

Applying Credibility Concepts to Develop Weights for Ultimate Claim Estimators

Monday, September 15, 2014

Rajesh Sahasrabuddhe Philadelphia

© Oliver Wyman

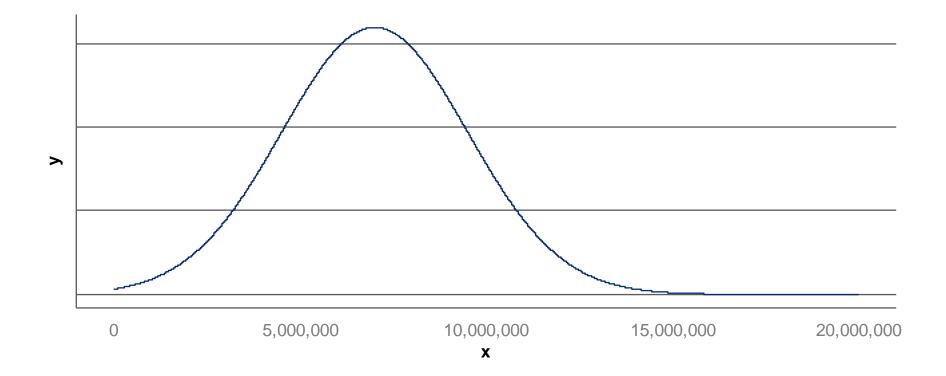
1 Current Approach

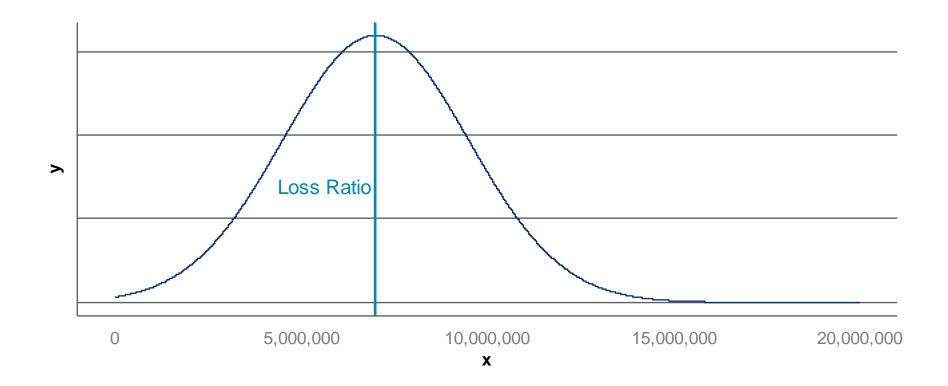
Assume the following

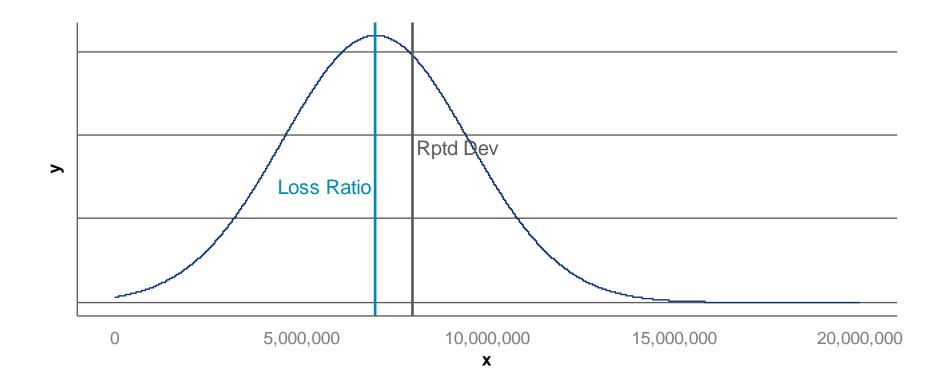
- Premium = \$10 million
- Expected loss ratio = 70%
- Reported claims at 12 months = \$4 million
- Paid claims at 12 months = \$1.5 million
- Reported development factor = 2.00
- Paid development factor = 3.00

