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Long tail liabilities (LOBSs)

*  Correlations

*  Accident year drivers

*  Calendar year drivers

*  Seemingly Unrelated Regressions(SUR)

*  Single composite model for multiple LOBs
*  Risk Capital Allocation

*  One year ahead statistics(CDR)

Variation in mean ultimates one year hence

*  Economic Balance Sheet and Solvency Il one year risk horizon metrics
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Correlations between LOBs

Three types of relationships
—  Process correlation
—  Parameter (trend) correlation

—  Similar trend structure implying commonality in calendar year drivers
and/or accident year drivers

Cannot measure these relationships unless LOB trend structure and process
variability (volatility) modeled accurately

Most important direction is the calendar year

Reserve distribution correlation << Process correlation

Highest Process correlation we have seen is 0.6!

Highest Reserve distribution correlation is 0.2!
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Correlations between LOBs

Take-Away points:

Most long tail LOBs exhibit zero correlation

Each company is different

Each LOB is different

Common accident year and calendar year drivers are stronger relationships than
correlations

Asingle ite model for iple LOBs/: invol ingl
Unrelated Regressions (SUR) — Zellner 1962

For 40 LOBs there are 780 pairwise correlations. Most are zero. We create
clusters.
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Correlation and Linearity

Correlation, linearity, normality, weighted least squares, and linear
regression are closely related concepts.

Correlation arises naturally for two random variables that have a joint
distribution that is bivariate normal.

Two parameters (mean, standard deviation) sufficient to fully describe each
individual probability distribution.

For the joint distribution, also require additional parameter: correlation.

If X and Y have a bivariate normal distribution, the relationship between
them is linear: the mean of Y, given X, is a linear function of X i.e.

E(VX)=a+pX
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Correlation and Linearity

Weight = Y  Height = X
For sub-populations of heights defined by X = X; the distribution of

2
weights Y |x; is normal distribution with mean ct+[x; and variance @~

Xy x; Xn
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Correlation and Linearity

The slope f is determined by the correlation p, and the standard
deviations:

B=poy /oy,
where p:Cov(X,Y)/(aXoY).

The correlation between Y and X is zero if and only if the slope S is zero.

Also note: when Y and X have a bivariate normal distribution, the
conditional variance of Y, given X, is constant i.e. not a function of X:

Var(Y|X )= o7
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Correlation and Linearity

If (Y,X) has a joint normal distribution then

Y|X=x~N(a+px,5?)

and

Var(Y) = Var(Y |X = x) = o2
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Correlation and Linearity
This is why, in the usual linear regression model

Y=a+pX+¢
the variance of the "error" term & does not depend on X.

However, not all variables are linearly related. Suppose we
have two random variables related by the equation

§=T?

where T is normally distributed with mean zero and variance 1.

What is the correlation between Sand T ?
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Correlation and Linearity

Linear correlation is a measure of how close two random variables are to being
linearly related.

In fact, if we know that the linear correlation is +1 or -1, then there must be a
deterministic linear relationship

Y = a+ BX between Y and X (and vice versa).
If Y and X are linearly related, and f and g are functions, the relationship
between f(Y ) and g( X ) is not necessarily linear, so we should not expect the

linear correlation between f(Y ) and g( X ) to be the same as between Y and X.

(Answer to question on previous slide is zero)
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The Geometry of Random Variables

11X || is the “length” of X.
Length of a random variable = standard deviation.

Fundamental property of insurance:

IIX + Y] < [IX]|+ 1Yl The Triangle
or i
SD(X +Y) < SD(X) +SD(Y) fnequality

Adggregation leads to risk diversification. Without this fact there
would be no such thing as insurance.
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The Geometry of Random Variables

11X + Y12 = NX12 + Y12 = 2 X1 1Y ]l cos(6)

« Var(X+Y) =Var(X) + Var(Y) + 2 Cov(X,Y)
« But, [[X [I> = [SD(X)]? = Var(X) hence
Cov(X,Y) = —lIXIl Y]l cos(6)

Cov(x,Y)
X1y

« And since Corr = p = we have

p = —cos(0)
15 September 2014 “b_. InSUrCWaTC 12
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The Geometry of Random Variables

Correlation measures the angle between two random variables.

X+Y
6= 90° p=—cos(90°) =0
X

If the random variables are uncorrelated (p = 0), or equivalently
orthogonal (X L Y), we have Pythagoras’ Theorem:

Var(X +Y) =Var(X) + Var(Y)
or equivalently,
I1X + Y117 = lIx]1> + Y |I?
and there is significant risk diversification
SD(X +Y) K SD(X) + SD(Y)
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The Geometry of Random Variables

X+Y Y

.
ﬂ“‘ o= —cos(180°) = 1

X+ Yl =lIXI+Y] <= SDX+Y)=5SD(X)+SD()

Alternatively, if p = 1 then the random variables are perfectly
correlated and there is no risk diversification.

Indeed, p = +1 if and only if one random variable can be
written as a linear sum of the other:
Y =a+bX

If p < 1 there is risk diversification.

15 September 2014 "kﬂ InSUI’CWﬂrO “

Digression: A common misconception with
correlated lognormals

Actuaries frequently need to find covariances or correlations between
variables. such as when finding the variance of a sum of forecasts (for
example in P&C reserving, when combining territories or lines of
business, or computing the benefit from diversification).

