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 The session will begin with a dilemma that confronts actuaries when relying upon a single
model to measure the variability around a central estimate based on multiple models

 We will then provide an overview of the basic building blocks to estimating reserve 
variability and will then address a component of reserve variability that is often overlooked: 
model uncertainty

 This session will present practical methodologies for incorporating model uncertainty into 
the actuary’s estimate of uncertainty and will use a case study to demonstrate their use

 Within the property/casualty insurance 
industry, increased interest is being 
placed on understanding the variability
inherent in a point estimate of unpaid 
claims
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Session Description

! dilemma

variability

model uncertainty

practical methodologies
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Dilemma



8/24/2015

2

towerswatson.com
© 2015 Towers Watson. All rights reserved.

4

Dilemma

 Consider a situation where we have two 
models, Model A & Model B, that each produce 
a point estimate:

Model B point 

estimateModel A point 

estimate
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 How do we estimate the uncertainty in our central estimate?
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Dilemma

 Consider a situation where we have two 
models, Model A & Model B, that each produce 
a point estimate:

 Assume the actuary selects the central 
estimate to be the average of the point 
estimates from the two models:

Selected point 

estimate
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Dilemma

 One way might be to estimate uncertainty using 
one of our underlying models as the basis

 Using Model B as the basis for estimating 
uncertainty:

 This raises two issues:

 Central estimate (red) is not “central” within 
distribution

 Model A point (blue) estimate appears unlikely yet 
given 50% weight

Distribution 

around Model B

!!

!

!
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 The first issue can be resolved by scaling:
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Dilemma

 The central estimate (red) is now “central” with distribution

 However, the second issue remains:

 Model A point estimate (blue) still appears unlikely yet given 50% weight

Distribution around Model B 

scaled to central estimate

!

!
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Dilemma

 It is common to estimate unpaid claims using more than one model

 It is rare for different models to produce point estimates that are equivalent

 Current approaches to estimating uncertainty tend to derive variability within the context 
of a single model

 Central estimate is often not equivalent to any single model.

How do we derive a suitable distribution of variability?
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Introduction
Types of Uncertainty
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 Suppose you are an established auto insurer and have written the same number of 
policies for the last 11 years 

 You have had the following number of ‘large’ claims:

 How many large claims do you expect next year?

 What is the uncertainty in your estimate?

 What is the uncertainty in the outcome?

A Basic Forecasting Problem

10

?
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 The first step is to develop a model upon which to base our prediction

A Basic Forecasting Problem Defining the model
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 The first step is to develop a model upon which to base our prediction

 In this case, we can use a simple average of historically observed values:

A Basic Forecasting Problem Defining the model
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 This answers our initial question related to our prediction

 Now, we need address the question of uncertainty around:

 our estimate

 the outcome
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 Firstly, our given model contains parameters obtained from a sample of data

 But are they the ‘true’ parameters?

A Basic Forecasting Problem Parameter Uncertainty
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Volatility within our underlying data 
means our observed parameters 
may be observations from a 
distribution of potential outcomes

Distribution 
of 

parameters
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 If we believe that our observations come from a wider distribution of possible outcomes, 
then the results of our model are susceptible to the variance of those parameters

A Basic Forecasting Problem Parameter Uncertainty

14

Parameter or
Estimation 
Uncertainty
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 Even if we were to know the correct parameters of our model…

 …our forecast is susceptible to future variation from our expectation

 The potential variation of the expected outcome is due to Process Uncertainty

A Basic Forecasting Problem Process Uncertainty

15

Process 
Uncertainty
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 The range of outcomes produced this far share one key assumption…

 …which is that the model itself is correct

 But what if we are not 100% sure that our model is correct?

A Basic Forecasting Problem Model Uncertainty
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Vs.

Model Uncertainty
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 To summarize, we have two potential sources of uncertainty related to our selected 
model(s)…

 …and uncertainty associated with the selection of the model itself:

A Basic Forecasting Problem Summary

17

Parameter
Process

Model

Parameter uncertainty

Process uncertainty

Model uncertainty

Parameter

Process

Model

?
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Model vs User Error

 When multiple models are used, there is an important distinction to be made 
between knowing a model is incorrect and not knowing which model is correct

 An important note to make about model error is the resulting bias on the 
actuary’s prediction, if any, should be unknown
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Reserve

Model A Model BCentral 
Estimate

Reserve

Model A Model BCentral 
Estimate

Actuaries 
expectation for 

model A

Actuaries 
expectation for 

model B

vs.

