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Abstract 
The purpose of the present paper has been to test whether loss reserving models 

that rely on claim count data can produce better forecasts than the chain ladder 

model (which does not rely on counts); better in the sense of being subject to a 

lesser prediction error. 

 

The question at issue has been tested empirically by reference to the Meyers-Shi 

data set.  Conclusions are drawn on the basis the emerging numerical evidence. 

 

The chain ladder is seen as susceptible to forecast error when applied to a 

portfolio characterised by material changes over time in rates of claim 

finalisation.  For this reason, emphasis has been placed here on the selection of 

such portfolios for testing. 

 

The chain ladder model is applied to a number of portfolios, and so are two other 

models, the Payments Per Claim Incurred (PPCI) and Payments Per Claim 

Finalised (PPCF), that rely on claim count data.  The latter model in particular is 

intended to control for changes in finalisation rates.  Each model is used to 

estimate loss reserve and the associated prediction error. 

 

A compelling narrative emerges.  The chain ladder rarely performs well. Either 

PPCI or PPCF model produces, or both produce, superior performance, in terms 

of prediction error, 80% of the time. 

 

When the chain ladder produces the best performance of the three models, this 

appears to be accounted for by either erratic count data or rates of claim 

finalisation that show comparatively little variation over time. 

 

 

 

 

Keywords: bootstrap, chain ladder, count data, loss reserving, payments per claim 

finalised, payments per claim incurred, PPCF, PPCI, prediction error. 

 

1. Introduction  
 

The data set provided by Meyers and Shi (2011) makes available a large number 

of US claim triangles for experimentation in loss reserving.  The triangles are of 

two types, namely: 

 Paid claims; and 

 Incurred claims. 

 

Triangles of these types are suitable for analysis by the chain ladder model, and 

indeed this is very common in practice.  Some jurisdictions across the globe are 

accustomed to the use of alternative loss reserving models (see e.g. Taylor (2000).  

Commonly, these alternatives rely on additional data, particularly triangles of 

counts of reported claims and finalised claims respectively. 
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This raises the question as to reasons Meyers and Shi did not collate count data.  

In private correspondence the authors advised that they had sought the views of 

other US actuaries on this very matter, and had been counselled not to do so. 

 

Count data, particularly finalisation counts were said to be unreliable.  There was 

more than one reason for this.  First, some portfolios included material amounts of 

reinsurance, and the meaning of claim finalisation was not clear in all of these 

cases.  But more than this, it appears that such counts are not always returned by 

insurers with all diligence and are unreliable on that account.   

 

Moreover, the models that rely on count data have not received universal acclaim.  

Some statisticians have commented adversely, noting that these models, requiring 

more extensive data, also require more modelling, more parameterisation, leading 

to more uncertainty in forecasts. 

 

This argument cannot be correct as a matter of logic.  If claim finalisation counts 

followed a deterministic process, they would add no uncertainty, and the 

argument would fail.  If they follow a process with a very small degree of 

stochasticity, then they would add little uncertainty, and again the argument 

would fail. 

 

The evident question of relevance is whether any reduction in uncertainty in the 

claim payment model by conditioning on the count data is more than, or less than, 

offset by the additional uncertainty induced by the modelling and forecasting of 

the counts themselves. 

 

The forecasts of some claim payment models that rely on finalisation count data 

are relatively insensitive to the distribution of finalisations over time.  So any 

uncertainty in the forecast of this distribution will have little effect on the forecast 

of loss reserve in this case.  These models are the operational time models, such 

as discussed in Section 4.3. 

 

The debate on the merits of these models relative to the chain ladder appears 

fruitless.  It might be preferable to allow the data to speak for themselves.  That is, 

forecast according to both models, estimate prediction error of each, and select 

the model with the lesser prediction error.   

 

Much the same argument can be applied to the issue of reliability of count data.    

The data may be allowed to speak for themselves by the use of prediction error as 

the criterion for model selection.  Data unreliability should be found out through 

an enlarged prediction error. 

 

 

2. Framework and notation 
 

2.1 Claims data 

 

Consider a     square of claims observations     with: 

 

 accident periods represented by rows and labelled          ; 
 development periods represented by columns and labelled by          . 
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For the present the nature of these observations will be unspecified.  In later 

sections they will be specialised to paid losses, reported claim counts, unfinalised 

claim counts or claim finalisation counts, or even quantities derived from these. 

 

Within the square identify a development triangle of past observations 

 

   {                       } 
 

Let    denote the set of subscripts associated with this triangle, i.e. 

 

   {                         } 
 

The complement of this subset, representing future observations is 

 

  
  {                       } 

 

Also let 

 

  
       

  

 

In general, the problem is to predict   
  on the basis of observed   . 

 

Define the cumulative row sums 

 

   
  ∑   

 

   

 

 (2.1) 

and the full row and column sums (or horizontal and vertical sums) and 

rectangle sums 
 

   ∑    

     

   

 

 

   ∑    

     

   

 

    ∑∑    

 

   

 

   

∑   
 

 

   

 

 (2.2) 

Also define, for          
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   ∑    

 

       

    
          

  

 (2.3) 

  ∑  

 

   

 

  (2.4) 

 

Note that   is the sum of the (future) observations in   
 .  It will be referred to as 

the total amount of outstanding losses.  Likewise,    denotes the amount of 

outstanding losses in respect of accident period  .  The objective stated earlier is 

to forecast the    and  . 

 

Let      denote summation over the entire row   of   , i.e.     
     

 for fixed 

 . 

 

Similarly, let      denote summation over the entire column of   , i.e.     
     

 

for fixed  .  For example, the definition of    in (2.2) may be expressed as 

 

   ∑    

    

 

 

 

2.2 Generalised linear models 

 

The present paper attempts to estimate the prediction error associated with the 

estimate of outstanding losses produced by various models.  A stochastic model 

of losses is required to achieve this.   

 

A convenient form of stochastic model, with sufficient flexibility to accommodate 

the various models introduced in Section 4, is the Generalised Linear Model 

(“GLM”).  This type of model is defined and considered in detail by McCullagh 

& Nelder (1989), and its application to loss reserving is discussed by Taylor 

(2000). 

 

A GLM is a regression model that takes the form: 

 

                      (2.5) 
                                                      

 

where         are vectors and matrices with dimensions according to the 

annotations beneath them, and where: 

  is the response (or observation) vector; 

  is the design matrix; 
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  is the parameter vector; 

  is a centred (stochastic) error vector; and  

  is a one-one function called the link function. 

 

The link function need not be linear (as in general linear regression).  The 

quantity    is referred to as the linear response. 

 

The components    of the vector   are all stochastically independent and each has 

a distribution belonging to the exponential dispersion family (“EDF”) (Nelder 

& Wedderburn, 1972), i.e. it has a pdf of the form: 

 

        [
       

    
       ] 

 (2.6) 

where   is a location parameter,   a scale parameter, and                are 

functions. 

 

This family will not be discussed in any detail here.  The interested reader may 

consult one of the cited references.  For present purposes, suffice to say that the 

EDF includes a number of well known distributions (normal, Poisson, gamma, 

inverse gamma, binomial, compound Poisson) and specifically that it include the 

over-dispersed Poisson (“ODP”) distribution that will find repeated application 

in the present paper. 

 

A random variable   will be said to have an ODP distribution with mean   and 

scale parameter   (denoted           ) if  
 

                     (2.7) 

It follows from (2.7) that 

 

 [ ]        [ ]     (2.8) 

 

 

2.3 Residual plots 

 

When the GLM -(2.6) is calibrated against a data vector            
 , let  ̂ 

denote the estimate of   and let  ̂     (  ̂ ).  The component  ̂  is called the 

fitted value corresponding to   . 

 

Let  (    ̂) denote the log-likelihood of observation    (see (2.6)) when    ̂ 

(and so  [ ]= ̂).  The deviance of the fitted model is defined as 

 

    ∑  

 

   

   ∑[ (    ̂)         ]

 

   

 

 (2.9) 

where         denotes the log-likelihood of the saturated model in which  ̂   . 

 

The deviance residual associated with    is defined as  
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     (    ̂ )  

  (2.10) 

 

Define the hat matrix  

 

             (2.11) 

 

Then the standardised deviance residual associated with    is defined as 

 

  
     

        
 ⁄  (2.12) 

 

where     denotes the       – element of  . 

 

For a valid model -(2.6),   
          approximately unless the data   are highly 

skew.  It then follows that  [  
  ]       [  

  ]   .  When the   
   are plotted 

against the  , or any permutation of them, the resulting residual plot should 

contain a random scattered of positives and negatives largely concentrated in the 

range        , and with no left-to-right trend in dispersion (homoskedasticity).  

Homoskedastic models are desirable as they produce more reliable predictions 

than heteroskedastic. 

 

2.4 Relevant development triangles 

 

The description of a development in Section 2.1 is generic in that the nature of the 

observations is left unspecified.  In fact, there will be a number of triangles 

required in subsequent sections.  They are as follows: 

  

Raw data 

 Paid loss amounts; 

 Reported claim counts; 

 Unfinalised claim counts; 

 

Derived data 

 Finalised claim counts. 

 

These are defined in Sections 2.2.1 to 2.2.4.  Further triangles, specific to the 

models discussed in Sections 4.2 and 4.3, will be required and will be defined in 

those sections.   

 

2.4.1 Paid loss amounts  

The typical cell entry will be denoted    .  It denotes the total amount of claim 

payments made in cell      .  Payments are in raw dollars, unadjusted for 

inflation. 

 

2.4.2 Reported claim counts  

The typical cell entry will be denoted    .  It denotes the total number of claims 

reported to the insurer in cell      .  Let    
  denote the cumulative count of 

reported claims, defined in a manner parallel to (2.1). 
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As    ,    
  approaches the total number of claims ultimately to be reported in 

respect of accident period  .  This will be referred to as the ultimate claims 

incurred count in respect of accident period   and will be abbreviated to   . 

 

2.4.3 Unfinalised claim counts  

The typical cell entry will be denoted    .  It denotes the number of claims 

reported to the insurer but unfinalised at the end of the time period covered by cell 

     . 

 

2.4.4 Finalised claim counts  

The typical cell entry will be denoted    .  It denotes the number of claims 

reported to the insurer and finalised by the end of the time period covered by cell 

     .  It is derived from the raw data by means of the simple identity 

 

       
        

  (2.13) 

where 

   
     

      (2.14) 

 

As    ,    
     and      , yielding the obvious result that all claims 

ultimately reported are ultimately finalised: 

 

   
   

   
     

 (2.15) 

 

It is possible that (2.13) will yield a result      .  By (2.13) and (2.14), 

 

    (   
     )  (      

        )      (          )  

   if                

 

i.e. if an increase in the number of unfinalised claims over a development period 

is greater than can be explained by newly reported claims.  This can occur if 

claims, once finalised, can be re-opened and this become unfinalised again. 

 

 

3. Data  
 

As its title indicates, this paper reports an empirical investigation.  Conclusions 

are drawn from the analysis of real-life data sets.  The triangles of paid loss 

amounts are those described by Meyers & Shi (2011).   

 

Companion triangles of reported claim counts and unfinalised claim counts were 

provided privately by Peng Shi.  The totality of all these triangles will be referred 

to as the Meyers-Shi data base.  The part of the data base used by the present 

paper is reproduced in Appendix A. 

 

3.1 Triangles of paid loss amounts 

 

These are              triangles, reporting the claims history as at 31 

December 1997 in respect of the 10 accident years 1988-1997.  The triangles 
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relating to these accident and development years (“the training interval”) will be 

referred to as training triangles.  As explained by Meyers & Shi (2011), they are 

extracted from Schedule P of the data base maintained by the US National 

Association of Insurance Commissioners. 

 

The Meyers-Shi data base contains paid loss histories in respect of six lines of 

business (“LoBs”), namely: 

(1) Private passenger auto; 

(2) Commercial auto; 

(3) Workers compensation; 

(4) Medical malpractice; 

(5) Products liability; 

(6) Other liability. 

 

In each case, a triangle is provided for each of a large number of insurance 

companies. 