Correlated normal random variables are well understood.

« The usual multivariate distribution used for analysis of related normals
is the multivariate normal, where correlated variables are linearly
related. In this circumstance, the usual linear correlation (the Pearson
correlation) makes sense.

15 September 2014 \Q. InSUrCWarC 15
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A common misconception with correlated
lognormals

However, when dealing with lognormal random
variables (whose logs are normally distributed), if
the underlying normal variables are linearly
correlated, then the correlation of lognormals
changes as the variance parameters change,
even though the correlation of the underlying
normal does not.
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A common misconception with correlated
lognormals

All three lognormals below are
based on normal variables with
correlation 0.78, as shown left, but
with different standard deviations.

Logormal Togormal @
o= o= 0.4
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A common misconception with correlated
lognormals

We cannot measure the correlation on the log-scale and apply that correlation
directly to the dollar scale, because the correlation is not the same on that
scale.

Additionally, if the relationship is linear on the log scale (the normal variables
are multivariate normal) the relationship is no longer linear on the original
scale, so the correlation is no longer linear correlation. The relationship
between the variables in general becomes a curve:

) carrospanding
Iognormals

15 September 2014 “b_. InSUrCWaTC 18
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Correlation, Regression and Time Series

Comparing Y vs time and X vs time is very different to comparing Y vs

Correlations measured before and after regression can be very different.

To assess the effective correlation between two series, must first remove
trends (the predictable portion) and measure the correlation of the
residuals (the random components.)

15 September 2014 “‘.ﬁ Insureware L

Correlation, Regression and Time Series

If a time series has structure (e.qg. trend) you are not
measuring correlation!

* Series A, B, and C all have a linear trend.
« Band C appear quite similar.
« The correlation between A and B is 0.91; between Aand C it’s 0.97

* Are A& B related? What about A & C?

15 September 2014 ‘b.ﬂ Insureware 2
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De-trending the series

+ Remove trends from the series.

— In this case, using linear least-squares regression.

Separate predictable components from the random component.

FEFELLEPES PPN AR YA

Series A - Series B

15 September 2014 \". InSUrCWaTC 21
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Compute the correlation of the residuals =
the random component of each series

Residual or “Process” Correlation of A

Residual or “Process™ Correlation of A
and C=0.42

and B =-0.07

Conclusion: The series A and B merely share a common positive trend. There is no
apparent causal or predictive relation between them. Series A and C exhibit a positive
correlation. Information about the next value of C does have a significant bearing on

prediction of the next value of A.

f Insureware 2
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Correlation in time-series

Series ’ Series
corr.=0 corr.=0.5
Series Series
corr.=-0.5 corr.=0.8

> Insureware =

15 September 2014

We call the correlation of the random component (after
modeling the trend structure in the three directions) of two
loss development arrays: process correlation

3D plot of data

These two triangular loss arrays
have process corr. = 0.9 after
modelling their respective trend
structures.

*Cannot detect from data plot.*

f Insureware  *
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Correlations are in the volatility component
of a model

» Two lines are (positively) correlated when their results tend to
miss their target values in the same way.

» This is what should concern business planners, because it
affects the unpredictable component of the forecasts.

* Whatis predicable when it includes common trend patterns,
as in the above example, does not count towards correlation,
because its effects are already incorporated into the model and
forecast.

15 September 2014 f Insureware =

Correlations are in the volatility component
of a model

« Aforecast must include a volatility measure.

« Without volatility, correlation cannot be measured. Calculating
correlation requires a distribution.

» Fully-described loss distribution is ideal. But require, as a
minimum, the mean and standard deviation (2" moment) to
calculate linear correlation.

15 September 2014 k*‘ InSurQWﬂr’O 26

Common accident year and common
calendar year drivers

Common drivers are a stronger influence than correlation.

Not typically found outside closely related losses.

For example, Gross versus Net of Reinsurance.

— Net of Reinsurance is a subset of Gross so common drivers are expected.

Layers are subsets of ground up losses
— Segments of the same line.

— In this respect, detection of common drivers is as important as understanding
correlations,

The two effects must be correctly distinguished and adjusted for as
management strategies of these risk components differ.

15 September 2014 f Insureware




Correlations vs Common AY and CY Drivers
Dr. Ben Zehnwirth

Common calendar drivers: Gross vs Net

In Gross versus Net of Reinsurance data (E&O and D&O in example), common
calendar year drivers are expected to be found since Net of Reinsurance is a
subset of Gross. Trends, especially calendar and accident, are closely related.
The comparable models are shown below:

Dov vr Trends Dov vr Trends.

WLE Variance v Dev Yr

15 September 2014 #) Insureware 2

Common calendar drivers: Gross vs Net

The model trends are very similar; trend and volatility changes usually coincide.
The critical trends in common are the calendar year trends (below) and
accident year level changes. Common calendar year drivers are clearly visible
as the trend changes occur at the same point.

Cal. Yr Trends Cal. Yr Trends

15 September 2014 #) InSUreWare 2

Common calendar drivers: Gross vs Net

Wtd Std Res vs Cal. Yr

Blue line is
trace of (single)
calendar year
(2006) along
the accident
years.

