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Background 
• Risk based capital proposals, e.g. EU Solvency II and USA SMI rely on 

stochastic models. 
• VaR@99.5% and TVaR@99% 

• There are many stochastic loss reserve models that claim to predict the 
distribution of ultimate losses. 

 
How good are these models?  

 
• This presentation describes tests of the predictions of currently popular 

stochastic loss reserve models on real data from 50 insurers in each of 
four lines of insurances. 

• It proposes two new models that improve the predictions.  



The CAS Loss Reserve Database 
Created by Meyers and Shi 

With Permission of American NAIC 

• Schedule P (Data from Parts 1-4) for several US Insurers 

• Private Passenger Auto 

• Commercial Auto  

• Workers’ Compensation 

• General Liability 

• Product Liability 

• Medical Malpractice (Claims Made) 

• Available on CAS Website  
http://www.casact.org/research/index.cfm?fa=loss_reserves_data 

http://www.casact.org/research/index.cfm?fa=loss_reserves_data


• w = Accident Year  w = 1,…,10 

• d = Development Year  d = 1,…,10 

• Cw,d = Cumulative (either incurred or paid) loss 

• Iw,d = Incremental paid loss  = Cw,d – Cw-1,d 

Notation 



Illustrative Insurer – Incurred Losses 



Illustrative Insurer – Paid Losses 



Criteria for a “Good”  
Stochastic Loss Reserve Model 

• Using the upper triangle “training” data, predict the distribution of 
the outcomes in the lower triangle 
• Can be observations from individual (AY, Lag) cells or sums of observations in 

different (AY,Lag) cells. 

• Using the predictive distributions, find the percentiles of the outcome 
data. 

• The percentiles should be uniformly distributed. 
• Histograms 

• Test with PP Plots/KS tests  
• Plot Expected vs Predicted Percentiles 

 

• KS 95% critical values =           =19.2 for n = 50 and 9.6 for n = 200 
136

n



Illustrative Tests of Uniformity 



• Insurers listed in Meyers – Summer 2012 e-Forum 

• 50 Insurers from four lines of business 

• Commercial Auto 

• Personal Auto 

• Workers’ Compensation 

• Other Liability 

• Both paid and incurred losses 

 

 

Data Used in Study 



Test of Mack Model on Incurred Data 

Conclusion – The Mack model predicts tails that are too light.   



Test of Mack Model on Paid Data 

Conclusion – The Mack model is biased upward.   



Test of Bootstrap ODP on Paid Data 

Conclusion – The Bootstrap ODP model is biased upward.   



• The “Black Swans” got us again! 

• We do the best we can in building our models, but the real world keeps 
throwing curve balls at us.  

• Every few years, the world gives us a unique “black swan” event.  

• Build a better model. 

• Use a model, or data, that sees the “black swans.” 

• Proposed models are Bayesian 
• Computations done by Bayesian Markov-Chain Monte Carlo (MCMC) simulations. 

Possible Responses to the model failures 



• Let q be an n-parameter vector (e.g. development factors). 

• Let X be a set of observations (e.g. a loss development triangle). 

 

 

 

 

• f(X|q) is the likelihood of X given q. 

• p(q) is the prior distribution of q.    

• f(q|X) is the posterior distribution of q. 

• Calculating the n-dimensional integral is intractable. 

 

The Problem With Bayesian Analyses 
Particularly Applicable to Loss Reserving 
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A New World Order 
• This impasse came to an end ~1990 when a simulation-

based approach to estimating posterior probabilities was 
introduced. 

• (Circa the fall of the Soviet empire and Francis Fukuyama’s “end of history”) 

 



 

• Let W be a finite state with random events X1, X2, …, Xt, … 

• A Markov chain P satisfies Pr{Xt = y|Xt-1=x, …, X1=x1} = Pr{xt = y|x} ≡ P(x,y) 
• The probability of an event in the chain depends only on the immediate previous event. 