 

The data base also contains the history of accident years 1988-97, as it developed 

after 31 December 1997, in each case up to the end of development year 10.  

These will be referred to as test triangles.  In the notation established in Section 

2.1,     denotes a training triangle and    
  a test triangle. 

 

 

3.2 Triangles of reported claim counts and unfinalised claim counts 

 

These are also       triangles covering the training interval.  They were 

provided in respect of just the first three of the six LoBs listed in Section 3.1. This 

limited any comparative study involving claim counts to these three LoBs. 

 

 

4. Models investigated 
 

4.1 Chain ladder 

 

4.1.1 Model formulation  

This is described in many publications, including the loss reserving texts by 

Taylor (2000) and Wüthrich & Merz (2008).  A thorough analysis of its statistical 

properties was given by Taylor (2011), who defines the ODP Mack model as a 

stochastic version of the chain ladder.  This model is characterised by the 

following assumptions. 

 

(ODPM1) Accident periods are stochastically independent, i.e.             are 

stochastically independent if      . 

 

(ODPM2) For each          , the    
  (j varying) form a Markov chain. 

 

(ODPM3) For each           and            , define     

         
 ⁄  and suppose that        (      (   

 ) (   
 )

 
⁄ ), 

where        is a function of    
 . 
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It follows from (ODPM3) that 

 

 [      
    

 ⁄ ]   [     ]       (4.1) 

 

which will be denoted by        and referred to as an age-to-age factor.  This 

will also be referred to as a column effect. 

 

For the purpose of the present paper, it has been assumed that      for    , i.e. 

no claim payments after development year  .  It appears that the resulting error in 

loss reserve will be relatively small. 

 

 

4.1.2 Chain ladder algorithm  

Simple estimates for the    are 

 

 ̂                ⁄  (4.2) 

 

These are the conventional chain ladder estimates that have been used for many 

years.  However, they are also known to be maximum likelihood (“ML”) for the 

above ODP Mack model (and a number of others) (Taylor, 2011) provided that 

   (   
 )    

  for quantities   
    dependent on just  . 

 

Estimator (4.2) implies a forecast of    
    

  as follows: 

 

 ̂  
          

  ̂      ̂       ̂    (4.3) 

 

Strictly, this forecast include claim payments only to the end of development year 

 .  Beyond this lies outside the scope of the data, and allowance for higher 

development years would require additional data from some external source or 

some form of extrapolation. 

 

 

4.1.3 GLM formulation  

 

Regression design 

The ODP Mack model may be expressed as a GLM.  Since the ODP family is 

closed under scale transformations, (ODPM3) may be re-expressed as  

 

          
     (   

       (   
 )) (4.4) 

 

or, equivalently, 

 

          
     (              ⁄ ) (4.5) 

 

where 

 

          (      
       ) (4.6) 

           (   
 )⁄  (4.7) 
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for some constant    . 

 

The weight structure (4.7), together with the ODP assumption, implies that 

 

   [          
 ]       

    (   
 ) (4.8) 

 

The representation (4.5)-(4.7) amounts to a GLM.  The link function is the natural 

logarithm.  The linear response is seen to be (      
       ), which consists of 

one known term,       
 , and one,      , requiring estimation.  In this case the 

vector   in  has components                    .  The vector of known values is 

called an offset vector in the GLM context. 

 

For representation of the GLM in the form , the response vector   consists of the 

observations         in dictionary order.  It has dimension         

  . Any other order will do, though the design matrix described below would 

require rearrangement. 

 

The design matrix   in  is of dimension     , with one row for each 

observation and one column for each parameter.  If rows are denoted by the 

combination       and columns by        , then the elements of   are 

            , with   denoting the Kronecker delta. 

 

Weights  

The quantity        is referred to as a weight as its effect is to weight the log-

likelihood of the observation        in the total log-likelihood.  Weights are 

relative in the sense that they may all be changed by the same factor without 

affecting the estimate of  .  In this case, (4.5) shows that the estimate of   will 

change by the same factor so that the scale parameter        ⁄  is unaffected. 

 

Weights are used to correct for variances that differ from one observation to 

another.  We do not have prior information on the structure of variance by cell.  

The default       is therefore adopted unless there is cause to do otherwise.  It 

then follows from (4.7) that 

 

   (   
 )    (4.9) 

         (4.10) 

 

and then, by (4.8), 

 

   [          
 ]  (   )   

  (4.11) 

 

 

It is interesting to note that this is a special case of the model proposed by ODP 

Mack model, in which    [          
 ]    

    
 , whose ML estimates were 

remarked in Section 4.1.2 to be equal to those of the  chain ladder algorithm.  

Standard software (R in the present case) calibrates GLMs according to ML.  It 

follows that the GLM estimates will also be the same as from the chain ladder 

algorithm in the presence of unit weights. 
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ODP variates are necessarily non-negative.   

 

 

4.2 Payments per claim incurred 

 

4.2.1 Model formulation 

This model, referred to as the “PPCI model”, is described in Taylor (2000, 

Section 4.2) and a very similar model in Wright (1990).  It is characterised by the 

following assumptions. 

 

(PPCI1) All cells are stochastically independent, i.e.             are 

stochastically independent if                . 
(PPCI2) For each           and            , suppose that 

         (                ), where  

              are parameters; 

              are as defined in Section 2.4.2; 

   [             ]   . 

 

As in Section 4.1.1, it has been assumed that      for    , i.e. no claim 

payments after development year  . 
 

An alternative statement of (PPCI2) is as follows: 

 

      ⁄      (                
 ⁄ ) (4.12) 

 

The quantity on the left is the cell’s amount of PPCI, with a mean of 

 

 [      ⁄ ]             (4.13) 

 

To interpret the right side, first assume that           .  Then the 

expectation of PPCI is a quantity that depends on just development year.  It is a 

column effect. 

 

To interpret the function     , note that       represents experience year, 

i.e. the calendar period in which the cell’s payments were made.  An 

experience year manifests itself as a diagonal of   
 , i.e.       is constant 

along a diagonal. 

 

Experience years are often referred to as payment years.  However, the former 

terminology is preferred here because it is a more natural label in triangles of 

counts, which are payment-free. 

 

Thus the function      states how, for constant  , PPCI change with experience 

year.  As noted in Section 2.4.1, paid loss data are unadjusted for inflation, and 

so      may be thought of as a claims inflator.  This reflects claim cost 

escalation, as opposed to a conventional inflation measure such as price or 

wage inflation. 

 

The simplest possibility for this inflator is 
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                   (4.14) 

 

representing constant claim cost escalation according to a factor of   per annum. 

 

4.2.2 Estimation of numbers of claims incurred 

The response variate in model (4.12) involves   , the number of claims incurred 

in accident year  .  According to the definition in Section 2.4.2, 

 

   ∑    

     

   

 ∑    

 

       

 

 (4.15) 

where the two summands relate to    (the past) and   
  (the future) respectively. 

 

Naturally, the future values are unknown and estimates are required.  Thus    is 

estimated by 

 

 ̂  ∑    

     

   

 ∑  ̂  

 

       

 

 (4.16) 

where the  ̂   are estimated by the chain ladder GLM. 

 

Weights  

Some data cells contain negative incremental numbers of reported claims 

(Appendix A.2).  This is particularly the case for company #1538 (Appendix 

A.2.3).  Such cells are shaded in Appendix A.2 and are assigned are assigned zero 

weight in the GLM. 

 

4.2.3 Calibration  

For calibration purposes the PPCI model is expressed in GLM form: 

 

     ̂ ⁄      (        ̂ 
 ⁄ ) (4.17) 

 

where 

 

       (                 ) (4.18) 

 

and the estimates  ̂  are obtained as in Section 4.2.2. 

 

In the special case of (4.14), the mean (4.18) reduces to 

 

       (                  ) (4.19) 

 

Empirical testing indicates that, as reasonable first approximation, the scale 

parameter in (PPCI2) may be taken as constant over all cells, i.e. 

 



Count data and loss reserving  13 

 

      ̂ 
  (4.20) 

 

in which case the scale parameter in (4.17) reduces to a constant (i.e. independent 

of    ), implying unit weights in GLM modeling. 

 

4.2.4 Forecasts  

The GLM (4.17)-(4.18) implies the following forecast of        
 : 

 

 ̂     ̂  ̂   (4.21) 

 

where  

 

 ̂      (    ̂      ̂       ) (4.22) 

 

and     ̂      ̂    are the GLM estimates of              .  The function         
within the GLM will necessarily be a linear combination of a finite set of basis 

functions, and so the estimator     ̂    is obtained by replacing the coefficients in 

the linear combination by their GLM estimates. 

 

 

4.3 Payments per claim finalised 

 

The essentials of the model appear to have been introduced by Fisher & Lange 

(1973) and re-discovered by Sawkins (1979). 

 

4.3.1 Operational time 

It will be useful to define the following quantity: 

 

         
  ̂ ⁄  (4.23) 

 

This is called the operational time (“OT”) at the end of development year   in 

respect of accident year  , and it is equal to the proportion of claims estimated 

ultimately to be reported for accident year   that have been finalised by the end of 

development year  .  The concept was introduced into the loss reserving literature 

by Reid (1978). 

 

While this definition covers only cases in which   is equal to a natural number, 

      retains an obvious meaning if the range of   is extended to [    .  In this 

case, 

 

        (4.24) 

        (4.25) 

 

If claims, once closed, remain closed, then    
  is an increasing function of    and 

so       increases monotonically from 0 to 1 as   increases from 0 to  . 

 

Also define the average operational time of cell       as 

 

  ̅     [             ] (4.26) 
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4.3.2 Model formulation 

This model, referred to as the “PPCF model”, is described in Taylor (2000, 

Section 4.3).  As will be seen shortly, if one is to forecast future claim costs on 

the basis of PPCF, then future numbers of claim finalisations must also be 

forecast.  The PPCF model will therefore comprise two sub-models: a payments 

sub-model and a finalisations sub-model. 

 

Payments sub-model 

This is characterised by the following assumptions. 

 

(PPCF1) All cells are stochastically independent, i.e.             are 

stochastically independent if                . 
(PPCF2) For each           and            , suppose that 

         (        ̅                 ), where  

   [   ]   ; 

      has the same interpretation as in the PPCI model described 

in Section 4.2.1. 

 

As in Sections 4.1.1 and 4.2.1, it has been assumed that      for    , i.e. no 

claim payments after development year  .  It would have been possible to 

forecast paid losses in development years beyond   because the number of 

claims to be finalised in those years is known (       
 ).  This was not 

done, however, for consistency with the chain ladder and PPCI models. 

 

An alternative statement of (PPCF2) is as follows: 

 

       ⁄      (    ̅                    
 ⁄ ) (4.27) 

 

The quantity on the left is the cell’s amount of PPCF, with a mean of 

 

 [       ⁄ ]      ̅              (4.28) 

 

Underlying (PPCF2) is a further assumption that mean PPCF in an 

infinitesimal neighbourhood of OT  , before allowance for the inflationary 

factor     , is     .  The mean PPCF for the whole of development year   is 

taken     ̅    , dependent on the mid-value of OT for that year. 

 

A further few words of explanation of this form of mean are in order.  It may 

seem that a natural extension of assumption (PPCI2) to the PPCF case would be 

 

 [       ⁄ ]              

 

i.e. with PPCF dependent on development year rather than OT. 

 

Consider, however, the following argument, which is highly simplified in order to 

register its point.  In most lines of business, the average size of claim settlements 

of an accident year increases steadily as the delay from accident year to settlement 

increases.  Usually, if this is not the case over the whole range of claim delays, it 

is so over a substantial part of the range. 
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Now suppose that, as a result of a change in the rate of claim settlement, the OT 

histories of two accident years are as set out in Table 4-1. 

 
Table 4-1  Operational times for different accident years 

Accident 

year 

Operational time at the end of development year 

1 2 3 4 5 6 

  0.15 0.35 0.55 0.70 0.75 0.80 

              
    0.25 0.50 0.70 0.80 0.85 0.90 

 

Suppose the claims of accident year   are viewed as forming a settlement queue, 

the first 15% in the queue being finalised in development year 1, the next 20% in 

development year 2, and so on.  According to the above discussion, claims will 

increase in average size as one progresses through the queue. 