Process
Correlation = 0.85

15 September 2014 f Insureware @
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Common calendar drivers: Gross vs Net

Wid Std Res vs Acc. Yr

For the model described above, the residuals by accident year traced for
the last calendar year are clearly correlated; when a value in a year is
low/high in one segment it is usually low/high in the other segment also at
the same time.

15 September 2014 #) Insureware 3

Common calendar drivers: Gross vs Net

Wid Res Normality Plot Wid Res Normality Plot

7

N =228, P-vale = 0.3739, R"2=0.9936

The residuals from both lines of business are statistically indistinguishable
from two normal distributions.

Thus, the process correlation can be considered the volatility correlation
between two normal distributions.

15 September 2014 ﬁ) InSU reware 2

Common calendar drivers: Gross vs Net

Netvs Gross. A scatter plot of the
* residuals, from the
respective Gross and
Net of Reinsurance
. models, exhibits a clear
(linear) relationship; a
* correlation of 0.853.

Find Contions | ol

Final Welghted Residusl
Carrelations Between
Datasets

Gowas PLL et PL
s

(Gross LY e

et a1
3 e s ¢ et
Rl corvelatjon
Solarancs 00
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Common accident year drivers: SAD and
SAM

Wtd Std Res vs Acc. Yr Wtd Std Res vs Acc. Yr

A model which does not take into account the changes in accident year levels shows a
marked similarity in the fluctuations of residuals in the accident direction.

This is not correlation!

15 September 2014 6’ Insureware 3A

Common accident year drivers: SAD and
SAM

Final Welghted Residual SAM vs SAM: Wtd Std Residuals
Correlations Between .
- e
+ e
2
o5 Tt
il
4o i
s 2 a _,::5 3 ' E
¥ - - S
If the common accident year movements PRI
are ignored and the average accident " .
year level fitted to both segments, then a Lt .

very high spurious correlation measure
of 0.96 is obtained. _

The residual displays with scatterplot for SAD and SAM are shown for this model. The
correlation is very high, but it is largely spurious - there are distinct changes in level across
the accident years which were ignored in this model.

FT—— > Insureware =

Common accident year drivers: SAD and
SAM

Accounting for accident year level (trend) changes

Acc. Yr Trends Acc. Yr Trends

The red bars indicate common parameters between the segments. Although the calendar and
development year parameters vary slightly, the accident year parameters move synchronously
thus making the mean ultimates vary synchronously (but this is not correlation).

15 September 2014 f Insureware  ®
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Common accident year drivers: SAD and
SAM

SAM vs SAM: Wtd Std Residuals

Final Weighted Residual
Corrslations Betwsen
Datasets

SAPLA | SanerL )

Sanem, 1 e =

s __ozis| 1 B -
4 geraions were cnecuted -

Residn o et e

oleraNca 00107

Both sets of residuals test well for normality and have no indications of non-randomness so
the process correlation (0.249) is the volatility correlation between two normal distributions.

15 September 2014 f Insureware ¥

Common accident year drivers: SAD and SAM

Mean Ultimates: SAD and SAM Mean Ultimates: SAD and SAM
o —
200m s
e »
o 4
, o
FELFELESELLERE R

« The accident year levels moving together is a much stronger relationship than volatility
correlation.

The mean ultimates move synchronously (left) and a graph of the mean ultimates of SAM versus
the mean ultimates of SAD (right) shows an almost perfect linear relationship.

The reserve distribution correlation is only 0.086! The reserve correlation is the correlation in the
losses not explained by the means — and therefore is the critical measure when evaluating risk
diversification.

15 September 2014 \l*Q InSurQWﬂr’O 38

Common accident year drivers and pricing future
accident years

The linear relationship in mean ultimates is important when forecasting future
underwriting (accident) years.

If the accident year level for one segment is expected to increase by 10% + 2%,
then the other segment is also likely to increase by 10% + 2% in the same accident
year.

The relationship between mean accident-year parameter estimates is not volatility
(risk) correlation and does not indicate lack of diversification.

The movement in means likely related to internal or external drivers. Risk exposure
can be managed.

Volatility correlation is correlation in the random component. Risk exposure here is
much harder to manage as it is not able to be connected to any internal or external
drivers. Itis left unexplained by the model.

15 September 2014 f Insureware
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Common accident year drivers and pricing future accident
i

Past & Future Acc. Yr Trends

Summan | Rik Coma ABicaton | Ecawlations | Summiy | ek Caital lloction | Comtations |

Combined Accident Y Summary Combined Accident ¥ Summary

R s im0

ot iz psupaz] | vz

awets | 1w

« > 8 ol

A0t = 51 Tt =41
Forecast scsnaru: Ace. wear B0 « 151 Foracast sconao: e, yoan 2000104 » 25
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Layers Lim1M, Lim2M and 1Mxs1M;
Lim2M=Lim1M+1Mxs1M

The trend structure is the same for each layer (Left to right 1M, 1IMxs1M, 2M)

15 September 2014

{ Insureware  «

Layers Lim1M, Lim2M and 1Mxs1M;
Lim2M=Lim1M+1Mxs1M

Very high process correlations (Left to right 1M, IMxs1M, 2M)