Model error Known bias
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Types of Uncertainty Available models

 There are a number of methods and models available to the actuary 
when analyzing, or reporting on the uncertainty around our selected 
reserve

 Although we do not have time to cover each in depth, understanding 
the uncertainty components the output of these approaches includes is 
important…
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Mack

Bootstrap

Parametric 
Bootstrap

Sensitivity 
Testing

Scenario 
TestingAlternative 

Methods Practical StochasticMCMC
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Types of Uncertainty Available models
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Model

Mack Bootstrap

Parametric 
Bootstrap

Sensitivity 
Testing

Scenario 
Testing Alternative 

Methods

Practical Stochastic

MCMC

Parameter Process

Mack

Bootstrap

Parametric 
Bootstrap

Sensitivity 
Testing

Scenario 
TestingAlternative 

Methods Practical StochasticMCMC

Where we 
want to be
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Incorporating Model Uncertainty
Overview of Approach
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Uncertainty in an Actuarial Central Estimate

 Measuring uncertainty is a challenge in our 
profession because the unpaid claim 
process is unknown and the output from 
this process is not a repeatable exercise

 Many approaches exist to estimating the 
uncertainty in an unpaid claim estimate

 Mack, Bootstrapping, MCMC, practical stochastic 
simulation

 Two common themes in these 
approaches:

 Prediction error is comprised of parameter 
error and process error

 A single model is assumed to be 
representative of the unpaid claim process =

Parameter
Error

Process 
Error

22

Prediction
Error
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Uncertainty in an Actuarial Central Estimate

 However, actuaries rarely rely upon 
one model in selecting a central 
estimate; instead, actuaries 
commonly consider the estimates 
from multiple models

 Therefore we need a way to reflect 
the additional uncertainty that 
results from the selection between 
multiple models

Model 
Error

Parameter
Error

Process 
Error

23

=

Prediction
Error
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Parameter
Error

Parameter
Error

Model 
Error

Process 
Error

Model 
Error

Process 
Error
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Our Approach 

 Generate a distribution comprised of 
simulations about each model using current 
approaches:

 Bootstrapping; simulation from an assumed 
distribution; simulation from analytical models, 
simulating and scaling; etc.

 Weighted sample Prediction
Error
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 Generate a distribution comprised of 
simulations about each model using current 
approaches:

 Bootstrapping; simulation from an assumed 
distribution; simulation from analytical models; 
simulating and scaling, etc.

 Weighted sample

 Aggregating results across multiple years 
requires additional rigor:

 Rank Tying and Model Tying approaches 
are available to generate aggregate 
distributions
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Our Approach

Model 
Error

Parameter
Error

Process 
Error

Model 
Error

Parameter
Error

Process 
Error

t = 3

t = 2

t = 1

Total

Prediction
Error
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Weighted Sampling
Single Years
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 Start by creating simulated distributions for each of Model A and B:

27

Sampling of methods

Model B point 

estimateModel A point 

estimate

Simulation 
methodology
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 Create a ‘Model Matrix’ based on selected weighting

 In this case, we will use 50-50 weighting between Model A and B

 Simulations are pulled from each model based on this ‘Model Matrix’

28

Sampling of methods
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Sampling of methods

 Comparison of results from Weighted Sampling between Model A and Model B:

Model B point 

estimateModel A point 

estimate

Distribution 

around Model BDistribution 

around Model A 

Combined distribution using 

weighted sampling

Using weighted sampling
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Sampling of methods

 Comparison of results from Weighted Sampling vs. Scaling:

27%

71%

7%

93%

Using weighted sampling Using scaling

vs.
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Sampling of methods

 Adjusting our underlying weights will shift the resulting distribution accordingly:

31

50:5033:67 67:33
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Sampling of methods Multi-modal distributions

 Weighted Sampling may produce ‘lumpy’, or 
multi-modal, probability density distributions

 However, the probabilities across a range of 
outcomes may be more easily interpreted using 
the associated cumulative probabilities graph

 Further adjustments could be made to the 
simulated results if such an outcome was 
deemed problematic

32
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Sampling of methods Impact on Variability

 The effect that weighted sampling will have on the overall distribution is 
dependent on two factors:

 The dispersion in the means of the underlying models

 The variance of the distribution of the underlying models

33
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Sampling of methods Impact on Variability

 Take the following example

 Model A (blue) and model B (green) have the same CoV in each example, 
however, we can see the impact of shifting the mean (multiplicatively) and re-
sampling

34

CoV = 9.0%
CoV = 17.9%

CoV = 21.6%

CoV = 14.2% CoV = 19.6%

CoV = 23.1%
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Sampling of methods

35

Model

Mack Bootstrap

Parametric 
Bootstrap

Sensitivity 
Testing

Scenario 
Testing Alternative 

Methods

Practical Stochastic

MCMC

Parameter Process

Where we 
want to be
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Sampling of methods

36

Model

Mack Bootstrap

Parametric 
Bootstrap

Sensitivity 
Testing

Scenario 
Testing Alternative 

Methods

Practical Stochastic

MCMC

Parameter Process

Simulations with 
sampling
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 So far, we have considered a scenario with just a 
single set of simulations

 What if we have multiple sets of predictions?

