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Overview
Motivations
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1. Interpretability & Extensibility

– meaningful parameters

– option to capture specific process features

2. Parsimony

– extract signal from noise

– description of individual cohort vs. average

3. Quantification of reserve uncertainty

– incorporate multiple information sources

– isolate drivers of uncertainty

Model
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• Intuitive parameters including case reserve robustness measure

• Provides coherent measure of reserve uncertainty

• Supports negative development

• Can capture calendar effects

• Independent of DFM / BF

• Incorporates judgement

Overview
Features
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Models the claims 

generation process 



*ODEs:  a collection of simultaneous Ordinary Differential Equations

Methodology
Compartmental reserving model

Structural model

Premiums
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*ODEs:  a collection of simultaneous Ordinary Differential Equations

Methodology
Compartmental reserving model

Structural model

• Cash flows between compartments governed by ODEs*

• Fit to paid and outstanding triangles

– Simultaneously

– Explicitly estimating tails

Premiums
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Methodology
Parameters

Parameters have natural interpretations

Reported loss ratio (“RLR”)

Rate of earning + reporting (“ker”)

Reserve robustness factor (“RRF”)

Rate of payment (“kp”)

Base model parameters for a single accident year

Earned 
Premiums
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Methodology
Parameters

Parameters have natural interpretations
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Methodology
Rates → Patterns
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Methodology
Rates → Patterns
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Illustration spreadsheet
Discretized compartmental model
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Hierarchical compartmental models

*Also known as a mixture of random effects and fixed effects

AY

Parameters a mixture of 

those varying across AY

and those not*

Only estimate mean and s.d. of the variable parameters

AY RLR ker RRF kp

1 RLR1

ker

RRF1

kp

2 RLR2 RRF2

… … …

N RLRN RRFN

Multiple accident years
Hierarchical (“mixed-effects”) models
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Case study
Data & Objectives

• Workers’ Comp Schedule P data

– Accident year cohorts (1988 – 1997)

– Earned premiums

– Paid and incurred claims development

• Objectives

– Fit frequentist compartmental model

– Refine model and interpret parameters

– Compare projections to lower triangles
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Case study
Model 1

AY RLR ker RRF kp

1988 RLR1

ker

RRF1

kp

1989 RLR2 RRF2

… … …

1997 RLR10 RRF10
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t*

ker

Judgementally select parameter starting values 

RLR RRF

ker kp

Base model:
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Case study
Model 1 Diagnostics
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Case study
Model 1 Diagnostics
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Case study
Model 2
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Case study
Model 2 Diagnostics
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Case study
Model 2 Diagnostics
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Case study
Model 2 Diagnostics
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Case study
Model 2 Diagnostics
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Accident Year
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Case study
Model 2 Parameter Estimates

Update model to estimate correlation
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Case study
Model 3 Parameter Estimates

Compare model extrapolations to hold out samples…
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Case study
Model 3 Extrapolations
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Case study
Model 3 Extrapolations
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Case study
Model 3 Extrapolations
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Bayesian implementation
Why bother?
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)();()|(  pyLyp 

Posterior   ∝ Likelihood x Prior

)();()|( ULRpincurredULRLincurredULRp 

Objective:

Bayes’ theorem: 

“Given any value (estimate of future payments) and

our current state of knowledge, what is the probability that 

final payments will be no larger than the given value?”

- Casualty Actuarial Society (2004)

Working Party on Quantifying Variability in Reserve Estimates



Bayesian implementation
With added complexity…

Estimate case reserve % increases/decreases
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RLR RRF

ker kp

Explicitly model calendar shock (& autocorrelation):

Case reserve 

review
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Bayesian implementation
Diagnostics: frequentist equivalent vs. calendar shock model
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frequentist equivalent 



Bayesian implementation
Diagnostics: frequentist equivalent vs. calendar shock model
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Over fitted

calendar shock model



Bayesian implementation
Diagnostics: frequentist equivalent vs. calendar shock model
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Bayesian implementation
Diagnostics: frequentist equivalent vs. calendar shock model
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Conclusions
Hierarchical compartmental reserving
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Conclusions
Hierarchical compartmental reserving

Try it out for yourself!

• Strengths of compartmental reserving:

– Independent stochastic method

– Meaningful parameters

– Parsimonious yet extensible

• Weaknesses of compartmental reserving:

– Model shape constraints with volatile data 

– Sensitivity to starting values / priors

– Learning curve

Jake.Morris@LibertyGlobalGroup.com
39

supports negative incurred development

including measure of reserve robustness

can capture calendar effects

try SDEs?

strength!

paper and materials…

mailto:Jake.Morris@LibertyGlobalGroup.com


• Full case study analysis
– Mathematics and assumptions

– MCL and BCL comparisons

– Data, R and OpenBUGS code

• Reserve derivations
– ExBNR vs. RBNS

• Non-steady-state exposure

• Patterns of development

• Parameter starting value algorithm

• SDE exploration

The paper…
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