 

Now suppose that the claims of accident year     are sampled from the same 

distribution and form a settlement queue, ordered in the same way as for accident 

year   (the concept of “ordered in the same way” is left intentionally vague in the 

hope that the general meaning is clear enough). 

 

Then, in the case of accident year    , the 25% of claims finalised in 

development year 1 will resemble the combination of: 

 the claims finalised in development year 1 in respect of accident year   

(15% of all claims incurred); and 

 the first half of the claims finalised in development year 2 in respect of 

accident year   (another 10% of all claims incurred). 

 

The latter group will have a larger average claim size than the former, and so the 

expected PPCF will be greater in cell         than in      .  The argument may 

be extended to show that expected PPCF will be greater in cell         than in 
     . 
 

In this case the modelling of expected PPCF as a function of development year 

would be unjustified.  On the other hand, it follows from the queue concept above 

that expected PPCF is a function of OT and may be modelled accordingly. 

 

Weights for payments sub-model 

Further, there are a couple of cases of cells that contain zero counts of 

finalisations but positive payments.  These cases are shown hatched in Appendix 

A.3. 

 

In such cases, claim payments have been set to zero before data analysis.  As this 

converts assumption (PPCF2) to             (     ), which is devoid of 

information, these cells have no effect on the model calibration. 

 

Despite this, cases of positive payments in the presence of a zero finalisation 

count are genuine (they indicate the existence of partial claim payments) and so 

omission of these cells will create some downward bias in loss reserve estimation.  

However, these occurrences were rare in the data sets analysed and occurred in 
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cells that contributed comparatively little to the accident year’s total incurred cost.  

The downward bias has been assumed immaterial. 

 

There are also instances of negative finalisation counts, highlighted in Appendix 

A.3.  While re-opening of finalised claims can render negative counts genuine, 

there was substantial evidence in the present cases that the negatives represented 

data errors and the associated cells were accordingly assigned zero weight.   

 

The discussion of weights hitherto has been confined to data anomalies.  

However, for the PPCF model a more extensive system of weights is required.  If 

weights are set to unity (other than the zero weighting just described), 

homoskedasticity is not obtained.   

 

This is illustrated in Figure 4-1, which is a plot of standardised deviance residuals 

of PPCF against OT for Company #1538 (see the data appendix) for which the 

functions         and         are quadratic and linear respectively. 

 
Figure 4-1  Residual plot for unweighted PPCF model 

 
 

The figure clearly shows the increasing dispersion with increasing OT.  This was 

corrected by assigning cell       the weight    , defined by 

 

      if   ̅         

 {     [  ̅        ]}   if   ̅         (4.29) 

 

 

This function exhibits a discontinuity at   ̅         but this is of no 

consequence as there are no observations in the immediate vicinity of this value of 

average OT.  As seen in Figure 4-1, there is a clump of observation in the vicinity 

of OT=0.82, and then none until about OT=0.92. 
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On application of this weighting system, the residual plot in Figure 4-1 was 

modified to that appearing in Figure 4-2.  A reasonable degree of homoskedasticity 

is seen. 

 
Figure 4-2  Residual plot for weighted PPCF model 

 
While the weights (4.29) were developed for specifically Company #1538, they 

were found reasonably efficient for all companies analysed.  They were therefore 

adopted for all of those companies in the name of a reduced volume of bespoke 

modelling.   

 

There continue to be few values of average OT in the vicinity of 0.92 when all of 

the companies analysed are considered.  The discontinuity in (4.29) therefore 

remains of little consequence.  Nonetheless, the PPCF modelling could probably 

be improved somewhat with yhe selection of weight systems specific to individual 

insurers. 

 

Finalisations sub-model 

This is characterised by the following assumptions. 

 

(FIN1) All cells are stochastically independent, i.e.             are 

stochastically independent if                . 
(FIN2) For each           and        , suppose that 

         (              ), where the    are parameters. 

 

This model is evidently an approximation as it yields the result 

 

 [   ]  (          )   

 

which is an over-statement unless all newly reported claims     are reported at 

the very beginning of development year  .  However, assumption (FIN2) was 
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adopted here because the replacement of     by     , with     or ⅓ say, 

generated anomalous cases in which                 . 

 

4.3.3 Calibration  

For calibration purposes the PPCF model is expressed in GLM form: 

 

       ⁄      (           
 ⁄ ) (4.30) 

 

where 

 

       (       ̅                ) (4.31) 

 

where the function      is yet to be determined.  This will be discussed in Section 

5.3.1. 

 

In the special case of (4.14), the mean (4.31) reduces to 

 

               ̅                   (4.32) 

 

Weights     are as set out in (4.29). 

 

4.3.4 Forecasts  

The GLM (4.27) implies the following forecast of        
 : 

 

 ̂     ̂   ̂   (4.33) 

 

where  

 

 ̂      (    ̂( ̅̂    )      ̂       ) (4.34) 

 

and     ̂        ̂    are the GLM estimates of                 and  ̂    ̅̂     are 

forecasts of       ̅    for the future cell      .  As explained in Section 4.2.3, the 

function         within the GLM will be a linear combination of basis functions, 

and the estimator     ̂    is obtained by replacing the coefficients in the linear 

combination by their GLM estimates.  The estimator     ̂    is similarly 

constructed. 

 

Forecasts of future operational times 

The forecasts  ̅̂     are calculated, in parallel with (4.23) and (4.26), as 

 

 ̅̂      [ ̂        ̂    ] (4.35) 

with 

 ̂      ̂  
  ̂ ⁄  (4.36) 

 

and the  ̂  
  are, in turn, forecast as  

 

 ̂  
  ( ̂       ̂  ) ̂  (4.37) 
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where the  ̂   are the same forecasts as in (4.16), the  ̂      are forecast according 

to the identity 

 

 ̂    ̂       ̂    ̂   (4.38) 

 

initialised by 

 

 ̂                 (known) (4.39) 

 

and the  ̂  are estimates of the    in the GLM defined by (FIN1-2). 

 

This somewhat cavalier treatment of the forecasts  ̂   is explained by the fact that, 

provided they are broadly realistic, they have comparatively little effect on the 

forecast loss reserves   .  The reason for this is to be found in the concept of OT 

described in Section 4.3.2. 

 

If expected PPCF is described by a function      of OT  , as in (4.28) 

(disregarding the experience year effect for the moment), then    is estimated by 

 

 ̂   ̂ ∫  ̂      

 

         

  ̂ ( ∫

         

         

 ∫

         

         

  ) ̂       

 (4.40) 

 

The second representation of  ̂  on the right side expresses it as the sum of its 

annual components, which depend on the forecasts  ̂  .  However, the first 

representation shows that  ̂  depends on only  ̂    and  ̂           
 ̂         estimated total number of claims remaining unfinalised at the end of 

development year      .  There is no dependency on the partition of these 

 ̂        claims by year of finalisation. 

 

The partition of  ̂        into its components  ̂   will interact with the experience 

year effect  ̂          If  ̂    is an increasing function, then the more rapid the 

finalisation of the  ̂        claims, the smaller the estimate  ̂ .  However, 

this is a second order effect and  ̂  is generally relatively insensitive to the 

partition of  ̂        into components  ̂  . 

 

 

4.4 Outlying observations 

 

As pointed out in Section 2.3, the standardised deviance residuals emanating from 

a valid payments model should be roughly standard normal, most falling within 

the range        .   

 

The residual plots for the models fitted in Section 5.3 do indeed fall mainly within 

this range.  Those of absolute order 3 or more are relatively few but probably of 

rather greater frequency than justified by the above normal approximation.  Those 

of absolute order 4 or more form a small minority but, again, occur rather more 

frequently than expected. 
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The conclusion is that the data set contains some outliers despite the weight 

correction, but that they are not of extreme magnitude.  To have deleted these data 

points might have created bias.  To have attempted any other form of 

robustification would have opened up the question of how robust reserving should 

be pursued, a major research initiative in its own right. 

 

Ultimately, with these considerations weighed against the rather mild form of the 

outliers, no action was taken; the outliers were retained in the data for analysis 

(unless excluded for some other reason (see Section 5.3)). 

 

 

4.5 Comparability of different models 

 

4.5.1 Basic comparative set-up 

The main purpose of the present paper is to compare the predictive power of 

models that make use of finalisation count data with that of the chain ladder 

(which does not make use of such data). 

 

The chain ladder, in its bald form, may be reduced to a mechanical algorithm 

without user judgement or intervention.  Objective comparisons that allow for 

such intervention are difficult because of the subjectivity of the adjustments.   

 

Consequently, the comparisons made in this paper are heavily restricted to quasi-

objective model forms.  The specific interpretation of this is that, subject to the 

exceptions noted below: 

 All three models (chain ladder, PPCI and PPCF) are applied mechanically 

in their basic forms as described in Sections 4.1 to 4.3; 

 The PPCF function      is initially restricted to a simple quadratic form 

 

       ̅     ̅     ̅
  (4.41) 

 

 The inflation function      is restricted to linear (constant inflation rate) or 

linear spline (piecewise constant inflation rate). 

 

4.5.2 Anomalous accident and experience periods 

Occasionally a residual plot will reveal an entire accident or experience year to be 

inconsistent with others.  An example appears in Figure 4-3, which is a plot of 

standardised deviance residuals against experience year for the unadjusted chain 

ladder model applied to Company #671. 
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Figure 4-3  An anomalous experience year 

 
 

The anomalous experience of year 7 is evident.  In such cases, the omission of that 

year from the analysis, i.e. assignment of weight zero to all observations in the 

year, is regarded here as admissible. 

 

On other occasions a residual plot may reveal trending data.  If the trend is other 

than simple, greater predictive model may be achieved by a model that excludes 

all but the most recent, stationary data than by a model that attempts to fit the 

trend. 

 

An example appears in Figure 4-4, which is a plot of standardised deviance 

residuals against experience year for the unadjusted PPCI model with zero 

inflation, applied to Company #723.  The PPCI appear to a positive inflation rate 

initially, followed by a negative rate, and finally an approximately zero rate.  

Stationarity appears to be achieved by the exclusion of all experience years other 

than the most recent 3 or 4. 

 
Figure 4-4  A trending data set 
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4.5.3 Experience year (inflationary) effects 

Allowances made 

As noted in Section 2.4.1, claim payment data are unadjusted for inflation.  It is 

therefore highly likely that they will display trends over experience years.  The 

simple default option for incorporating this in the model is  

 

           (4.42) 

 

i.e. a constant inflation rate. 

 

The initial versions of the PPCI and PPCF models include the experience year 

effect (4.42).  In some cases, this simple trend is modified to a piecewise linear 

trend in alternative models. 

 

This default inflationary effect is not incorporated in the chain ladder model for 

the reason that it would not materially improve the fit of the model to data.  The 

reason for this is well known (Taylor, 2000) and is set out in Appendix B. 

 

If a constant inflation rate added to the chain ladder model, it would add one 

parameter to the model while making little change to the estimated loss reserve.  

This amounts to over-parameterisation and the anticipated effect would be a 

deterioration in the prediction error associated with the loss reserve.  This 

anticipation has been confirmed by numerical experimentation. 

 

As mentioned, in some cases the PPCI and PPCF models have included a slightly 

more complex inflation structure than simple linear, whereas the chain ladder 

models have not done so.  This perhaps gives the former models a predictive 

advantage over the chain ladder. 

 

This is not viewed as introducing unfairness into the comparison of the different 

models’ predictive powers.  The chain ladder, implemented by means of the chain 

ladder algorithm (Section 4.1.2) as is typically the case, is incapable of such a 

refinement.  

 

The inclusion of more complex modelling of experience year effects in PPCI and 

PPCF model but not in the chain ladder model, simply reflects the greater 

flexibility of GLM structures over rigid reserving algorithms. 

