other
variables, there
is much less
evidence of a
change in
adequacy over
time.
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Case Reserve Adequacy Example

Alift chart for
the model that
uses Calendar i
Period alone. y il

Calendar Period ! ,.»"u‘;‘..heuﬂ.n-nasée
by itself, does 1 oL

little to describe

the size of the

case reserve in i

this example. g
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Case Reserve Adequacy Example

A lift chart using LEE
Calendar Period Wb

and Age of il
Development.

" Relative Net Lit = 0.327

This model does
a considerably
better job of i L
describing case
reserve size.
(Hence our use
of average case
triangles)
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Case Reserve Adequacy Example

This lift chart
includes the impact
of other variables.

Adding variables like
cause of loss results H i T
in a much better i 7l
model of case {
reserves.
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Case Reserve Adequacy Example

This lift chart shows
a model where the
other variables are
left in, and calendar
period is removed.

Ralatrve Net Lft = 0.584

The impact of

calendar period is ‘
relatively

insignificant, after
normalizing for the
impact of other
variables.
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Case Reserve Adequacy Example

* Consider the following scenario:

— Pressure on underwriting to write tougher, more severe
classes.

— Pressure on claim department to be more aggressive on
setting case reserves.

— What would this combination look like in terms of average
case reserve?

— Could very well be flat. Normal diagnostics may miss it.

— Predictive modeling could help alert the actuary to this
situation.
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Ways to Incorporate Predictive
Modeling Into Reserve Analysis
¢ Analysis of specific loss development
data/processes, for example:

— Case reserve adequacy
— Closure rates

L]

Modification of triangles

Reserve segmentation

Full description of the entire process, with
resulting estimate of reserves

22 G @ROSS CONSULTING

The Mix Problem... An Example

¢ Two classes of business

—Class 1.
* Faster developing
¢ Lower ultimate loss ratio (60%)
— Class 2
* Slower developing
* Higher ultimate loss ratio (90%)
* Class 2 has always been there, but only
recently started growing significantly
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Different Development

100%
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80%
@
g 70%
£ oo%
2 50%
H 0% ——Class 1
g // ——Class 2
3 30%
¢ //
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10%
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The Triangle

Loss as of:

Year  [Premium| Age1 Age2 Age3 Age4 AgeS Age6 Age7 Age8 Age9 Ageld|
2006 105 7.53 20.40 3267 43.49 52.72 58.08 61.20 62.36 63.28 64.50]
2007| 105 8.06 20.72 32.65 43.52 54.68 60.16 63.87 64.15 63.71
2008 105 648 1923 3080 4247 5270 5832 6099 6291
2009 105 7.21 19.21 30.81 4244 52.93 59.64 61.78
2010 105 7.43 21.88 34.36 43.89 53.76 59.81
2011] 105 676 1919 3307 4390  54.42
2012 105 7.11 18.49 30.01 40.40
2013 120| 844 2218 37.25
2014 140 865 2587
2015 160 981

oeuness wone
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Development Factors
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2006) 2709 1602 1331 1212 1102 1054 1019 1015 1019

2007| 2571 1576 1333 125 1100 1062 1005 0993

2008] 2967 1602 1379 1241 1107 1046 1031

2009 2666 1604 1378 1247 1127 1036

2010| 2944 1570 1277 1225 1113

2011 2840 1724 1327 1239

2012| 2602 162 1346

2013 2630 1679

2014 2.990

ast3| 2740 1675 1317 1237 1115 1048 1018 1004 1019
9108 3324 1984 1506 1218 1092 1042 1023 1019
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True Loss Ratio vs Estimate

80.0%
75.0%
70.0%
65.0%
60.0%
55.0%
50.0%
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40.0%

e Estimate

* Actual
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Potential Differences

¢ Industry classification

¢ Geography

¢ Deductible/Limit Profile
¢ Size of account

¢ Type of Claims

¢ Etc.
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No Model
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Claim Data

Link Ratio
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Cisim Data

Bornhuetter-Ferguson
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One approach to building a claim
life cycle model

¢ Helpful to concentrate on individual time-
steps (e.g. beginning of quarter to end of
quarter)

* Many facets of loss development within that

time step

Analyze the facets using predictive modeling

techniques (predictive variables!)

Simulate to bring it together and project to

ultimate
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Claim Development

Does the
Claim Have a
New Value?

What is the
New Value?

Did the Claim
Close?

Is there a
Payment?

| How much is
the Payment?

Arrows indicate dependency on other results

A number of available claim or exposure characteristics may have predictive
value for any of these questions.
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Claim Simulation to Ultimate
Claim #1 | Claim #1
Path 1, step 1 Path 1, step 2
Claim #1 N Claim #1 | Claim#1
y /| Path 2, step 1 Path 2, step 2 Path 2, step 3

Open Claim #1 %,I Claim #1 ‘

Path 3, step 1
N[ Claim #1 |
Path 4, step 1

| Claim#1
Path 5, step 1

Each arrow represents the simulation from one time-step to the next
(time-step simulation). Claims-path-steps that do not have an arrow
emanating from them closed within the time step.
oeumess woRe
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Claim #1
Path 1, step 2
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Claim Emergence

Ultimate
Claim Severity

Report Lag

Claim
Frequency

Arrows indicate dependency on other results

A number of exposure characteristics may have predictive value for any of
these questions.
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Why do it?