15 September 2014
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Layers Lim1M, Lim2M and 1Mxs1M,;
Lim2M=Lim1M+1Mxs1M

Tables of process correlations (linear) and calendar year parameter
correlations (linear)

This type of equivalent trend structure and high parameter and process
correlations has not been observed for two LOBs

lota Correlations Reserve Forecast Distributions
Correlations Between Datasets {Totals}
AMPLY) | IMXSIMPL()|  2VEPLQY
Dataset Period | 1989-1998 | 1989-1998 | 19891998 IMPLO) | xS IREPLON  2BEPLIY
AMEPL{) | 1989-1998 1 0945646 | 0992496 AMEPL 1 0939207 |_o.99168 |
MXSTMEPL(T)| 1980-1008|  0.945646 1 0977333 | |[ Wbz iMiPL)| 0939207 1| 0arain |
2WPL() |1989-1998  0.002496 0.977333 1 ZMPL | 0951686 0974411 1
15 September 2014 “b_. InSUrCWaTC 43

Spurious correlation

Mean Ultimates: SAD and SAM

150000
130000
100000

50,000

0
FRPLFTP I ESS LS

—saD —aM

This is not correlation!

15 September 2014 ‘b.ﬂ Insureware a“
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Spurious correlation

Loss Ratios by Accident-Year for Two LoBs

~LoB1 ——LoB2

This is not correlation!

15 September 2014 “b_. InSUrCWaTC 45
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Spurious correlation

US Spending on Science, Space, and Technology
versus
Suicides by hanging, strangulation, and suffocation

CORRELATION
0992082

This is not correlation!

15 September 2014 “‘.ﬁ Insureware AS

Spurious correlation

US Consumption of Cheese per Capita
versus
Total Revenue Generated by US Golf Courses

CORRELATION

. 0989705

This is not correlation!

15 September 2014 ‘b.ﬂ Insureware o
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Spurious correlation

* Two LOBs are simulated independently, each with its own unique
trend structure.

* One LOB has a calendar year trend of 10%, the other of 20%.
Each has a -30% development year trend.

« A correct model of the underlying data process would recognise
that each LOB has a separate trend for each direction and a
process correlation of zero - since this is how the data were
generated.

< If an incorrect model is used, one that does not describe the
calendar year trends, then a spurious correlation would be
detected, as an artefact of unaccounted-for structure in the data.

15 September 2014 \". InSUrCWaTC 48
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Spurious correlation

Cal. Yr Trends Wtd Std Res vs Cal. Yr

Cal. Yr Trends

Correct model picks up true calendar year trend; process correlation is zero!

15 September 2014 #) Insureware “

Spurious correlation

Cal. Yr Trends Wtd Std Res vs Cal. Yr

Incorrect model fails to pick up calendar trend; measures 98% correlation!
But this is not correlation since each sample is not random. They have structure.

15 September 2014 #) InSU reware 0

Spurious correlation between Industry PPA
and CAL data

« Spurious correlation is introduced by failing to detrend the data in the three
directions.

« The correlation measured was spurious as there were trends in the data not
described in the models.

« Once these trends were accounted for, the process correlation was
statistically insignificant.

15 September 2014 f Insureware =
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Spurious correlation between Industry PPA
and CAL data due to wrong model

Paid Losses for the Industry PPA and CAL data from AM Best (2011) are
modelled using the Mack method. The residuals are shown by Calendar year for
CAL and PPA with the trace line for accident year 2004 highlighted.

Wtd Std Res vs Cal. Yr Wtd Std Res vs Cal. Yr

15 September 2014 #) Insureware o

Spurious correlation between Industry PPA
and CAL data

Although the residual correlation is strong the indication is misleading. The
observed correlation is due entirely to limitations of the model.

CALvs PPA: Mack Residuals

as

15 September 2014
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Spurious correlation between Industry PPA
and CAL data

The observed correlation is due entirely to limitations of the model.

The calendar year residuals show the Mack method over-fits the recent data -
producing a common negative trend in both residual displays.

15 September 2014 f Insureware =
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Models for PPA and CAL

No LOBs have the “same” tend structure and most LOBs have zero process
correlation. Consider Private Passenger Automobile and Commercial Auto Liability

WLE variance vs Dev. Y1 WLE variance vs Dev. Y1

The two lines have very different trend structure and process variance!

15 September 2014 #) Insureware =

Process correlation is zero

PPA and CAL have different trend structure and zero process (validation) correlation
Blue lines represent trace of calendar year 2006

Wtd Std Res vs Acc. Yr

Wtd Std Res vs Acc. Yr

Note zero process correlation.

15 September 2014 #) InSU reware 6

A Tale of Two LOBs: LOB1 and LOB3

Cal. Yr Trends Cal. Yr Trends

(Actually same line, different territories)
Both LOBs had a calendar year trend change in 2000

That should have been of concern!

15 September 2014 f Insureware
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A Tale of Two LOBs: LOB1 and LOB3

Acc. Vi Trends Acc_ Vi Trends

WLE Variance \& Dev. Y1

15 September 2014 6’ Insureware =

Full model display

Trends in each direction and variance of normal distributions

A Tale of Two LOBs: LOB1 and LOB3

Volatility correlation = Process correlation = 0.35 = Correlation in
normal distributed residuals
LOB1 LOB3

Wtd Std Res vs Cal. Yr Wtd Std Res vs Cal. Yr

Note 98-00 common negative trend, 00-02 common positive trend
and 02-03 zero trend for LOB1 and negative trend LOB3.