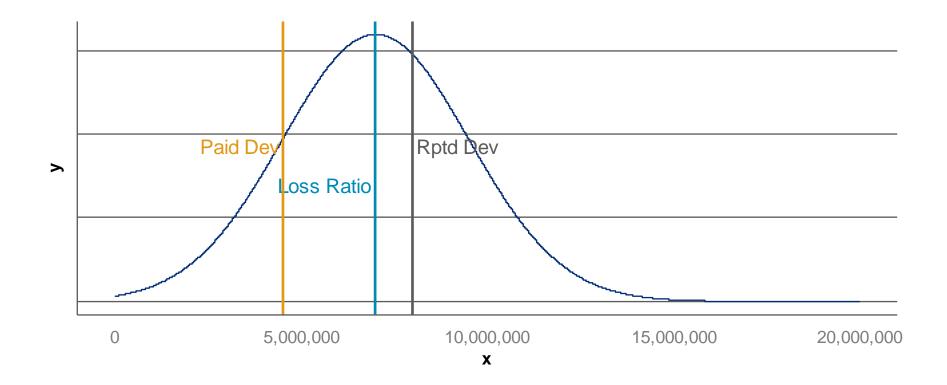
Indications

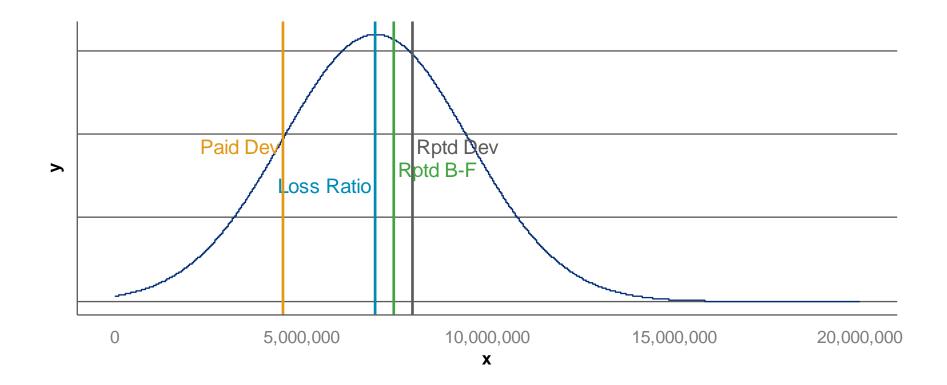
- Loss Ratio Method = \$7.0 million
- Reported Development = \$8.0 million
- Paid Development = \$4.5 million
- Reported B-F = \$7.5 million
- Paid B-F = \$6.2 million

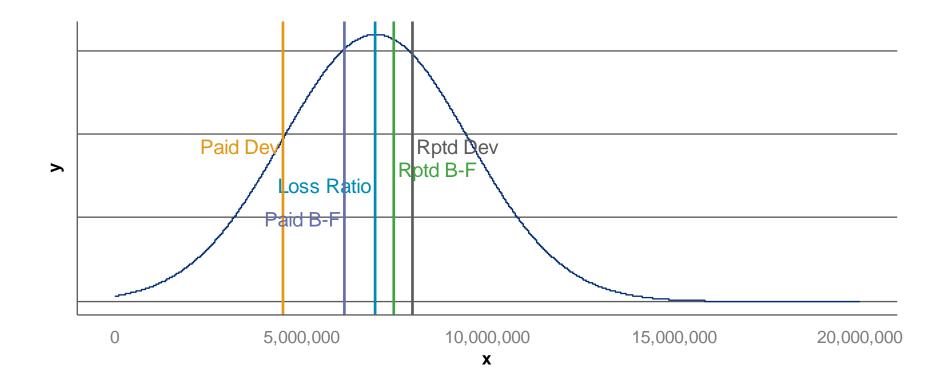






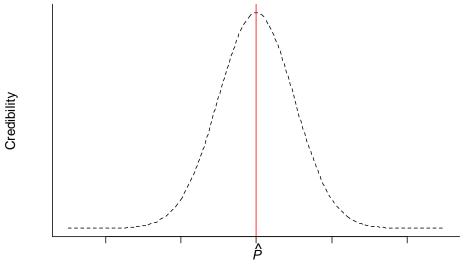






The Selected Estimate

- Generally a weighted average of indications
 - Explicit weighting
 - Implicit weighting
- How do actuaries develop the weights?
 - The actuarial judgment function