¢ Use more of the information contained in your
data

¢ Improve predictive accuracy

¢ Quicker recognition of changing environment

¢ Better reserve allocations

e Layering of losses

* Improved operational or strategic business
decisions
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Uses

¢ Reserve Analysis

¢ Claim management

* Pricing Analysis

e Underwriting Management
¢ Risk Management

¢ Reinsurance
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Case Study - Background

¢ Capital Insurance Group

¢ Reasons for interest in the approach

— Validate ultimate selections made from traditional
triangle-based methods

— Insights that can be gained by applying predictive
modeling to reserving

— Triangle segmentation ideas
— Support pricing predictive modeling by using
estimated ultimate claims as the target variable

RS MR
Continuously: 40 0 GROSS CONSULTING
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Case Study - Background

* Began the process in Q4 of 2015

¢ Analyzed Q4 2014 (1 Year Lag) to be able to
compare against traditional approach

¢ |nvolved three individuals in the actuarial
department

¢ Single line of business
¢ Longer-tailed LOB
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Learning Curve

¢ Main challenge was organizing the data and
gaining familiarity with the approach

¢ Refining models to be simpler where possible

¢ After getting over the initial learning curve,
results were rapid

S——
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Case Study - Process

¢ Organized data
¢ Built and refined the predictive models
¢ Simulated development and emergence

¢ Analyzed output vs. current reserve model vs.
actual development
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Case Study — Selected Highlights

Chasseteristic: 2P_cope
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§
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s
-
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Case Study- Selected Highlights

Charactaristic: DEDUCTIBLE
P Compisne: G0 Bavad
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Case Study— Selected Highlights

46 0 GROSS CONSULTING

Case Study — Overall Impressions

¢ Challenges
— Reconciliation with other analysis
¢ Value
— Depth of information available
— Statistically significant segmentation

— Visual aids for decision making are an invaluable
part of the process

— Easy to evaluate performance of one model
iteration to the next
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Case Study — Thoughts for the future

* Reserving
* Pricing
e Other

—
G Continuously. 48 G GROSS CONSULTING
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A Simplified Example
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Data

Financial Data
Beginning Case Reserve
Ending Case Reserve
Payment in Period

Timing Data
Accident Quarter
Report Quarter
Valuation Quarter

& CIG continuously: 50
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Exposure Characteristics
Type
Product
ZIP Code

Claim Characteristics

Loss Cause
Loss Cause - Detail

0 GROSS CONSULTING

Probability of a Claim Closing

¢ Base probability of
71%

¢ Modification of this
probability by various
claim characteristic
values that were
found to have
predictive value
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Close Probability — Claim Age

R Facr
Asmes Facer

Mot Faco
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Close Probability — Loss Cause
(detailed)

Aded Frcir

Maodel Facn
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Close Probability — Loss Cause

Efl
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Close Probability — Accident Quarter

Admnd Facren

Mok Facker
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P

Clpse Probability - Product

At P

i s
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l_CIose Probability - Type

Mol Factr
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Probability of Change in Value (Given
Not Closed)

¢ Base probability of
37%

e 4 characteristics
found to be
predictive
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Change Probability — Claim Age
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Change Probability — Loss Cause

Agmata

Mol Farss
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New Claim Value (Given Changed but
Not Closed)

¢ Base factor of 1.98 to
beginning case
reserve

¢ Modification to this
linear relationship, as
well as five additional
predictive
characteristics
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New Claim Value - Case Reserve

pused e

Mot Facin
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New Claim Value — Loss Cause

¢ mars
A Facae

st s
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New Claim Value — ZIP Code

Number of ZIP Codes

e 5 % 2 g o 8 @ < ow o
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New Claim Value- Loss Cause (Detail)

[P
T Model Facier
i
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New Claim Value - Product

* R raow
e Face
Masa e
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Simulate Going Forward

¢ Claim Development
— Start with current inventory of open claims
— For each open claim simulate a number of
potential outcomes for the next time-step (using
the claims’ characteristics)
— For those simulated claim-paths that are still open
simulate forward another time-step.
— Continue until all simulated claim-paths are closed

0 GROSS CONSULTING
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Claim 1
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Grand Total

1 payments

Probability distribution of total
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Grand Total

Mean of total payments

0.8 1
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] Grand Total

Current case reserves

0.6 0.8 1
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Product 1 Product 2

0 02 04 06 08 1 o 02 04 05 08
Product 3 Product 4

0 02 04 06 08 1 0 02 04 06 08

CIG continuousty: 74

Capial Iosuracs Growp.

G GFrOSS CONSULTING

Type 1

Type 3
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Emergence

 After simulating claim development to
ultimate, model emergence

* Frequency
* Severity
* Report Lag
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Emergence Simulation

¢ Use written policies (w/ characteristics)
simulate remaining emergence.

* Generating loss date within this process allows
accident period calculations

¢ Also get losses associated with unearned
premium

¢ |nforce loss ratio distribution.

78 G GROSS CONSULTING
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Conclusion

¢ There is a wealth of data available to use when
developing estimates of reserves

* Triangles, while useful, obscure much of the information

* By applying predictive modeling techniques, we can
develop a much more comprehensive understanding of
loss development

¢ Simulation can be useful for developing the reserve
estimates from such models

* There are significant collateral benefits to other actuarial
areas such as pricing
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