15 September 2014 c, InSUreWaT’e 9

Regression in the presence of correlation
Seemingly Unrelated Regressions (SUR) —
Zellner (1962)

Model displays shown above correspond to two linear models, which are described by
the following equations:
= XB +e.
()

Y= XB, +z,,
Fe, =0, i=1,2; E(g,.e;)=cov(g,.e,)=C. comie,.g)=R
Without loss of sense and generality two models in (1) could be considered as one

linear model:

(% 0B [a)
Lo xn) *le) @

o
|3’1

¥/

15 September 2014 f Insureware @
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Regression in the presence of correlation

Which could be rewritten as:

y= Xp +s¢

For illustration of the most simple case we suppose that size of vectors y in models (1)
are the same and equal to n, also we suppose that

LtEI-‘E;r)—"m'(El}—lnﬂ"‘- =12 C=Ia,
In this case
(Leaf Loy

var(g) = X = .
Lo, Lo

15 Sepmber 2014 f Insureware =

Regression in the presence of correlation

For example, when n =3

o 0 0 g, 00
0 o 0 0 g, 0
|0 0 G 0 0 g
G, 00 & 0 0
0 G, 0 0 & 0
0 0 a 0 0 o
5 Sepaer 201 & Insureware =

Regression in the presence of correlation

There is a big difference between linear models in (1) and linear model (2), as in (1)
we consider models separately and could not use additional information, from
dependency (process correlation) of these models, what we can do in model (2). To
extract this additional information we need to use proper methods to estimate vector of

parameters ﬁ The estimation N

B-(XTX)'X Ty
which derived by ordinary least square (OLS) method, does not provide any
advantage, as the covariance matrix X does not participate in the estimations.

Only general least square (GLS) estimation

Bo(x'E'X)IX"E Yy

could help to achieve better results.

15 September 2014 “b_. InSUrCWaTC 63
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Regression in the presence of correlation

However, it is necessary immediately to underline that we do not know elements of the
matrix £ and we have to estimate them as well. So, practically, we should build

iterative process of estimations

and this process will stop, when we reach estimations with satisfactory statistical
properties.

The SUR [ is a (credibility) weighted average ﬁl and B,

15 Sepmber 2014 f Insureware

Regression in the presence of correlation

There are some cases, when model (2) provides the same results as models in (1).

They are:

1. Design matrices in (1) have the same structure (they are the same or proportional
to each other.)

2. Models in (1) are non-correlated, in other words

However in situation when two models in (1) have common regressors model (2) again
will have advantages in spite of the identical structure of the design matrices.

15 September 2014 ‘b.ﬂ Insureware o
i

Model Displays for LOB1 and LOB3 for Calendar Years

“
" = [~ -
o = o e
a1 = N =
a
e .
a5 g
kil
a1 *
LR R A B A Wow wm W @ w W W % W
Mean-0.1154 Meam=0.0814

SiDer=uus31 Se=00521
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Model for individual iota parameters- they are correlated
going forward

i~N(w, of); i, =0.1194; &, =0.0331
i ~N(w, o2); i, =0.0814; &,=0.0321

I3 . 0.1194 - 0.001097 0.000344
~N@x) fi= , E=
1, 0.0814 0.000344 0.001027

p=corr(y,1,), © =0.359013

15 September 2014 f Insureware

Reserve distribution correlations between
two distinct LOBs - a very different story

« Highest process correlation observed between two different LOBs is about 0.6
(in our experience)

« But Reserve distribution correlation is typically lower.

« Trend structures for two LOBs typically different

« Parameter correlations low or zero

« See Private Passenger Automobile (PPA) versus Commercial Auto Liability
(CAL)

15 September 2014 }.ﬂ Insureware o8

Correlations and Other Relationships

There are five types of relationships.
1. Process Correlation between two sets of (random) residuals
2. Parameter Correlation

3. Same Trend Structure - Common calendar year drivers. This is stronger than
correlations.

4. Common Accident-Year Drivers - Major implications for pricing future accident years.
This relationship is also stronger than correlations.

o

. Reserve Distribution Correlations by total, accident years and calendar years.
The optimal single composite model may also involve cross dataset parameter
constraints.
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Correlations and Other Relationships

+ #1 induces #2.

#3 is the 'worst' kind of relationship you can have between two LOBs
« Very little, if any, risk diversification.
+ For future calendar year trends, the two LOBs move together.
i.e. trend changes in one LOB mean trend changes in the other
LOB.

If two LOBs satisfy #3, then #1 and #2 are typically not far from 1.

#3 — Only ever observed between layers of the same LOB, between
segments of the same LOB, and between net of reinsurance and
gross data (of the same LOB).
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Correlations and Other Relationships

« #1, #2, #3 induce #5.

« #5 is typically much less than #1 in the absence of #3.

« #4 results in mean ultimates by accident year moving synchronously.

+ Relationship may be close to linear- this is stronger than correlations and has
implications for pricing.
Synchronous mean ultimates are already incorporated in the reserving model.