 Multiple accident years, for example

Sampling of methods

37
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Weighted Sampling
Multiple Years
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 Again, for each time period, we can create a ‘Model Matrix’ based on the selected 
weighting

39

Sampling of methods Multiple Year Aggregations
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A note on simulation tying

 Typically, the methods that are used to generate the simulations around each of the 
underlying models do not treat each accident year in isolation, but rather produce year-
by-year results that are intrinsically related to each other

 This is reflected in each and every simulation, which we can think of as ‘strings’

 This means that we are able to calculate the total unpaid amount for each simulation by 
simply summing across each row

 In this manner, any accident year correlation that is inherent to the model can be 
maintained

40

Sampling of methods Multiple Year Aggregations
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A note on simulation tying

 What happens when we mix samples from different models in simulation ‘strings’

 Where a break occurs in a ‘string’, we destroy any correlation that may have been 
included in our model

: Another Dilemma

41

!

Sampling of methods Multiple Year Aggregations
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A note on simulation tying

 What happens when we mix samples from different models in simulation ‘strings’

 Where a break occurs in a ‘string’, we destroy any correlation that may have been 
included in our model

 If we simply randomly-arrange our samples across simulations, we essentially destroy 
any year-by-year correlation in our results and we are no longer able to sum across the 
rows to get the total (unless this is desired)

: Another Dilemma

42

!

Sampling of methods Multiple Year Aggregations
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 Going back to our sampled simulations - because we sampled independently for each 
time period, we have broken the links intrinsic to the underlying model(s)

43

Sampling of methods Multiple Year Aggregations
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 With this example (equal weighting for each accident period), we can get around the 
problem by sampling just one time and ensuring that we pick the same simulation for 
every time period

44

Sampling of methods Multiple Year Aggregations

 This approach achieves the objective in that each individual 
accident period reflects the desired weighting and we maintain 
the correlation inherent to each individual simulation

 However…

towerswatson.com
© 2015 Towers Watson. All rights reserved.

 …what if our selected weightings vary for each origin year?

 In this case, we need to sample independently to maintain appropriate year-by-year 
representation

45

Sampling of methods Multiple Year Aggregations

No possible weighting at 
Total level would replicate 
selected year-by-year 
weights…

…therefore cannot sample 
at total level
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 We require some manner of rearranging our simulations to reflect underlying correlations

 Going back to our earlier example, sampling individually by years, we suggest 2 ways in 
which to achieve this….

46

Sampling of methods Multiple Year Aggregations
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Sampling of methods Multiple Year Aggregations

1) Rank Tying:

Rearrange the sampled simulations 
themselves using a ‘borrowed’ correlation 
matrix

towerswatson.com
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Sampling of methods Multiple Year Aggregations

2) Model Tying:

Rearranging the Weighted Samples 
‘Model Matrix’ prior to pulling through the 
reserves from the underlying model
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49

Aggregating Results
Rank Tying
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 This approach involves rearranging the sampled, simulated reserves

50

Aggregating Results Rank Tying
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 We can ‘borrow’ a rank correlation matrix from one of the underlying models

 We do this by calculating the reserve ranks for each year for the underlying models

51

Aggregating Results Rank Tying
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 We then select which model to use as the basis for our rank-tying (in this case, Model B)…

 …and reorder the sampled simulations accordingly on a year-by-year basis

52

Aggregating Results Rank Tying
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 Once rearranged, we can then sum across the rows to calculate a total reserve for each 
simulation

53

Aggregating Results Rank Tying
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Aggregating Results Rank Tying: Summary

 Rank Tying is a means of combining simulations across 
origin periods while maintaining the same parameter 
variance dependency structure associated with one of the 
underlying projection models

 In essence, this approach assumes that the introduction 
of model uncertainty does not produce any additional 
dependency across origin periods

 Rank Tying dependencies across accident years:

 Process Error = None

 Parameter Error = Select a single model for source

 Model Error = None

 Should there be correlation among accident years for model uncertainty?