Estimated Ultimate Claims

2 Proposed Approach

Is there another way to combine the estimates

- Each method represents a competing estimator
- Each estimator is (assumed) unbiased
- Credibility?
 - Terminology
 - Measurement
- Simplifying assumptions
 - Symmetric distribution centered around 0: for simplicity, we use only the positive domain of x and consider both tails of the distribution of x_1
 - -F and f to represent the distribution and density functions, respectively, of the residuals

Two Method Example

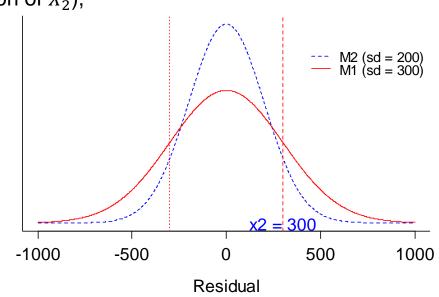
- Paid chain-ladder (Method 1, M_1)
- Reported incurred chain-ladder (Method 2, M₂).
- The credibility of the reported incurred chain-ladder is the probability that:

Density

- the error of M_2 (random variable denoted X_2)

is less than or equal to

- the error of M_1 (random variable denoted X_1)
- So for any $X_2 = x_2$ (where x_2 is an observation of X_2), we have the following possibilities:
 - *1.* $|X_1| < |x_2|$ (Credibility to Method 1)
 - 2. $|X_1| > |x_2|$ (Credibility to Method 2)



The Credibility Model

- Math Speak: $Z_2 \div 2 = \int_0^\infty 2[1 F_1(x)]f_2(x)dx$
- English
 - Over the domain of positive values of $x: \int_0^\infty$
 - the credibility assigned to Method 2: Z_2
 - is the probability that the error of Method 1 is greater than x: $(1 F_1(x))$
 - or less than $-x: (1 F_1(x))$ by symmetry
 - $\text{ for all } X_2 = x : f_2(x) dx$
 - The 2 inside the integral provides consideration for both:
 - values of $X_1 < -x_2$
 - values of $X_1 > +x_2$
 - For example, if $x_2 = 100$, we would assign credibility to Method 2 for
 - $X_1 > 100$ and
 - $X_1 < 100$
 - The 2 on the left-side is necessary as our limits of integration only consider one-half the domain of possible x values.

The Credibility Model

• Algebraic Simplification

$$Z_2 \div 2 = \int_0^\infty 2[1 - F_1(x)]f_2(x)dx$$
$$Z_2 = 2 - 4 \int_0^\infty F_1(x)f_2(x)dx$$

- The Limiting Case: Method 1 has no error
- But how do we calculate this?
 - Option 1: Numerical Integration (examples provided with paper on CAS website)
 - Option 2: Simulation (R, @Risk) (sample R code provided in paper)
 - Option 3: Computational integration (R, SAS?) (sample R code provided in paper)

Assumptions and Generalization

- Assumptions / Implementation Issues
 - Normality of Residuals: Rehman & Klugman; Central Limit Theorem
 - Calculation of Errors: Look at history, testable relative uncertainty estimates
 - Managements Recorded Estimate: Just another method
- Generalization for *n* methods

$$Z_2 \div 2 = \int_0^\infty 2[1 - F_1(x)]f_2(x)dx$$

$$Z_i = \int_0^\infty 2^n \begin{cases} [1 - F_1(x)] \cdots [1 - F_{i-1}(x)] \\ [1 - F_{i-1}(x)] \cdots [1 - F_n(x)] \end{cases} f_i(x)dx$$

- Remove / relax simplifying assumptions: See Appendix
 - Symmetry
 - Centered at 0

Acknowledgements

Acknowledgements

- Call Paper Program Subcommittee
 - Marc Pearl
 - Nina Gau
 - Jennifer Wu
 - John Alltop
- CAS E-Forum
 - Mark Goldburd
- Oliver Wyman Colleagues
 - Jason Shook
 - Alexandra Taggart
 - Evelyn Shen

Contact Information

Rajesh Sahasrabuddhe Oliver Wyman Three Logan Square 1717 Arch Street, Suite 1100 Philadelphia, PA 19103

Phone: +1 215 246 1028 Cell: +1 610 209 0143 rajesh.sahasrabuddhe@oliverwyman.com rajesh1004@gmail.com