• P is called a transition matrix 

The Markov Convergence Theorem 

• There is a branch of probability theory, called Ergodic Theory, that gives conditions for 
which there exists a unique stationary distribution p such that Pt(x,y) → p(y) as t →∞. 

• Counterexamples that do not satisfies these conditions. 
• Periodic paths 

• Absorption states – Once a chain enters one of these states, it does not leave that group of states. 

• Jackman1 (Section 5.1.1) demonstrates that the Markov chain defined by the 
Metropolis Hastings algorithm satisfies the conditions of the Markov Convergence 
Theorem.  Moreover the stationary distribution, p, is the posterior distribution. 

1. Simon Jackman, Bayesian Analysis for the Social Scientists, Wiley - 2009 

Markov Chains 



The Metropolis Hastings Algorithm 
A Very Important Markov Chain 

1. Time t=1:  select a random initial position q1 in parameter space. 

2. Select a proposal distribution p(q|qt-1) that we will use to select proposed random steps away from our 
current position in parameter space. 

3. Starting at time t=2:  repeat the following until you get convergence: 

a) At step t, generate a proposal q* ~ p(q|qt-1) 

b) Generate U ~ uniform(0,1) 

 

c) Calculate  

 

 

d) If U < R then qt= q*.  Else, qt= qt-1. 
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Dodging the Intractable Integral 
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The Metropolis Hastings Algorithm 
Restated 

1. Time t=1:  select a random initial position q1 in parameter space. 

2. Select a proposal distribution p(q|qt-1) that we will use to select proposed random steps away from our 
current position in parameter space. 

3. Starting at time t=2:  repeat the following until you get convergence: 

a) At step t, generate a proposed q* ~ p(q|qt-1) 

b) Generate U ~ uniform(0,1) 

 

c) Calculate  

 

 

d) If U < R then qt= q*.  Else, qt= qt-1. 
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• “Tune” the proposal distribution, p(q|qt-1), to minimize autocorrelation between qt and qt-1. 

• Convergence - Determine the interval t to t+m that contains a representative sample of the 
posterior distribution. 

• There are several software packages for Bayesian MCMC that work with the R programming 
language. 

• WINBUGS 

• OpenBUGS 

• JAGS 

• Stan (New) 

• There was a CLRS workshop last Sunday that covered the nuts and bolts of Bayesian MCMC 
for loss reserving and other analyses. 

 

Metropolis Hastings in Practice 



• Use R and JAGS (Just Another Gibbs Sampler) packages 

• Get a sample of 10,000 parameter sets from the posterior 
distribution of the model 

• Use the parameter sets to get 10,000 simulated outcomes 

• Calculate summary statistics of the simulated outcomes 

• Mean 

• Standard deviation 

• Percentile of the actual outcome  

 

 

Bayesian MCMC Models 



The Correlated Chain Ladder (CCL) Model 
• logelr ~ uniform(-5,0) 
• aw ~ normal(log(Premiumw)+logelr,        ) – a wide distribution 
• b1 = 0, bd  ~ uniform(-5,5), for d=2,…,10  – a wide distribution 
• m1,d = a1 + bd  
• ai ~ uniform(0,1)   

 
•                       Forces sd to decrease as d increases 

 
• C1,d ~ lognormal(m1,d, sd) 
• r ~ uniform(-1,1) 
• mw,d = aw + bd  + r·(log(Cw-1,d) – mw-1,d) for w = 2,…,10 
• Cw,d ~ lognormal(mw,d, sd)  
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The First 5 of 10,000 Samples 
on Illustrative Insurer 

Done in JAGS 

Done in R 



The Correlated Chain Ladder Model 
Predicts Distributions with Thicker Tails 

• Mack uses point estimations of parameters. 

• CCL uses Bayesian estimation to get a posterior distribution of 
parameters. 

• Chain ladder applies factors to last fixed observation. 

• CCL uses uncertain “level” parameters for each accident year. 