 

Extrapolation to future experience years 

The chain ladder model contains no explicit allowance for experience year effects 

though, as explained above, there is an implicit allowance for a constant inflation 

rate over the past and extrapolated into the future. 

 

In the case of the PPCI and PPCF models, any allowance for experience year 

effects will necessarily be explicit.  This necessitates decisions about the 

extrapolations of these effects into future experience years          .  The 

following decision rules have been followed: 

 When the past experience year trend takes the constant inflation form 

(4.42), the same form is extrapolated into the future, i.e. the future 

inflation rate is assumed constant and equal to the past rate; 
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 When the past experience year trend takes any other form, it is 

extrapolated as 

 

              for         (4.43) 

 

i.e. nil future inflation. 

 

 

4.6 Prediction error 

 

Prediction error has been estimated in conjunction with each loss reserve estimate.  

This takes the form of an estimate of mean square error of prediction (“MSEP”) 

of each   and each of its components   .  MSEP has been estimated by means of 

the parametric bootstrap, described in Section 4.6.1. 

 

As noted in Sections 4.2 and 4.3, the PPCI and PPCF models consist of two and 

three sub-models respectively.  These contrast with the chain ladder which is just 

a single model. 

 

Each sub-model contains its own prediction error and serves to enlarge the total 

prediction error in the forecast loss reserve.  The allowances made for the 

contributions of these sub-models are described in Sections 4.6.3 and 4.6.4. 

 

4.6.1 Parametric bootstrap 

A parametric bootstrap is used to estimate the distribution of the prediction of any 

single model.  The algorithm for application of this to a GLM is as set out in 

Figure 4-5. 
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Figure 4-5  Parametric bootstrap of a GLM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A large sample of pseudo-forecasts,   in number, is generated by this means. 

 

Assume that the GLM takes the form .  The forecast in the figure is  

 

 ̂       (  ̂   ) (4.44) 

 

The randomly drawn vector  , denoted  ̃, satisfies 

 

 ̃    ̂    ( ̂)  (4.45) 

 

where    ( ̂) is estimated for the GLM.  The normality assumption is usually 

justified by the fact that the estimates  ̂ are ML and therefore asymptotically 

normal with indefinitely increasing sample size. 

 

A pseudo-data set  ̃ is created, consistent with the model form  and parameter 

values  ̃: 

 

 ̃     (  ̃ )   ̃ (4.46) 

 

where  ̃ is a random drawing of  , consistent with the error structure assumed for 

the original GLM and with scale parameter as estimated on the basis of  . 

 

The original model  is now fitted to  ̃, yielding pseudo-estimates  ̂̃ and pseudo-

forecasts  ̂̃   . 
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By construction, the pseudo-forecasts, denoted  ̂̃                , are iid with 

the same distribution as  ̂   .  The empirical distribution associated with the 

sample { ̂̃                } is then taken as an approximation to the 

distribution of  ̂   . 

 

4.6.2 Chain ladder model 

The parametric bootstrap described in Section 4.6.1 is applied to the GLM version 

of the chain ladder set out in Section 4.1.3. 

 

4.6.3 PPCI model 

The PPCI model consists of: 

 one GLM for PPCIs, as described in Section 4.2.1, dependent on the   ; 

and  

 a second GLM to provide forecasts  ̂  of the    (Section 4.2.2), which 

are then used as proxies for the    (Section 4.2.3). 

 

Both of these models are bootstrapped and linked according to Figure 4-6. 
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Figure 4-6  Bootstrap of PPCI model 
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forecast amount of claims yet to be paid in respect of an accident year. 
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incurred for accident year  , then the  -th forecast of paid losses for cell       is 

calculated as  ̂̃  
      

  ̂̃ 
      

 ̂̃  
      

. 

 

The final result at the bottom right of the diagram represents the set of pseudo-

forecasts { ̂̃                }, where each  ̂̃       is a vector of quantities 

 ̂̃ 
      

, denoting the  -th pseudo-loss-reserve for accident year  .  

 

4.6.4 PPCF model 

 

The PPCF model consists of: 

 one GLM for PPCFs, dependent on the    , as described in the payments 

sub-model of Section 4.3.2;  

 a second GLM to provide forecasts  ̂  of the    (Section 4.2.2), which 

are then used as proxies for the    in the calculation of OTs as in (4.23); 

and 

 a third GLM to provide forecasts of future numbers of claim finalisations, 

as described in the finalisations sub-model of Section 4.3.2. 

 

All of these models are bootstrapped and linked according to Figure 4-7, most of 

which can be interpreted by reference to the description of Figure 4-6.  Features 

peculiar to Figure 4-7 are as follows. 

 

The finalisation counts are seen to be put to two different uses: 

 as input to a GLM that forecasts future counts of finalisations; and 

 as input to the calculation of OTs. 

 

The OTs just mentioned also require estimates  ̂  as inputs (see (4.23)), and these 

are obtained as forecasts from a GLM calibrated against the reported claim count 

triangle, just as in Section 4.6.3.  

 

The block arrow connecting OT and PPCF data is intended to indicate that they 

form joint input to the GLM of PPCFs. 

 

The figure clearly shows the existence of three separate bootstraps, and the links 

show how all three contribute to the pseudo-forecasts of PPCFs.  Indeed, the 

pseudo-forecasts of finalisation counts contribute in two distinct ways: 

 they lead to pseudo-forecasts of OTs, which are required to form the 

pseudo-forecasts of PPCFs; and 

 they are combined with the pseudo-forecasts of PPCFs to yield pseudo-

forecasts of paid losses. 
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Figure 4-7  Bootstrap of PPCF model 
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5. Results 
 

5.1 Triangles selected for analysis 

 

5.1.1 Lines of business selected 

Although paid loss data was available in respect of 6 LoBs (Section 3.1), claim 

count data was available in respect of only three of these (Section 3.2), viz. 

 Private passenger auto; 

 Commercial auto; 

 Workers compensation. 

 

The first two of these are short tailed to the extent that one would expect 

elementary loss reserving procedures, such as the chain ladder, usually to be 

adequate.  The refinement of models such as the PPCF is likely to be of greatest 

use in longer tailed data sets, which re characterised by: 

 The potential for substantial movement over time in the OTs associated 

with particular development years; and 

 Substantial differentiation of claim sizes by OT. 

 

For these reasons the workers compensation LoB was selected for 

experimentation. 

 

5.1.2 Companies selected  

 

The workers compensation data base contained 166 companies.  For various 

reasons, a PPCF model could not be applied to many of these, as detailed in Table 

5-1. 

 
Table 5-1  Defective PPCF data sets 

Nature of data defect Number of 

companies 

Only small amounts of incurred losses 49 

Start-up during period of training data set 14 

Wind-down during period of training data set 7 

Incurred loss amounts submitted only for a subset of training data 

set diagonals 

 

7 

No finalisation count data submitted 6 

Finalisation count data submitted only for a subset of training data 

set diagonals 

 

5 

Virtually no paid loss data submitted 1 

Reported claim count data submitted only for a subset of training 

data set diagonals 

 

1 

No defect 76 

Total  166 
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Now consider the conditions under which the application of a PPCF model would 

be suitable.  When a portfolio is subject to claim finalisation rates that change 

over accident years, i.e. the OTs represented within a given development year 

change from accident year to another, expected chain ladder age-to-age factors 

will shift with accident year.  Indeed any model that does not recognise 

finalisation counts will be similarly distorted, i.e. subject to prediction bias. 

 

The strength of the PPCF model is that it corrects for these shifts.  The greater the 

degree of change in finalisation rates, the greater the value expected of the PPCF 

model.   

 

Conversely, the model can be expected to add nothing in the absence of change in 

finalisation rates.  In these cases, the PPCF model adds additional parametric 

structure with no expectation of improvement in prediction bias.  Conventional 

statistical theory informs one that a model containing additional parameters that 

serve no apparent prediction purpose is likely to produce greater prediction 

uncertainty than a more parsimonious model. 

 

Portfolios that started up or wound down during the period of the training set data 

contained a limited number of live accident years.  In many of these cases, it 

appeared doubtful that volume of observations was sufficient to reveal changing 

rates of finalisation to the extent that the PPCF model would become superior.  

Consequently, cases of start-up or wind-down were excluded from consideration. 

 

Table 5-1 indicates that more than half of the available companies were excluded 

from consideration for this reason and others concerned with data issues.  Of 

those that remained, many were not realistic propositions for PPCF modelling.  A 

substantial number of cases were fairly clearly affected by data errors. 

 

An example is provided by Company #1066, whose triangle of counts of 

unfinalised reported claims appears as Table 5-2.  The egregious entries along the 

penultimate diagonal are clearly visible. 

 
Table 5-2  Company #1066: counts of unfinalised reported claims 

 
Accident

year 1 2 3 4 5 6 7 8 9 10

1988 0 229 162 81 43 23 11 8 -5 4

1989 876 513 231 105 42 25 16 463 7

1990 1424 854 272 108 66 34 305 8

1991 1693 475 182 86 42 1285 17

1992 1476 445 204 95 1922 23

1993 1159 384 152 4690 34

1994 1521 336 8516 57

1995 953 9641 114

1996 8170 114

1997 409

Number of unfinalised reported claims at end of development year

  
 

Thus, many fewer than half of the 166 company data sets were suitable for PPCF 

analysis. 
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As pointed out earlier in the present sub-section, the PPCF model is likely to be 

useful only in the presence of changing claim finalisation rates.  Hence the 

company data sets that were not excluded by Table 5-1 were reviewed in order to 

identify those subject to significant changes in finalisation rates. 

 

Several simple measures were constructed for this identification.  Details follow. 

 

Variation in OTs experienced in specific development years 

Consider the values of OT       defined by (4.23) and convert each of these to its 

complement        .  This latter vaue is of more direct relevance to a loss 

reserve as it represents the proportion of claims incurred by number remaining to 

be finalised. 

 

Let           denote the arithmetic mean and mean absolute deviation of the 

values of         observed over development year  .  Then define the first 

measure of variation in rates of finalisation as the following weighted average of 

the ratios         ⁄           : 

 

      ∑      
    

    

 

   

∑      

 

   

⁄  

 (5.1) 

where each ratio has been weighted by the number of observations on which it 

depends. 

 

Variation in OTs experienced in development year 1 

Development year 1 usually experiences the highest incidence of claim 

finalisation.  Any radical variation in the rate of finalisation is likely to be visible 

in this development year.  The second measure of variation in rates of finalisation 

is therefore calculated in terms of the variation development year 1 rates from one 

accident year to the next, as follows: 

 

         
    

             

   [             ]
 

 (5.2) 

 

Variation in OTs experienced along most recent diagonal 

If, for a specific accident year, the OT attained in the most recent diagonal, i.e. at 

the end of claims experience to date, is approximately equal to a value typical for 

the development year attained by the accident year in question, then models that 

do not give particular recognition to finalisation counts may produce reliable loss 

reserves notwithstanding past changes in rates of finalisation.  In short, the effects 

of past changes in rates of finalisation may neutralise one another. 

 

Conversely, those same models may produce unreliable loss reserves in the 

presence of large departures from typical OTs along the most recent diagonal.  

Hence the third measure of variation in rates of finalisation (or, more precisely, 

the effect thereof on loss reserve) is the weighted average: 
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      ∑          
            

         

    

      

∑          

    

      

⁄  

 (5.3) 

 

Variation in premium volume 

Some portfolios show very large variations in net earned premium even without 

actual start-up or wind-down.  Such large changes may induce changes in the 

nature of the business under written and, as a result, in its settlement patterns.  

Such cases will generate small values of the statistic: 

 

        
    

     
    

  ⁄  

 (5.4) 

where    denotes the net earned premium for year  . 

 

It is not suggested that the PPCF model is less able than other models to deal with 

this situation.  However, such cases do not form the best test bed for model 

comparison, and so portfolios displaying low values of      have not been 

selected for test data sets. 

 

Ultimately 9 insurers were selected.  They are listed in Table 5-3, along with the 

selection measures         and     .  According to the above discussion, a 

data set becomes more suitable for inclusion as: 

       departs from 100%; 

 Either of       or       increases; 

and provided that      is not too small. 