 It may be argued that should a model turn-out to overestimate or underestimate then it will likely 
have a similar tendency across all origin periods

None
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Aggregating Results
Model Tying
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 This method also involves reordering the simulations

 However, in this case, we will be rearranging at the ‘Model Matrix’ stage, prior to pulling 
through the reserves from the underlying model

56

Aggregating Results Model Tying
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Aggregating Results Model Tying

Sampling error may 
mean that we do not 
achieve an exact 
50/50 split in each 
year so ‘perfect 
strings’ are not 
always possible

 We wish to reorder the ‘Model Matrix’ to maximize the degree to which ‘A’s in one year 
are grouped with ‘A’s in other years, and the degree to which ‘B’s are grouped with ‘B’s

 We do this to maximize the correlation of the method selected in each of the accident 
years
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Aggregating Results Model Tying

 We can now select the samples from our underlying methods using the sampling ‘Model 
Matrix’ reordered such that we maximize the ‘model correlation’…

towerswatson.com
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Aggregating Results Model Tying

 …allowing us to simply sum across the sampled simulation ‘strings’ to derive our set of 
total simulated reserves
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Aggregating Results Model Tying: Summary

 Using the Method Tying approach ensures that, where possible, 
the original ‘strings’ of simulations through each year are kept 
intact, thereby inherently including the dependencies implied by 
the underlying models

 However, where perfect ‘strings’ aren’t possible due to changing 
weights, we are essentially breaking origin period correlation 
caused by parameter error within a model, as we are combining 
simulations from different models randomly.
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 This may be a desirable effect

Model correlation across all AYs

61

Aggregating Results Model Tying: Summary

Model B point 

estimate

Model A point estimate

Underlying Models Equal weights across all AYs Weight switching from Model 
A to Model B

No model correlation across switch

Example
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Aggregating Results Model Tying: Summary

 Using the Method Tying approach ensures that, where possible, 
the original ‘strings’ of simulations through each year are kept 
intact, thereby inherently including the dependencies implied by 
the underlying models

 However, where perfect ‘strings’ aren’t possible due to changing 
weights, we are essentially breaking origin period correlation 
caused by parameter error within a model, as we are combining 
simulations from different models randomly.

 This may be a desirable effect 

 Pre-sorting the original sets of simulations (prior to sampling) imposes a proxy dependency 
between models

 Model Tying dependencies across accident years:

 Process Error = None

 Parameter Error = Yes, to the extent selection weights between models implies it should exist

 Model Error = Yes

towerswatson.com
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Aggregating Results Model Tying

 In a situation where equal weights are applied to each accident year, this approach will
yield very similar results to the method suggested earlier – i.e. sampling just once and 
ensuring that the same simulation is picked for each time period:

Weighted sampling 
at individual years, 
then Model Tying

Weighted sampling 
at total≈
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Aggregating Results
Summary
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Aggregating Results Summary

 We have outlined three ways in which yearly reserve 
uncertainty estimates can be aggregated to determine the 
variability around the total (i.e. all year) unpaid loss 
estimates:

 Weighted sampling at a total level

 Weighted sampling and re-arranging sampled simulations with 
Rank Tying

 Weighted sampling and re-arranging the Model Matrix with  
Model Tying

 It is not always easy to predict how the approaches will 
compare as it depends on the weightings employed and 
the results of the respective models across accident years

Sampling the total

Rank 
Tying

Model 
Tying
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 This allows actuaries to reflect the same weighting philosophy in their uncertainty 
estimate as employed in their selection of the central estimate

Aggregating Results Summary

66

2 Methods… …3 Methods… …4 Methods… …etc….

 All three approaches are 
scalable to allow for the 
incorporation of multiple 
models and multiple accident 
years in the estimate of reserve 
uncertainty

 Furthermore, the Rank Tying 
and Model Tying approaches 
involve sampling at the 
individual year level and 
therefore also support the 
ability to apply weights specific 
to each accident year

All three approaches

Rank Tying
Model Tying
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Approach
Modus Operandi
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Deterministic 
Projections

Stochastic Projection

Result 
Selection

Approach Using Scaling

68

Selected distribution

Selected Reserve

Scale 
simulations 
to align with 

selected 
mean

Sims 

Model Selection

 When relying on a single model as the basis for our 
estimation of the uncertainty in our prediction, we first 
have to select the method that we wish to model 
stochastically

 We then scale our simulated output, such that the 
mean of the simulated distribution is equal to that of 
our central estimate

towerswatson.com
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Pull sims from methods 
based on random 
weighted sample