Sometimes only one or two accident years move synchronously due to a
major event like Katrina. The process correlation about the new levels (trends)
is usually low.

* You cannot measure the relationship between two LOBs unless you first
identify the trend structure and process variability in each LOB.
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Correlations and Other Relationships

Only in the Probabilistic Trend Family (PTF) modelling framework can you
« Identify a parsimonious model that

« Separates the trend structure in the three directions from the process variability.

The data triangle (real data) is regarded as a sample path from the identified model
that fits (different) normal distributions to each cell.

Simulated triangles from the identified good model are indistinguishable from
the real data.
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Updating, monitoring and the CDR

What is the CDR? “Claims development result”

2012

2013

End 2012

i VaR(2013)

End 2013

VaR(2014)

VaR{2014) = VaR(2013) provided assumptions are

“consistent’

- Anofher year 2014

15 September 2014
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Consistent estimates of prior year ultimates
and Sl metrics on updating
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Consistent estimates of prior year ultimates
and Sl metrics updating
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Calendar year trend
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updating
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Consistent estimates of prior year ultimates
and Sll metrics updating

Wtd Std Res vs Cal. Yr Wtd Std Res vs Cal. Yr
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15 September 2014 #, InSUreWare 76

Consistent Estimates of prior year ultimates on updating

Original Forecast On Updating
] ] ean
Cetstanding |
o o
1 1
000 0 000
2001 oo 2001
202 012 202
) ) )
som 2084 som
2000 20 2000
oome o oome
o soar aoar 207
e 8 m 8
o vimeam s
o ez w0
o0 mean 2011
w2 o) 0
| ase w9 maman semema) | am 1mssse
Toul _seazmenr smanvam] | Tou _amomess sssrsaow| | Tom _umeme rarsesse

8% projected CY trend
0% projected CY trend 8% projected CY trend 20% projected CY trend

For forecast mean ultimates to be consistent you require a consistent
model and consistent assumptions about the future.
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Consistent Estimates of prior year ultimates on updating
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Notice: estimates increasing.
Future CY trend 9%

Atend 2012, Mean ultimate distribution 2012 = 64.6 and SD of ultimate distribution = 5.7
At end 2013, Mean ultimate distribution 2012 = 66.2 and SD of ultimate distribution = 4.2
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Consistent Estimates of prior year ultimates on updating

s
. [ P P
o ramal [} Lo wean [T T

Atend 2012, Mean ultimate distribution 2012 = 64.6 and SD of ultimate distribution = 5.7
At end 2013, Mean ultimate distribution 2012 = 66.2 and SD of ultimate distribution = 4.2
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Peter England’s “CDR” is simply Var[E[UIt.|CY1]]

When do estimates of prior year ultimates stay consistent on updating (next valuation period) ?

With identified optimal parametric distribution models that are tested from the data, it is relatively straightforward
to compute the CDR.

o M P Cor Wt PR | o M0 P01 | o M P01 o s 10 | Note Pythagoras's theorem

Var{ult] =
E[Var{UIL|CY1]] +
Var[E[UILICY1]]

2000

- Analogous to One-Way ANOVA
00

- Total SS =

— Within Group SS +

ot Between Group SS

ey

won

0

¥

330
Forecast scanario Restenie Compinsion Sqyrt(CDR)
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Var[E[UIt.|CY]]

Conditioning on more future years...
Var{UIt.] = E[Var[UIL.|CY;, ..., CY; ]] + Var[E[UIL.| CY,, ..., CY]

\ J
\ v J v
-0 - Var[Ult.]
T —— =
e e | 8 | s o8 s o s s | (0
i s | s |1 St
Accdens Vi Summary
- Acsidan Yr Summary
= [ Cl T
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Risk Capital Allocation

Assume Risk Capital at 98th
percentile = 2 Standard Deviations

Risk Capital for Line A = $10m

Risk Capital for Line B = $15m

Aggregate Risk Capital (ARC) =
$25m

15 September 2014 #) Insureware o2

Risk Capital Allocation

Assume Risk Capital at 98th
percentile = 2 Standard Deviations

Risk Capital for Line A = $10m
Risk Capital for Line B = $15m

Aggregate Risk Capital (ARC) =
$25m ?

The answer depends on the correlation.
If Corr = +1.0, ARC = $25m
If Corr =0.0 ARC = $18m

15 September 2014 #) InSUreWare 8

Risk Capital Allocation: Diversification
benefit

Diversification benefitfor LOB A+LOB B
Benefit =

Sum of individual risk capital
assessments — aggregate
risk capital assessment from
joint distribution of the two
(correlated) lines.

Sandmg i

a a5 0 o5 1
convalation
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A single composite model for multiple LOBs

Cal i Trends MLE Vaniance vs Dev. Y

EH FLCn AL

15 September 2014 ﬁ, Insureware 8

A single composite model for multiple LOBs.
LOBs are in same cluster if significantly correlated

Constatians
Final c Datasets
‘ Clusters Datasets
| Select| Action | Action Name
|2l seL BH HOFO:PL(I) P |
|2 AddtoSEL __ BHPPAPLO)| 1 |
|s Addto SEL _ BH CALPL() P |
i Combine | Add to SEL BHWC:PL() 1 03857
! Addto SEL___BH CMP-PL() 0357 1
|8 Combine | Add to SEL _BH MMOce:PL() 1 0453
| Add to SEL_BH OLOce:PL{) 0453 1
|s Combine Add to SEL  BH MMCm:PL()) 1 0354
| Addto SEL__ BHReCPL() 0354 1
Clusters have been set
9 iterations were executed
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A single composite model for multiple LOBs
Projected lognormals for each cell and their correlations
Blue is observed
Black is fitted mean of lognormal.
Red is standard deviation of fitted lognormal.
Burgundy is standard deviation.