 
Table 5-3  Selected test data sets 

 

Company Value of selection measure 

 VRoF1 VRoF2 VRoF3 VNEP 

 % % % % 

#671 16 27 92 29 

#723 13 7 97 38 

#1538 28 25 118 54 

#1694 6 31 102 37 

#1767 8 6 98 42 

#3360 58 95 81 67 

#4731 6 9 101 25 

#4740 20 29 76 46 

#38733 31 49 92 43 

 

Companies #1767, #4731 appear not to meet the selection criteria.  However, 

examination of the constituents of the selection measures reveals the following: 

 Company #1767.  Displays values of the constituent ratio 
[            ]          ⁄  (see (5.3)) for a couple of accident 

years materially different from 100%, despite the closeness of the average 

      to this value. 
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 Company #4731.  Similar comment and, in addition, some relatively large 

values of the constituent ratio           (see (5.1)) for several 

development years, despite the smallness of the average      . 

 

 

5.2 Model assessment 

 

A major purpose of the compilation of the Meyers & Shi data base was the 

retrospective testing of loss reserve models.  Accordingly, one is expected to 

apply the following procedure to the data base or a subset of it: 

 Calibrate a model by reference to the training triangle(s), as defined in 

Section 3.1; 

 Forecast loss reserve from the calibration 

 Compare forecast with the actual outcomes, as given by the test 

triangle(s), i.e. symbolically, compare  , as defined by (2.4), with its 

forecast  ̂, and also perhaps compare    with  ̂ . 

 

While this approach, applied to a collection of models, will certainly determine 

which model produced the closest forecasts to subsequent outcomes, this will not 

necessarily equate to testing the general forecasting qualities of the models.   

 

Strictly, the forecast  ̂ should be written  ̂   , and this should be tested against 

some value of   that is consistent with   , i.e. one seeks to answer the question 

“Was  ̂ a good forecast on the basis of the information that existed at the end of 

year  ?”.  Or, expressed another and slightly more precise way, “Was  ̂ a tight 

forecast (small prediction error) under the condition that the state(s) of the world 

existing over the training interval    persist through the test interval?” 

 

If   
  is inconsistent with   , then the difference   ( ̂   ) will reflect this fact 

and will not necessarily be informative on the questions just posed.  An example 

will illustrate. 

 

Suppose that wage inflation is consistently 4% per annum throughout the training 

interval but falls to nil immediately at the end of that interval and remains there 

throughout the test interval.  Suppose this causes the outcome   to be 10% less 

than would have occurred had the 4% inflation regime endured. 

 

Now consider Models A and B.  The former estimates claims inflation to be 4% 

per annum over   .  It is sufficiently flexible to be able to produce forecasts on 

the basis of any desired set of future inflation rates.  However, on the basis of   , 

a future rate of 4% is inserted into it.  The resulting forecast is equal to      .  If 

the future inflation rate had been known from some external source to be nil, the 

forecast could have been corrected to precisely the correct value. 

 

Model B contains a purely implicit, and non-estimable, allowance for claims 

inflation.  Its forecast is precisely equal to  .  It is asserted here that this is not a 

reasonable estimate on the basis of the facts at the time of its formulation.  The 

same forecast would have remained   had the inflation rate increased rather than 

decreased.  Its equality to its estimand is fortuitous rather than informative.  
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5.3 Numerical results 

 

5.3.1 Adopted models and results 

Table 5-3 lists the company data sets selected for analysis.  Each of these has been 

modelled by chain ladder, PPCI and PPCF models.  In most cases, several 

variations of each of these models have been tested, and the best in each category 

selected for comparison with the other categories. 

 

The families of specific model forms are as follows: 

 

Chain ladder model 

The model is as set out in (4.5)-(4.7) where weights take the form: 

 

         if           

    otherwise (5.5) 

 

with     {           }, a set of experience years specific to the company 

and model. 

 

PPCI model 

The model is as set out in (4.17)-(4.18) where values of the scale parameter take 

the form (4.20) but with some exceptions, as follows: 

 

      (cell weight = 0) if             

    ̂ 
  otherwise (5.6) 

 

where          . 

 

While the member of (4.18) involving the function      was included in a number 

of test models, in no case did its inclusion produce a model that was materially 

superior (to that which excluded it).  So this member does not feature in the PPCI 

models summarised in Table 5-5. 

 

PPCF model 

The model is as set out in (4.27) where values of the scale parameter take the 

form: 

 

      (cell weight = 0) if             

      ⁄  otherwise (    from (4.29))  (5.7) 

 

where          , and 

 

                
  OR (5.8) 

                     [       ]  OR (5.9) 

                                   (5.10) 

 

        ∑       (                )
 
    (5.11) 
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for a defined set of values {       } subject to                . Some 

coefficients     were set to zero before model fitting commenced.  

 

Equation (5.11) represents the experience year effect as a linear spline with 

    knots {         }.  The gradient of the spline segment over the interval 

            is    .  The following special cases occur: 

   :  (5.11) reduces to a simple linear function over the interval   
            (constant rate of claim cost escalation, as in (4.14)). 

   :  By convention, (5.11) is taken to be null. 

 

Table 5-4 sets out the specific model choices adopted and whose results are 

reported in Table 5-5. 

 
Table 5-4  Selected models 

 

Company Chain 

ladder 

model 

PPCI 

model 

PPCF model 

                     from   Knots    
#671 {         } {     } {         } (5.8) 2 {1992} 

#723 {     } {     }   (5.8) 3 {1991,1993} 

#1538 {     } {     }   (5.9) 3 {1991,1994} 

#1694 {     } {     }   (5.9) 4 {1991,1993,1995} 

#1767 {     } {     } {     } (5.8) 0  

#3360 {     } {     }{  }   (5.8) 0  

#4731 {     } {     }   (5.10) 2 {1995} 

#4740   {     } {     } (5.8) 0  

#38733 {         } {     }   (5.8) 3 (a) 

Note: (a) This case is exceptional.  It does not involve a linear spline, but instead the PPCF is constant 

across all experience years except 1993, for which it assumes a different value. 

 

Table 5-5 displays the principal results obtained from the application of the models 

described in Table 5-4.  Detail underlying the table appears in Appendix C. 

 

The left part of the table reports the “CoV”, or coefficient of variation of the 

forecast loss reserve, defined as: 

 

    
     

                     
 

  (5.12) 
 

where both numerator and denominator are obtained from the bootstrapped 

empirical distribution of outstanding losses described in Section 4.6.1. 

 

The right part of the table reports the ratio of forecast loss reserve to the actual 

claim cost outcome from the test triangle. 
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Table 5-5  Forecast results 

 

Company

Chain PPCI PPCF Chain PPCI PPCF

ladder ladder

#671 18 11 11 120 106 91

#723 12 8 9 94 101 118

#1538 24 14 11 105 95 138

#1694 6 6 8 83 87 94

#1767 5 5 4 93 109 106

#3360 6 12 22 52 64 81

#4731 8 8 8 123 96 109

#4740 7 6 7 104 94 82

#38733 10 9 22 88 89 289

CoV (%) Ratio to actual (%)

 
 

For each company in Table 5-5, the smallest CoV(s) are displayed in bold italic 

font.  The associated model(s) are the “winner(s)” for that company.  Table 5-6 

records the score of each model, where the score is equal to the number of wins 

out of the 9 cases, with a score of ½ in the case of a two-way tie, and a score of ⅓ 

in the case of a three-way tie. 

 
Table 5-6  Model scores 

 

Model Number Percentage

of wins of wins

Chain ladder 1.8 20%

PPCI 4.3 48%

PPCF 2.8 31%

Total 9 100%  
 

It is seen that the use of count data improves prediction error in 7.1 cases out of 9, 

i.e. 80% of the cases. 

 

5.3.2 Discussion of results 

It is instructive to examine the circumstances in which the different models 

produce superior predictive performance.  This may be done by examining Table 

5-3 and Table 5-5 in conjunction. 

 

Company #3360 

The chain ladder is clear winner in only one case, namely company #3360. 

VRoF1 and VRoF2 in Table 5-3 indicate that this portfolio is characterised by 

extremely variable rates of claim finalisation.  The details of this appear in Table 

5-7, which displays the company’s triangle of OTs (actually complements 

thereof). 

 

If rates of finalisation had been constant, then entries in this table would have 

been constant within each column.  Evidently, this is far from the case. 
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Table 5-7  Company #3360: operational times 

 

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 0.119 0.075 0.046 0.032 0.025 0.015 0.008 0.005 0.004

1989 0.483 0.149 0.093 0.062 0.045 0.025 0.015 0.008 0.006

1990 0.473 0.109 0.049 0.008 -0.036 -0.051 0.018 0.014

1991 0.557 0.222 0.168 0.088 0.057 0.033 0.024

1992 0.561 0.225 0.122 0.058 0.025 0.011

1993 0.567 0.172 0.091 0.029 0.015

1994 0.576 0.182 0.052 0.032

1995 0.485 0.114 0.069

1996 0.273 0.092

1997 0.498

Complement of operational time attained by end of development year

 
 

A number of cells are shaded in Table 5-7, indicating likely disruptions to, or 

errors in, the data. 

 Accident year 1988.  There is no entry for development year 1.  This is 

because no claims were reported for this cell, rendering calculation of 

numbers of finalisations impossible.  It appears that the number of claims 

reported as received in development year 2 was actually the total for 

development years 1 and 2. 

 Accident year 1990.  The entries for development years 5 and 6 indicate 

that cumulative numbers of finalisations to those years exceeded the total 

number of claims estimated as incurred ( ̂ ) for 1990, which in turns 

exceeds the total number reported to the end of the relevant development 

year.  This indicates the presence of data errors.  Examination of the 

source data enables this anomaly to be traced to a large and negative 

number of claims reported in development year 6 (see Appendix A.2.6). 

 Accident year 1996.  This year is subject to dramatic increase in the rate 

of finalisation over accident year 1995, and one that is not sustained into 

accident year 1997.  Reference once again to the source data for reported 

claims in Appendix A.2.6 reveals a dramatic increase in claim counts in 

accident year 1996, followed by a reversal of this in accident year 1997.  

Net earned premium did not change markedly over this period.  To all 

appearances, either: 

o the data for the accident year are erroneous; or 

o the nature of the claims incurred changed abruptly, and 

temporarily, around 1996. 

 

It is evident that the reliability of the models depending on claim counts (PPCI 

and PPCF) will be a function of the reliability of those counts.  In the present 

case, there is clear evidence of errors in the counts and other cause to view them 

with suspicion. 

 

In the case of clearly erroneous data (Appendices A.2.6 and A.3.6), the offending 

cells have been assigned zero weight in any modelling.  However, it is possible 

(probable?) that adjacent cells at least carry similar anomalies that are not 

manifestly errors, e.g. quantities (1-OT) are under-stated but not actually negative. 
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The conclusion of this reasoning is that the application of PPCI and PPCF models 

to company #3360 was dubious from the start, and it is perhaps not surprising that 

the chain ladder forecast appears superior. 

 

Company #1694 

For this company the chain ladder is involved in a two-way tie with the PPCI 

model as the best predictor. 

 

Reference to Table 5-3 indicates little overall variation in rates of claim 

finalisation (VRoF1), and OTs at the end of 1997 reasonably close to average 

values (VRoF3), though some appreciable movement in OTs observed in 

development year 1 (VRoF2).  The detail appears in Table 5-8. 

 
Table 5-8  Company #1694: operational times 

 

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 0.261 0.065 0.031 0.018 0.010 0.006 0.005 0.003 0.002 0.001

1989 0.260 0.064 0.032 0.018 0.012 0.008 0.005 0.004 0.003

1990 0.191 0.060 0.031 0.019 0.012 0.008 0.005 0.004

1991 0.197 0.061 0.032 0.019 0.012 0.009 0.006

1992 0.197 0.061 0.030 0.017 0.011 0.008

1993 0.200 0.060 0.031 0.018 0.012

1994 0.242 0.063 0.033 0.018

1995 0.219 0.060 0.028

1996 0.225 0.060

1997 0.232

Complement of operational time attained by end of development year

 
 

The single large shift in OTs occurs in development year 1 in the transition from 

accident year 1989 to 1990.  One may conclude then that the finalisation count 

data adds little information.  In this case it is unsurprising that PPCF model is 

outperformed by the other two. 