Deterministic 
Projections

Stochastic Projections

Result 
Selection

Weighted 
Sample

Approach Incorporating Model Error Rank Tying

69

Weighting information

Selection of simulations

Sims 

Sims 

Sims 

Individual year 
distributions

Full selected distribution

Re-order 
sampled 

simulations

Correlation matrix 
from selected model

 To incorporate model error, we first develop stochastic 
models around each of our methods

 We reference the weights used in the selection of our 
central estimate to produce a sampling matrix…

 …which is used to pull simulations from stochastic models

 As our weighted samples are pulled individually by year, we 
impose a correlation matrix (selected from one of the 
underlying stochastic models) to re-order the sampled 
simulations…

 …such that we can develop a distribution around our total 
reserve
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Pull sims from methods 
based on re-arranged

weighted sample

Deterministic 
Projections

Stochastic Projections

Result 
Selection

Weighted 
Sample

Re-arrange 
Weighted 
Sample

Approach Incorporating Model Error Model Tying
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Full selected distribution

Weighting information

Selection of simulations

Sims 

Sims 

Sims 

 The approach using model tying is initiated in much 
the same way

 However, before pulling the simulations from the 
underlying models, we arrange the sampling matrix 
such we optimize the degree that model selections are 
aligned across origin periods

 Once this step is complete, we pull the 
simulations through from the underlying 
models

 This allows us to sum simulations across 
origin years to develop our distribution 
around our total reserves
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Case Study
Application of Approach
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Deterministic 
Projections

Result 
Selection

Case Study Introduction

72

 Three models are investigated

 For the central estimate, each model is given equal 
weight (for each accident year)

 Traditional methods are used to produce predictive 
distribution around each model (based on Bootstrap 
approach)

 We are now faced with the challenge of deriving an 
estimate of the uncertainty around our prediction, 
reflecting each model used

 We can employ alternative methods for deriving the 
uncertainty for individual accident years:
 Using scaling

 Using weighted sampling

 The latter approach may employ either Rank Tying 
or Model Tying approaches in order to assess the 
variability around the total reserve

Stochastic Projections
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Deterministic 
Projections

Stochastic Projection

Result 
Selection

Selected distribution

Selected Reserve

Scale 
simulations 
to align with 

selected 
mean

Sims 

Model Selection

Case Study Using Scaling
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Pull sims from methods 
based on random 
weighted sample

Deterministic 
Projections

Stochastic Projections

Result 
Selection

Weighted 
Sample

Weighting information

Selection of simulations

Sims 

Sims 

Sims 

Individual year 
distributions

Full selected distribution

Re-order 
sampled 

simulations

Correlation matrix 
from selected model

Case Study Using Weighted sampling and Rank Tying
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Pull sims from methods 
based on re-arranged

weighted sample

Deterministic 
Projections

Stochastic Projections

Result 
Selection

Weighted 
Sample

Re-arrange 
Weighted 
Sample

Full selected distribution

Weighting information

Selection of simulations

Sims 

Sims 

Sims 
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 The table below summarize the reserves and coefficients of variation produced by each 
different underlying model and each approach to reflecting the total uncertainty

 We can also view the results of our underlying models graphically:

 We can also now compare the results of each of the different approaches to aligning our 
uncertainty analysis with our selected reserve

Case Study Comparison
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Underlying 
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Underlying 
models

Scaling 
(model B)

Weighted 
Sampling

Rank 
Tying

Model 
Tying

11.0% 11.4% 17.4% 9.1%

25.9% 21.9% 21.5%

14.2%

17.7%
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Case Study Comparison
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Scaling

Wtd
Sampling 
and Rank 

Tying

Wtd
Sampling 
and Model 

Tying
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Incorporating Model Error into Actuary's Estimate of Uncertainty

Summary
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Model 
Error

Parameter
Error

Process 
Error

Model 
Error

Parameter
Error

Process 
Error

 The uncertainty of a prediction is comprised of 
three components:

 A number of commonly-employed approaches 
compute uncertainty under the assumption that a 
single model is representative of the phenomenon

 Model error is evident when the actuary places 
reliance on multiple models as being instructive of 
their central estimate of unpaid amounts

Summary
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 Weighted sampling is an approach that can be used to incorporate model 
uncertainty around a central prediction

 Rank Tying and Model Tying are practical approaches that can be used to 
incorporate model uncertainty into an aggregation of multiple predictions (e.g. multiple 
accident years)

 What we produce is a predictive distribution (or a range around our predictions)

 Such approaches allow the actuary to tackle their analysis of uncertainty in an 
intuitively similar manner to how they derive their central estimate – i.e. with the use of 
multiple models and application of weights

t = 3

t = 2

t = 1

Total

Prediction
Error