15 Sepember 2014 f Insureware
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A single composite model for multiple LOBs

Note risk diversification due to lack of process correlations

L0 Compaisons | Risk Capitol Allocation | Constations |
Braokdown by LOB Reserve Mean/CV Percentage Graphs |

Rezerve Maan by LOB a3 percentage of Total Resenve Mean

Show as Tatie
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A single composite model for multiple LOBs
Risk capital by LOB for V@R at 95%

b $D Sy
o Sy | Wik Cast ok i G | St

[ Risk Capital I Mean
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Solvency Il — Economic Balance Sheet

v for
________ Solvency Il aims to
Veleeat establish a solvency
b~ regime that is better
o matched to the true risks
s of an Insurance company
Ann Hagen m “Sovancy 1l Brave rew world

“Doing the job
Under Sovency II, the way that work s camried out will change. For example, Sotvency Il is likely to require
different actuarial techniques from the ones currently used. Technical provisions will be estimated as &
probability-weighted average of expected future cash flows, taking into account the time-value of money and
including a risk margin. Many of us are estimating claims reserves using traditional deterministic actuarial
techniques, primarily relying on incurred claims data. Under Solvency 1, not only will we need to discount
these reserve estimates, requiring projected payment patterns, we will also need to demonstrate a deep
understanding of the uncertainty of those reserves. We will additionally be required to apply the same
P “

16 September 2014 f Insureware

30



Correlations vs Common AY and CY Drivers
Dr. Ben Zehnwirth

Solvency Il one-year risk horizon:
* satisfies 3 conditions
* decomposing the directives
* What are the basic elements?

« Risk Capital is raised at the beginning of each year and any unused capital is
released at the end of the year;

« The analyses are conditional on the first (next) calendar year being in distress
(99.5%);

+ At the end of the first year in distress, the balance sheet can be “restored” in
such away that the company has sufficient technical provisions (fair value of
liabilities) to continue business or to transfer the liabilities to another risk bearing
entity.

An important consideration is that fungibility by calendar year is only in the
forward direction

15 September 2014
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Risk Capital — One Year risk Horizon

Simplest Case: Only One Year Runoff

L, = projected losses for the year. This is a random variable.

BEL(1) = m”/u 4 dyos Where d =interestrae. Losses are paid

uniforml ghyear, forhalfa year.
MVM{)
SCR(1) = VaRgys54(Ly). ie. Pr(Ly < E(L,) +SCR(1)) = 0.995
MVM(1) is the cost incurred in havingrisk fund of SCR(J) available for the
ae) 1) year. Itis paid to capital provider at end of year and sois discounted by a full

year.

MVM(1) = =222 ifthe interest on the risk fund is paid directly to capital

SCRG)e(s44)
ed)

et
provider, or MVM(1) = . otherwise.

TP(1) = BEL(1) + MVM(1). This is the Technical Provision and must be held in company own funds.
We will also let, P¥k:d), or PV(k) be used to abbreviate the Present Value factor 1/(1 +d)k

15 September 2014
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Risk Capital — One Year risk Horizon

Next Simplest Case: Two Year runoff, No correlation

BEL(1) = E(L,) = PV(0.5)

BEL(2) = E(Ly) » PV(15)

MVM(1) = VaRgq554(1) = s « PV(1)

wmin) | MVM(2) = VaRogg534(2) = s « PV(2)
The Technical Provision(TP)at inceptioniis the
Mvmiz) } sum ofthe individal year TPs:
)
BEL(1) ¥ . TP=TP(1)+TP(2)

This amount needs to be available in company
own funds to ensure that losses can be met up to
399.5% or 1/200 isk level in each year.
Aggregate losses upto the value of the meanare
met out of BEL funds, excess losses are met from
the SCR fund, access to whichis financed by
MyM.

t
BEL(2) J

Year1 ‘
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Capital flow: Uncorrelated future calendar years

For losses
exceeding the
" " mean; surplus i
Risk Capital returned to RISk-
+ Raised using capital provider | Capital
MVM(1) in year 1 + Raised using
MVM(2) in
year 2

Premium for risk
paid to

Technical Provision
for year 2
e seL \
Technical ~ )
Provisions BEL()
+ Held by company N
.
Year 1 vear 2

For losses during
year 1; surplus
retained by
company.
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Risk Capital — One Year risk Horizon

o Risk capital
Fund

Techsial
Provisin

e _—

Two-year picture of accounts: In year 1 we require reserves to meet paid loss liabilities for years 1
and 2 and we also need to able to fund the cost of access to the risk capital funds for years 1 and 2,
however we only need access to the year 1 risk fund. When year 2 begins our accounts reset, since
any cost over-runs from year 1 were paid out of the risk fund and do not degrade our prepared
reserves for year 2. Provided the loss over-run is below RC(1) = VaRgg 5(L1).