 

Company #4731 

For this company the chain ladder is involved in a three-way tie with the PPCI 

and PPCF models as the best predictor. 

 

It was noted earlier in relation to Table 5-3 that this company appeared to have 

experience relatively stable rates of claim finalisation by all three criteria VRoF1-

3.  However, reference was made to the fact that some of the ratios in           
in (5.1) were material.  Specifically, these were development years 6, 7 and 8.  

The individual development year contributions to VRoF1 were as shown in Table 

5-9. 
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Table 5-9  Company #4731: development year contributions to VRoF1 

 

Development Ratio

year j

1 4%

2 3%

3 4%

4 4%

5 6%

6 13%

7 14%

8 16%

9 2%  
 

The instability of rates of claim finalisation In development years 6 and later 

suggests that the PPCF model may produce loss reserve forecasts of superior 

reliability in accident years whose liability relates mainly to these development 

years. 

 

Table 5-10 gives the CoVs of loss reserve separately by accident year for each of 

the three models.  The loss reserve for accident year 1989 and 1990 do not 

involve development years 6 to 8, only 9 and 10.  The PPCF model is not superior 

here. 

 

On the other hand, loss reserves for accident years 1991 to 1993 are dominated by 

development years 6 to 8, and accident year 1994 is heavily affected by them.  

And here the PPCF model does produce superior performance. 

 

The influence of these development years steadily diminishes with accident year 

increasing from 1994.  And, sure enough, the PPCF model loses it superiority in 

these accident years. 

 
Table 5-10  Company #4731: loss reserve prediction errors by accident year 

 
Accident

year chain PPCI PPCF

ladder

1989 76 73 93

1990 38 38 44

1991 29 28 28

1992 21 21 19

1993 17 16 14

1994 12 12 10

1995 9 9 9

1996 7 7 7

1997 5 5 6

Total 8 8 8

Estimated CoV of loss reserve (%)

 
. 
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Company #1538 

Table 5-3 showed this company to have exhibited a consistently high degree of 

variation in rates of claim finalisation.  The detail appears in Table 5-11. 

 
Table 5-11  company #1538: rates of claim finalisation 

 

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 0.367 0.081 0.030 0.012 0.0057 0.0024 0.0003 0.0003 0.0000 0.0000

1989 0.393 0.097 0.043 0.021 0.0091 0.0042 0.0022 0.0017 0.0015

1990 0.373 0.102 0.047 0.024 0.0116 0.0034 0.0025 0.0015

1991 0.478 0.112 0.048 0.023 0.0131 0.0085 0.0074

1992 0.381 0.078 0.028 0.011 0.0057 0.0035

1993 0.382 0.079 0.029 0.010 0.0048

1994 0.362 0.086 0.039 0.026

1995 0.363 0.090 0.054

1996 0.364 0.114

1997 0.450

Complement of operational time attained by end of development year

 
 

Thus, company #1538 appears a priori to be a good candidate application of the 

PPCF model.  And so it proves in Table 5-5, where that model outperforms its two 

rivals and, in particular, outperforms the chain ladder by a large margin.  

 

It may be noted that there is some uncertainty concerning the numbers of claims 

incurred, and hence the OTs, for the company due to the high error rate in the 

triangle of numbers of claims reported (Appendix A.2.3). 

 

Company #38733 

Table 5-3 also indicates a consistently high degree of variation in rates of claim 

finalisation of this company.  In an apparent paradox, however, the PPCF model 

performs extremely poorly. 

 

Part or all of the explanation in this case appears to lie in faulty data.  The triangle 

of finalisation counts appears in Table 5-12, in which anomalous observations have 

been shaded. 

 

The entry of 282 in accident year 1989, development year 8 appears most peculiar 

and seems likely to be a mis-statement.  It arises from a recorded number of 281 

claims reported in the cell, whereas the expected number would have been 1 or 2.  

In addition, there are systematic anomalies in accident years 1988 and 1989.  One 

may be forgiven for considering these data of dubious integrity. 
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Table 5-12  company #38733: finalisation counts 

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 2,057 1,520 84       18       27       1         14       7         37       1         

1989 3,524 834    111    64       7         13       10       282    3         

1990 4,438 836    178    6         24       15       4         4         

1991 4,577 821    111    62       30       18       3         

1992 5,656 913    142    55       25       10       

1993 6,067 1,011 143    46       29       

1994 5,760 940    120    46       

1995 5,487 820    113    

1996 5,190 734    

1997 4,908 

Finalisation count in development year

 
 

A version of the PPCF model was produced in which all observations associated 

with either or both of accident year 1989 and experience year 1993 were assigned 

zero weight, but without improvement in prediction error.  The reason for this 

may be as follows. 

 

If there were data errors in the shaded cells, there might be sympathetic errors in 

other cells.  For example, finalisation counts in experience year 1993 appear low 

for a number of accident years.  If this derives from some systematic mis-

reporting whereby some finalisations from that experience year have been 

assigned to others, then a large number of entries in the table may be incorrect. 

 

All in all, it is difficult to assess the quality of finalisation count data for this 

company and the applicability of the PPCF model. 

 

 

6. Model extensions 
 

It is explained in Section 4.5.1 that, for comparability with the chain ladder 

model, the PPCI and PPCF models are restricted to relatively simple and 

mechanical forms.  No attempt has been made to optimise these model forms.  It 

is likely that further investigation would lead to improved model forms, with 

accompanying reduction in their respective prediction errors. 

 

 

6.1 PPCI model 

 

Some simple possibilities can be outlined.  First, recall assumption (PPCI2) in 

Section 4.2.1, leading to (4.13).  According to this, the expected PPCI in cell 

      takes the form           .  The development year effect    is treated 

here as a categorical variable, and so estimates are required of the 10 parameters 

        . 

 

This is done for comparability with the chain ladder model, which similarly 

specifies age-to age factors as the categorical variable       in (4.6).  It represents, 

however, parametric profligacy, as it is likely that some parametric form      
could be found that would represent the development year effect almost as 
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accurately as    and with considerably fewer parameters.  This would reduce 

prediction error. 

 

For example, Hoerl curves, as used by De Jong & Zehnwirth (1983), are 

sometimes used to represent the development year effect.  These take the gamma-

like parametric form: 

 

                   (6.1) 

 

represented by just two parameters instead of 10. 

 

 

6.2 PPCF model 

 

One of the distinctions between the PPCI and PPCF models is that the latter 

contains an OT effect that is already expressed parametric form (see (5.8) to 

(5.10)).  However, one of the requirements of the model in Section 4.5.1 is that 

initially      take the same form for all insurers.   

 

This restriction is relaxed later, but it is still fair to say that the parametric form of 

     has been only lightly researched.  Further investigation might lead to 

improved prediction error of the PPCF model. 

 

 

6.3 Hybrid forecasts 

 

Table 5-10 raises the possibility of hybrid forecasts.  For example, one might base 

the loss reserve on say: 

 the PPCF model for the middle accident years 1991-1995; and  

 the PPCI model for the early and late accident years 1989-1990 and 1996-

1997. 

 

The effect is close to optimisation of the CoV of the total loss reserve.  This 

would be less than the CoV from any one of the models.  Note that this 

diversification from a single model is likely to reduce correlation across accident 

years, which will also contribute to reduction in the CoV of the total loss reserve. 

 

Hybrid forecasts are discussed further in Chapter 12 of Taylor (2000). 

 

 

6.4 Incurred losses 

 

This paper has concentrated on incremental paid claim data, its analysis, and 

subsequent forecast.  The same data source also provided triangles of incurred 

claims (defined in a cell as equal to paid claims adjusted by the increase in case 

estimates of unpaid claims over the interval from beginning to end of the cell). 

 

The incurred claims data has not been used here.  However, it could have been 

subjected to analysis by means of the chain ladder and other models.  Those other 

models would not have been PPCI or PPCF, but would need to have been adapted 
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to case estimate data.  Some of the issues associated with such models are aired in 

Section 4.4 of Taylor (2000). 

 

How the chain ladder would have fared in competition with these other models 

remains to be seen.  This exercise is left for other investigators. 

 

 

7. Conclusion 
 

The purpose of the present paper has been to test whether loss reserving models 

that rely on claim count data can produce better forecasts than the chain ladder 

model (which does not rely on counts); better in the sense of being subject to a 

lesser prediction error. 

 

A couple of commonly cited arguments against the use of count data have been 

canvassed in Section 1.  It is suggested here that the data be allowed to speak for 

themselves, and that count data be used if doing so reduces prediction error, and 

not used otherwise. 

 

The question at issue has been tested empirically by reference to the Meyers-Shi 

data set.  While this includes data from a large number of portfolios, many of 

these are unsuitable for various reasons. 

 

Ultimately the empirical investigation relies on only 9 workers compensation 

portfolios.  This is limited and it is unlikely that the results can be considered 

conclusive.  On the other hand, a consistent and coherent narrative emerges from 

the results to the point where they may be considered at least compelling. 

 

Some trouble has been taken in attempting to ensure comparability between the 

different models.  The chain ladder is a largely mechanical algorithm without user 

judgement or intervention.  The formulation and calibration of the competing 

models (PPCI and PPCF) are much more flexible.  Taking advantage of this 

flexibility, with detailed statistical modelling determining the algebraic form of 

the model might be considered to confer an unfair advantage on these models.  

For this reason, the competing models have also been largely constrained to 

relatively mechanistic versions. 

 

This approach may hobble the competing models unduly.  It may well be argued 

that the inflexibility of the chain ladder is an intrinsic shortcoming, and that 

imposing the same shortcoming on other models, where it does not naturally exist, 

does not in fact promote fairness of comparison. 

 

Nonetheless, this is the approach taken here, and so to the extent that favourable 

aspects of the chain ladder that emerge from this study, they are probably over-

stated.  Conversely, any favourable findings in respect of the competing models 

probably apply a fortiori. 

 

The 9 selected data sets were chosen according to a number of criteria (detail in 

Section 5.1), including material changes in rate of claim finalisation over the 

training interval.  These are the circumstances in which the PPCF model in 

particular is, on a priori considerations, likely to perform well for, in the event of 
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finalisation rates that remained strictly constant over time, finalisation counts 

would add no information to the loss process and forecast based on them would 

be expected to be inferior. 

 

The first finding is that, for the selected data sets, the chain ladder rarely performs 

well.  Either PPCI or PPCF model produces, or both produce, superior 

performance, in terms of prediction error, 80% of the time (Section 5.3.2). 

 

When the chain ladder produces the best performance of the three models, the 

reasons are evident.  Either count data contain erratic entries (companies #3360, 

#38733), or rates of claim finalisation are less variable than at first appeared 

(company #1694).   

 

The first case is one in which the data speak for themselves; the second is a 

demonstration of the conclusion already reached that the chain ladder is likely to 

produce reliable estimates, relative to the PPCF model at least, in the presence of 

a high degree of stability in rates of claim finalisation. 

 

For a portfolio characterised by consistently high variation in finalisation rates 

(company #1538), the PPCF model is likely to produce the forecast of loss reserve 

that has the lowest prediction error. 

 

Sometimes variation in finalisation rates is seen to affect some accident years 

particularly, and other less so (company #4731).  In these cases it is likely that the 

PPCF model will produce superior forecasts for the accident years affected, and 

inferior forecasts for the others. 

 

Of the three LoBs for which count data were available, two (Private Passenger 

Auto and Commercial Auto) were short tailed.  Here there is comparatively little 

scope for the chain ladder to under-perform, and so rival models are likely to be 

less useful. 

 

The remaining LoB, on which the present study has relied, is only medium tailed.  

Typical experience is that the advantage of PPCI, and particularly PPCF, models 

over the chain ladder increases with tail length, since the longer tailed LoBs (e.g. 