• Mack assumes independence between accident years. 

• CCL allows for correlation between accident years,  

• Corr[log(Cw-1,d),log(Cw,d)] = r  



Posterior Distribution of r  
for Illustrative Insurer 

r is highly 
uncertain, but in 
general positive. 



Generally Positive Posterior Means of r 



Predicting the Distribution of Outcomes 
• Use JAGS software to produce a sample of 10,000 {aw}, {bd},{sd} and {r} from the 

posterior distribution. 

• For each member of the sample 
• m1,10 = a1 + b10 

• For w = 2 to 10 

• Cw,10 = random lognormal (aw + b10 + r·(log(Cw-1,10) – mw-1)),s10) 

• Calculate    

• Calculate summary statistics, e.g.  

 

• Calculate the percentile of the actual outcome by counting how many of the simulated 
outcomes are below the actual outcome. 
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Results for the Illustrative Incurred Data 

Note the increase in the standard 
error of CCL over Mack. 



Compare SDs for All 200 Triangles 



Test of Mack Model on Incurred Data 

Conclusion – The Mack model predicts tails that are too light.   



Test of CCL on Incurred Data 

Conclusion – CCL model percentiles lie within KS statistical bounds.   



• Accomplished by “pumping up” the variance of Mack model. 

 

What About Paid Data? 
 

• Start by looking at CCL model on cumulative paid data. 

Improvement with Incurred Data 



Test of Bootstrap ODP on Paid Data 

Conclusion – The Bootstrap ODP model is biased upward.   



Test of CCL on Paid Data 

Conclusion – Roughly the same performance a bootstrapping and Mack   



• Look at models with payment year trend. 

• Ben Zehnwirth has been championing these for years. 

• Payment year trend does not make sense with cumulative data! 

• Settled claims are unaffected by trend. 

• Recurring problem with incremental data – Negatives! 

• We need a skewed distribution that has support over the entire real 
line. 

How Do We Correct the Bias? 



X ~ Normal(Z,d),  Z ~ Lognormal(m,s) 

The Lognormal-Normal (ln-n) Mixture 



• mw,d = aw + bd + t∙(w + d – 1) 

• Zw,d ~ lognormal(mw,d, sd) subject to s1 < s2 < …< s10  

• I1,d ~ normal(Z1,d, d) 

• Iw,d ~ normal(Zw,d + r∙(Iw-1,d – Zw-1,d)∙et, d) 

 

• Estimate the distribution of  

 

• “Sensible” priors  
• Needed to control sd  

• Interaction between t , aw  and bd.   

 

 

The Correlated Incremental Trend (CIT) Model 
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Prior Distribution for CIT Model 
JAGS Script 



CIT Model for Illustrative Insurer 



Posterior Distribution of m and t  
for Illustrative Insurer 

Should we allow r in the model? 

Predominantly negative trends 



Posterior Mean r for All Insurers 
On Paid Data 



Posterior Mean r for All Insurers 

On Incurred Data 



Posterior Mean t for All Insurers 



Test of CIT with r = 0 on Paid Data 

Conclusion – Overall improvement but look at Personal Auto   



Test of Bootstrap ODP on Paid Data 

Conclusion – The Bootstrap ODP model is biased upward.   



Test of CIT on Paid Data 

Conclusion – CIT model percentiles are an improvement but do not lie within the KS bounds.   



• Mack underpredicts the variability of outcomes with incurred data. 

• Both Mack and Bootstrap ODP are biased high with paid data. 

• Bayesian MCMC models 
• Easily modified to produce new models. 

• Easily implemented to produce predictive distributions of outcomes. 

• CCL model improves significantly on predictions with incurred data. 
• Important feature – Correlation between accident years 

• CIT model improves somewhat on predictions with paid data. 
• Important features – Payment year trend and correlation between accident years 

• Shortcoming – Study needs to be repeated on different time periods. 

 

Summary 