15 September 2014 #ﬁ InSUreWare 9

Risk Capital — One Year risk Horizon

«This is fine, except for one thing:
What if the distribution for the losses in year 2 has changed conditional on the
losses in year one?

*Simply put, the previous picture assumes there is no correlation between the

distributions for years 1 and 2. In other words, whatever the outcome observed after
year 1 we are going to remain fixed on our previous course, full steam ahead

Typically calendar year distributions are positively correlated.

The correlations are driven by parameter uncertainty.

16 September 2014 f Insureware
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Risk Capital — One Year risk Horizon

sy —
1 e 9549 pevcetit.

S Tr—
Puna

Tecksical
Prontsion

_— sagiy

If year 1 is in distress at the 99.5th percentile, then our risk fund carries us over into year 2, but the
conditional distributions are now different. Year 2 now must be re-evaluated in the light of conditional
distributions and these increase the size of the BEL and the MVM, the cost of holding the risk fund.
We need to include these adjustments in the year 1 risk fund
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Capital flow:
Two-year runoff with first year in distress

N { AMME) surplus returned o VD) i year
¥ capital provider
. . supplemented
Risk Capital by AMVM(2) if
+ Raised using MVM(1) Year Lis in
inyear 1 ditress
Premium for risk
capital; paid to
capital provider
for year 2
- BEL(2Y) SELD )
Technical
BEL2Y)
Provisions =

+ Held by company

BEL()

For losses exceeding Risk

the mean and to -
rebalance economic Capital
balance sheet; * Raised using

For losses during year
1; surplus retained by
company.
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N-year run-off (Correlated)

= ] TP = EBEL(K) + EMVM(E)
SCR=VaRy, s(1) - I[ABEL(K) + AMVM®); k =
=
ser- |—=Em ]
! —
Valas1)
| oy |
Cf—eaw | ABELis)
S scn rrsT7)
sy 11 T
[
T we [ [ - I
e | e s
o
s st ko M)
L — BEL(IS)
Teoption Yearl  Year2|C
£ = Year | in distress.
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Two-year runoff with first year in distress

Let § = Year 1 in distress

Why is AMVM(2) disc by 1

VaR(1) is consumed.

MVM(1) = spread*SCR at

year and MVM(2) by 2 year end (and returned
SCRY years? along with risk free rate).
VaR(2[¢) is raised in year
M @) < 2.
e
BELER) }vam\z)
v
MVM(2|
S
BEL(1) (1) ™EE
BEL(2) } BE‘;(ZK
Inception Year 1 Year2|¢

15 September 2014

f Insureware =

Two-year runoff with first year in distress

« There is sufficient risk capital SCR and Fair Value to withstand a distressed
first year at 99.5% confidence and restore Fair Value at beginning of the
second year.

« An important consideration is that fungibility by calendar year is only in the
forward direction.

Consistent metrics on updating from year to year- under what conditions?

See also E&Y GNAIE paper (2007)

“Market Value Margins for | Liabilities in Fil ial Reporting and
Solvency Applications , October 1, 2007”
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Dataset ABC: The PTF model

The optimal PTF identified model. Note the model fits a
normal distribution to each cell. The means are related via
the trend structure.

Note major calendar year trend shift
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IL(C) Data

Mack (=volume weighted average) weighted standardized
residuals

« Note trend in residuals versus fitted values (bottom right)

Dataset ABC: The PTF model

The optimal PTF identified model. Note the model fits a
normal distribution to each cell. The means are related via
the trend structure.

Note major calendar year trend shift.

Dataset ABC

< As you move down the accident years the “kick-up” is one
development period earlier

< Real data satisfies axiomatic trend properties.
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Dataet ABC
PTF-Calendar Year Trends

Have control on future assumptions

Dataset ABC

Three simulated triangles from the fitted model, and the real data
triangle? Which is real data?

Dataset ABC
Three simulated, one real. Residuals of fitting only one parameter in each direction. Which is the real
data? Simulated triangles have the same statistical features as the real data! We will use Bootstrap
technique later to do same thing
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Dataset ABC- Wtd Standardized Residuals of Mack method
(CL link ratios)

It is impossible for any link ratio method including Mack (=CL ratios) to capture
and describe trends in any direction, let alone the calendar years.

Dataset ABC

ELRF- Mack (volume weighted average link ratios) Residuals versus calendar year. Cannot capture
calendar year trend structure. No control on assumptions going forward either, and averager
calendar year trend captured cannot be discerned.

Mack Residuals Calendar Year trends in incrementals

(Left) Residuals after applying Mack method to the loss array for Dataset ABC. Note
the sharp trend after 1984. Mack underfits recent calendar years and overfits earlier
years.

(Right) Probability Trend Family model picks up the change in trend structure in this

direction, the other two directions and the volatility.

110

Dataset ABC

Removing the three calendar year trends. (setting
the trend to zero for all calendar years in the PTF modelling framework)

Looks a bit like the Mack residuals (but on a log scale)

Wtd Std Res vs Cal. Yr

L] -‘-l-l---l-- -
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