Auto Bodily Injury, Public Liability) bring rates of claim finalisation more into 

play.   

 

Moreover, the PPCF model is best adapted to claims whose payments are 

concentrated close to the finalisation date.  This is typical of claims subject to 

settlement under the law of tort.  The long tailed LoBs cited above satisfy the 

condition but the workers compensation LoB usually would not. 

 

Certainly, there is a sentiment in some jurisdictions that failure to consider count 

data in the long tailed cases creates a serious risk of mis-estimation of loss 

reserve, and could expose the actuary to liability for negligence.  An example of 

such mis-estimation is given in the data set investigated by Taylor (2000). 

 

From this follows an expectation that the conclusions reached in this paper in 

connection with the workers compensation LoB would be likely to emerge in 

starker relief if a long tailed LoB were investigated. 
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Appendix A 

Data 
 

A.1 Paid loss amounts 
 

A . 1 . 1 Company #671

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 1346 2043 1277 665 388 378 29 166 76 47

1989 1411 2230 1088 623 583 97 29 161 70

1990 1424 3036 1331 1158 17 358 272 134

1991 2355 3853 1983 177 527 267 402

1992 2544 5010 454 1676 953 188

1993 3512 3233 2428 1113 503

1994 2708 4652 2724 1350

1995 2609 3631 2040

1996 2652 2680

1997 2192

A . 1 . 2 Company #723

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 3888 4193 2194 1432 546 417 176 191 14 15

1989 3708 4358 1912 1380 647 280 168 165 120

1990 5176 6713 3711 2066 762 500 149 65

1991 6792 6838 3213 1134 850 635 460

1992 6091 5602 2252 1209 825 698

1993 5374 5076 2090 1221 716

1994 4533 4270 1586 707

1995 4399 3993 1450

1996 4361 4489

1997 3392

A . 1 . 3 Company #1538

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 3178 3225 2420 1063 733 334 121 23 27 19

1989 3708 4982 3039 1300 970 285 285 54 13

1990 5220 5771 2628 1566 770 458 42 260

1991 4198 4874 2040 1148 669 328 128

1992 3597 3878 1578 794 616 244

1993 4281 4134 1855 1233 442

1994 5329 5401 2171 626

1995 4631 4475 1641

1996 4217 4530

1997 4169

Amount of paid losses during development year ($000)

Amount of paid losses during development year ($000)

Amount of paid losses during development year ($000)
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A . 1 . 4 Company #1694

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 30515 38802 22027 14027 8984 4990 3034 2230 1173 817

1989 39708 45440 23634 15867 8236 6422 4398 2311 1896

1990 46048 49806 28397 16800 9427 6885 3937 2731

1991 48445 42578 25783 18192 10272 5330 3832

1992 41470 40719 21793 12222 7492 5412

1993 34998 27593 14256 8414 4734

1994 25756 24086 11352 5085

1995 23079 21427 10770

1996 20902 18046

1997 19712

A . 1 . 5 Company #1767

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 22190 38644 24270 15047 8661 6155 3823 2768 1934 1557

1989 26542 51256 28609 16015 10937 5240 4430 2683 1646

1990 32977 67517 34392 22872 11233 9074 4722 4973

1991 38604 75824 42675 24219 16089 11393 4592

1992 42466 83354 38956 24269 15332 9527

1993 46447 70317 38133 24522 14257

1994 41368 58976 31677 19060

1995 35719 47497 28052

1996 28746 37287

1997 25265

A . 1 . 6 Company #3360

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 18283 24201 16193 10435 5555 2649 1985 1014 778 585

1989 21346 26631 21455 12389 5778 3530 1765 1295 621

1990 24771 40101 26546 14214 7747 4569 3304 1983

1991 26946 37927 24474 15733 8112 4584 2824

1992 24419 30621 23272 13656 8142 4047

1993 20715 26516 16343 11434 6439

1994 22416 29599 21498 11096

1995 27696 36055 25378

1996 26637 53871

1997 32509

Amount of paid losses during development year ($000)

Amount of paid losses during development year ($000)

Amount of paid losses during development year ($000)
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A . 1 . 7 Company #4731

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 3272 3682 1805 1571 1111 590 298 338 258 161

1989 3818 4052 2184 1314 923 611 296 194 339

1990 5375 5488 2783 1903 1407 661 466 235

1991 5871 6103 4019 1771 1015 531 563

1992 7701 8970 4540 2312 1483 642

1993 8383 8828 3954 2312 1132

1994 9304 11264 5231 3056

1995 8409 8465 3674

1996 6985 6924

1997 6602

A . 1 . 8 Company #4740

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 27711 32029 23699 14910 5194 5948 2959 2101 1254 2996

1989 29975 37522 28278 17738 13028 5876 2369 2484 3139

1990 31555 40802 26001 17864 8860 3573 2707 3956

1991 32667 37919 27630 16571 8074 4134 3868

1992 35529 47377 27673 14712 8217 7650

1993 34690 46254 28256 16389 10883

1994 39147 44837 26988 20761

1995 34362 44470 30695

1996 33710 45883

1997 32206

A . 1 . 9 Company #38733

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 4386 3526 1756 834 389 290 158 83 71 20

1989 5321 4902 1939 889 484 199 194 94 86

1990 4775 5819 2930 1313 516 204 184 141

1991 6731 8442 3378 1841 876 610 347

1992 9166 9711 3291 1091 690 350

1993 8321 8235 2983 1479 1140

1994 7045 7389 2739 1458

1995 7332 7890 3228

1996 6599 6271

1997 7048

Amount of paid losses during development year ($000)

Amount of paid losses during development year ($000)

Amount of paid losses during development year ($000)
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A.2 Reported claim counts 
 
A . 2 . 1 Company #671

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 1810 274 10 16 4 2 1 1 0 0

1989 2185 293 35 13 6 0 2 2 2

1990 2287 358 38 23 6 2 0 0

1991 2725 321 60 4 2 6 2

1992 2778 346 21 17 0 0

1993 2892 436 43 2 3

1994 2935 477 58 17

1995 2702 495 65

1996 2361 345

1997 2087

A . 2 . 2 Company #723

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 3525 161 3 1 2 0 0 0 0 0

1989 3269 142 3 2 0 1 0 0 0

1990 4181 198 10 4 1 1 0 0

1991 4720 204 11 6 0 1 0

1992 4927 216 13 3 1 1

1993 4821 143 12 0 2

1994 3841 112 6 1

1995 3915 125 7

1996 3920 99

1997 2976

A . 2 . 3 Company #1538

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 3230 414 71 -6 1 -2 -1 0 0 -1

1989 3541 487 6 31 13 0 -7 -1 -1

1990 3735 352 77 20 13 -7 -10 1

1991 2391 366 42 19 -3 -2 -1

1992 2731 357 41 4 -10 -5

1993 3065 353 -4 -16 -9

1994 3333 54 -26 -12

1995 2755 -30 -29

1996 2580 -54

1997 2373

Number of claims reported during development year

Number of claims reported during development year

Number of claims reported during development year
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A . 2 . 4 Company #1694

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 38217 6364 673 183 92 45 12 12 7 8

1989 42362 6986 627 225 82 32 31 20 23

1990 53186 4554 683 216 75 52 28 30

1991 49899 4337 360 128 58 42 29

1992 45517 3829 358 113 55 21

1993 35630 2964 281 141 59

1994 29286 2660 297 131

1995 27468 2400 314

1996 24791 1946

1997 23925

A . 2 . 5 Company #1767

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 38132 6591 873 416 214 113 81 40 28 12

1989 39706 7330 1381 490 214 97 63 66 22

1990 44502 9193 1508 637 255 178 74 46

1991 57097 9973 1667 533 355 143 43

1992 63734 11019 1508 565 285 81

1993 63791 9933 1572 551 220

1994 58580 8984 1452 487

1995 50833 7269 1152

1996 46234 6150

1997 40703

A . 2 . 6 Company #3360

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 0 26020 219 105 68 47 125 123 63 13

1989 22646 1137 281 102 82 242 145 95 6

1990 19781 8632 247 368 521 78 -2053 13

1991 21455 2828 320 733 234 242 18

1992 19577 1896 1345 612 331 36

1993 17748 3954 991 872 18

1994 20867 3871 2579 49

1995 23411 3992 145

1996 58993 5164

1997 27274

Number of claims reported during development year

Number of claims reported during development year

Number of claims reported during development year
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A . 2 . 7 Company #4731

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 5079 696 77 33 15 5 2 1 0 0

1989 5880 843 112 22 12 2 4 2 3

1990 7334 1171 81 32 15 5 2 1

1991 7974 1064 127 45 16 7 4

1992 8455 1117 130 35 17 16

1993 9008 1167 119 47 17

1994 9714 1370 152 46

1995 8476 1075 118

1996 5988 754

1997 4908

A . 2 . 8 Company #4740

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 23459 1571 85 17 6 1 0 1 0 0

1989 26658 1521 62 13 0 1 0 1 1

1990 27319 1415 61 14 3 0 0 0

1991 28735 1354 60 7 1 6 0

1992 30645 1602 54 13 6 5

1993 30960 1191 61 27 -84

1994 31958 1144 70 17

1995 28949 886 60

1996 28475 860

1997 23997

A . 2 . 9 Company #38733

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 3483 230 11 5 0 1 1 1 35 0

1989 4138 402 19 7 3 0 2 281 1

1990 5076 414 18 8 3 0 1 1

1991 5247 355 19 6 3 1 0

1992 6405 369 17 14 4 4

1993 6830 438 34 13 5

1994 6456 418 43 8

1995 6137 373 22

1996 5766 336

1997 5522

Number of claims reported during development year

Number of claims reported during development year

Number of claims reported during development year
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A.3 Finalised claim counts 
 

A . 3 . 1 Company #671

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 1317 598 88 45 17 16 14 10 5 5

1989 1312 936 146 54 33 26 8 3 6

1990 1134 1288 155 71 30 11 8 3

1991 1739 1055 185 79 23 13 11

1992 1677 1180 168 77 26 16

1993 1677 1342 241 56 17

1994 1598 1507 239 61

1995 1592 1371 196

1996 1647 872

1997 1344

A . 3 . 2 Company #723

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 2469 1004 100 53 30 12 12 3 3 1

1989 2336 877 99 38 28 8 7 6 4

1990 2940 1151 162 67 24 17 9 8

1991 3204 1423 147 58 26 17 5

1992 3469 1420 117 54 20 22

1993 3413 1287 130 46 24

1994 2712 1033 115 31

1995 2729 1142 86

1996 2752 1054

1997 2144

A . 3 . 3 Company #1538

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 2347 1060 189 64 25 12 8 0 1 0

1989 2470 1205 217 92 47 20 8 2 1

1990 2619 1132 232 94 54 34 4 4

1991 1468 1029 179 70 28 13 3

1992 1926 945 154 52 18 7

1993 2090 1023 170 64 17

1994 2132 922 156 45

1995 1717 734 98

1996 1617 633

1997 1424

Number of claims finalised during development year

Number of claims finalised during development year

Number of claims finalised during development year
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A . 3 . 4 Company #1694

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 33730 8916 1574 591 362 153 75 65 49 32

1989 37293 9886 1611 711 301 198 122 75 49

1990 47611 7695 1743 711 413 229 139 48

1991 44065 7500 1557 748 382 180 118

1992 40135 6798 1522 655 296 131

1993 31337 5465 1148 518 238

1994 24610 5843 968 497

1995 23748 4815 970

1996 21087 4490

1997 20622

A . 3 . 5 Company #1767

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 26643 13343 2771 1547 820 481 332 166 121 93

1989 27159 14468 3476 1802 1035 538 343 192 85

1990 29392 17029 4133 2484 1421 762 364 296

1991 36469 20485 5948 3026 1574 830 453

1992 40383 24554 5940 2941 1420 716

1993 41422 23412 5577 2629 1366

1994 37862 22109 4933 2073

1995 32895 18763 4003

1996 29518 17141

1997 26136

A . 3 . 6 Company #3360

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 -9426 33013 1196 755 375 188 291 169 92 30

1989 12788 8280 1387 758 409 507 246 175 54

1990 14557 10060 1680 1129 1220 397 -1912 125

1991 11490 8712 1389 2080 791 637 237

1992 10329 7903 2419 1492 790 318

1993 10151 9245 1896 1445 328

1994 11622 10804 3548 560

1995 14445 10394 1241

1996 48927 12186

1997 18412

Number of claims finalised during development year

Number of claims finalised during development year

Number of claims finalised during development year
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A . 3 . 7 Company #4731

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 3965 1579 174 76 56 21 14 3 4 2

1989 4588 1837 252 84 46 24 16 9 6

1990 5500 2601 276 128 56 44 8 10

1991 6085 2504 388 99 78 24 17

1992 6228 2899 333 134 72 41

1993 6621 3074 364 136 79

1994 7291 3256 407 165

1995 6550 2575 335

1996 4602 1820

1997 3687

A . 3 . 8 Company #4740

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 17276 6397 466 321 222 147 72 34 22 13

1989 19901 6604 641 415 230 149 46 51 32

1990 21006 6109 709 403 215 74 43 46

1991 22297 6208 782 377 141 101 51

1992 24716 6000 860 256 162 102

1993 26531 4267 729 319 78

1994 27680 4058 722 380

1995 25132 3357 764

1996 24830 3212

1997 21006

A . 3 . 9 Company #38733

Accident

year 1 2 3 4 5 6 7 8 9 10

1988 2057 1520 84 18 27 1 14 7 37 1

1989 3524 834 111 64 7 13 10 282 3

1990 4438 836 178 6 24 15 4 4

1991 4577 821 111 62 30 18 3

1992 5656 913 142 55 25 10

1993 6067 1011 143 46 29

1994 5760 940 120 46

1995 5487 820 113

1996 5190 734

1997 4908

Number of claims finalised during development year

Number of claims finalised during development year

Number of claims finalised during development year

 
 

 

Appendix B 

Chain ladder and claim cost inflation 
 

Suppose the data are unadjusted for inflation but that the true annual inflation rate 

is        .  Inflation adjustment of the observations to money values of 

experience year   would take the form  

 

   
   

                 (B.1) 
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Now consider the application of the chain ladder forecast of loss reserve to each 

of the data sets {   } and {   
   

}   Consider {   } first. 

 

It is known that the ODP Mack model produces the same ML fitted values and 

loss reserve forecasts as the alternative model (referred to as the ODP cross-

classified chain ladder model) defined by the following conditions: 

 

(ODPCC1) All observations     are stochastically independent. 

(ODPCC2)        (       ) for unknown parameters         . 

 

The equivalence was demonstrated for the simple Poisson case (    ) by 

Hachemeister & Stanard (1975) and Renshaw & Verrall (1998), and for the more 

general ODP by England & Verrall (2002). 

 

Let the ML estimates of       be  ̂   ̂  respectively.  By the equivalence of fitted 

values of the two methods, the fitted value  ̂   associated with observation     can 

be expressed in the following form irrespective of whether one or other of the two 

models is used: 

 

 ̂    ̂  ̂  (B.2) 

 

It is also known (Schmidt & Wünsche, 1998) that for the Poisson case ML 

estimates are obtained by marginal sum estimation, i.e. 

 

∑    

    

  ̂ ∑  ̂ 

    

 

 (B.3) 

∑    

    

  ̂ ∑  ̂ 

    

 

 (B.4) 

 

This result extends easily from the simple Poisson to the ODP case. 

 

Now consider application of the chain ladder to the data set {   
   

}   Marginal sum 

estimation equation parallel to (B.3) and (B.4) hold: 

 

∑    
   

    

  ̂ 
   

∑  ̂ 
   

    

 

 (B.5) 

∑    
   

    

  ̂ 
   

∑  ̂ 
   

    

 

 (B.6) 

 

Now, by (B.1), the left side of (B.5) may be expressed as 
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∑    
   

    

         ∑
   

        

    

         ∑
 ̂  ̂ 

        

    

 

 (B.7) 

if it is valid to approximate the middle summation by the same expression with 

    replaced by  ̂  .  This is equivalent to assuming that the dispersions    [   ] 

are suitably small. 

 

The following result is equivalent to (B.7): 

 

∑    
   

    

 
 ̂         

      
∑

 ̂ 

      

    

 

 (B.8) 

This is the same as (B.5) provided that 

 

 ̂ 
   

 
 ̂         

      
 

 (B.9) 

 ̂ 
   

 
 ̂ 

      
 

 (B.10) 

 

Similarly, it is possible to produce an equation that is the same as (B.6) if (B.9) 

and (B.10) hold.  This demonstrates that  ̂ 
   

  ̂ 
   

 are approximately the ML 

parameter estimates for the data set {   
   

}  

 

Now consider fitted values of the two models.  For the raw data, the fitted value is 

given by (B.2).  For the inflation-adjusted data, the fitted value is  

 

 ̂  
   

  ̂ 
   

 ̂ 
   

  ̂  ̂              (B.11) 

 

This is in money values of experience year   and, if converted to raw values (i.e. 

of experience year      , yields simply  ̂  ̂ , the same (approximately) as 

(B.2). 

 

This proves that the chain ladder fitted values for raw claim payments are 

approximately unaffected by whether one uses raw payment or inflation-adjusted 

data provided that the following two conditions hold: 

 

(a) the annual inflation rate is constant over experience years           ; 

and 

(b) dispersions    [   ] are moderate. 

 

Forecast values are obtained merely by applying the fitted value formulas (B.2) 

and (B.11) to future cells          , and so the result quoted for fitted 

values extends to forecasts also. 
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Appendix C 

Results of numerical experiments 
 

Table 5-3 lists the company data sets selected for analysis.  Section 5.3 describes 

the models according to which the analysis is carried out.  The results are reported 

in Tables C.1 to C.9.  In these tables “CoV” means “coefficient of variation”, 

defined as: 

 

    
     

                     
 

 (C.1) 

 
C . 1 Company #671

Accident Actual

year claim cost

($000) Amount CoV Ratio to Amount CoV Ratio to Amount CoV Ratio to 

($000) (%) actual (%) ($000) (%) actual (%) ($000) (%) actual (%)

1989 65 102 201 156 85 140 130 117 73 180

1990 178 243 116 136 190 78 107 232 56 131

1991 322 548 70 170 431 46 134 375 44 116

1992 656 988 49 151 703 33 107 590 33 90

1993 969 1,364 38 141 1,070 25 110 973 24 100

1994 2,081 2,356 27 113 1,842 19 89 1,508 19 72

1995 2,538 3,182 18 125 3,097 14 122 2,425 15 96

1996 3,885 4,563 13 117 4,579 11 118 3,784 11 97

1997 7,034 8,011 10 114 6,842 9 97 6,162 8 88

Total 17,728 21,356 18 120 18,839 11 106 16,166 11 91

C . 2 Company #723

Accident Actual

year claim cost

($000) Amount CoV Ratio to Amount CoV Ratio to Amount CoV Ratio to 

($000) (%) actual (%) ($000) (%) actual (%) ($000) (%) actual (%)

1989 50 49 282 98 30 223 61 90 101 181

1990 30 189 120 630 133 77 442 314 47 1,047

1991 686 396 64 58 343 38 50 674 30 98

1992 496 598 39 121 667 24 134 1,009 23 203

1993 1,308 1,041 22 80 1,277 15 98 1,466 18 112

1994 1,197 1,407 16 118 1,647 11 138 1,742 16 146

1995 1,935 2,196 12 114 2,571 9 133 2,841 13 147

1996 3,934 3,987 9 101 4,143 7 105 4,950 9 126

1997 7,510 6,249 7 83 6,468 5 86 7,081 6 94

Total 17,146 16,113 12 94 17,279 8 101 20,169 9 118

C . 3 Company #1538

Accident Actual

year claim cost

($000) Amount CoV Ratio to Amount CoV Ratio to Amount CoV Ratio to 

($000) (%) actual (%) ($000) (%) actual (%) ($000) (%) actual (%)

1989 20 120 383 598 69 323 345 0 3,436 0

1990 96 195 277 203 112 206 117 138 81 144

1991 162 275 161 170 159 106 98 228 53 141

1992 414 338 106 82 314 61 76 534 39 129

1993 536 705 61 132 699 36 130 1,252 29 234

1994 1,480 1,545 35 104 1,332 22 90 2,271 23 153

1995 2,635 2,216 23 84 1,819 18 69 3,081 19 117

1996 3,485 3,939 15 113 3,288 15 94 4,872 16 140

1997 7,692 8,018 10 104 7,977 12 104 10,495 13 136

Total 16,520 17,351 24 105 15,769 14 95 22,872 11 138

Chain ladder model PPCI model PPCF model

Loss reserve forecast by

Chain ladder model PPCI model PPCF model

Loss reserve forecast by

Loss reserve forecast by

Chain ladder model PPCI model PPCF model
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C . 4 Company #1694

Accident Actual

year claim cost

($000) Amount CoV Ratio to Amount CoV Ratio to Amount CoV Ratio to 

($000) (%) actual (%) ($000) (%) actual (%) ($000) (%) actual (%)

1989 1,359 1,070 68 79 976 56 72 2,235 43 164

1990 4,905 3,099 34 63 3,045 28 62 5,523 31 113

1991 7,316 5,644 21 77 5,460 18 75 7,787 26 106

1992 10,862 8,322 14 77 8,714 13 80 10,640 21 98

1993 9,178 9,974 10 109 11,080 11 121 12,078 17 132

1994 17,410 12,467 7 72 14,190 10 82 14,758 14 85

1995 24,059 18,894 5 79 19,515 9 81 20,503 12 85

1996 28,746 27,096 5 94 27,141 9 94 27,624 10 96

1997 52,335 43,623 4 83 45,829 8 88 45,761 8 87

Total 156,170 130,190 6 83 135,950 6 87 146,909 8 94

C . 5 Company #1767

Accident Actual

year claim cost

($000) Amount CoV Ratio to Amount CoV Ratio to Amount CoV Ratio to 

($000) (%) actual (%) ($000) (%) actual (%) ($000) (%) actual (%)

1989 1,894 1,952 41 103 1,774 48 94 1,603 22 85

1990 8,332 5,055 25 61 4,217 29 51 3,783 18 45

1991 16,246 10,922 16 67 9,981 18 61 8,882 13 55

1992 21,927 17,148 11 78 17,316 13 79 16,088 9 73

1993 31,192 26,018 8 83 27,734 10 89 25,657 8 82

1994 39,491 34,068 6 86 39,692 8 101 38,700 6 98

1995 42,031 45,763 4 109 53,081 6 126 53,213 5 127

1996 60,370 57,026 4 94 74,317 5 123 73,145 4 121

1997 86,327 87,934 3 102 107,234 5 124 104,185 3 121

Total 307,810 285,886 5 93 335,347 5 109 325,255 4 106

C . 6 Company #3360

Accident Actual

year claim cost

($000) Amount CoV Ratio to Amount CoV Ratio to Amount CoV Ratio to 

($000) (%) actual (%) ($000) (%) actual (%) ($000) (%) actual (%)

1989 -369 895 107 -243 844 138 -229 1,434 118 -389

1990 1,596 2,289 63 143 1,886 86 118 5,057 99 317

1991 5,838 4,104 39 70 3,313 55 57 9,438 90 162

1992 6,122 6,205 25 101 5,474 39 89 14,309 74 234

1993 12,931 8,307 17 64 9,183 31 71 20,394 56 158

1994 43,026 15,993 11 37 19,237 25 45 33,709 43 78

1995 76,828 34,810 8 45 35,046 22 46 49,561 34 65

1996 173,663 76,040 6 44 144,899 15 83 161,500 22 93

1997 198,122 120,962 5 61 109,861 18 55 126,246 20 64

Total 517,757 269,607 6 52 329,743 12 64 421,648 22 81

Chain ladder model PPCI model PPCF model

Loss reserve forecast by

Chain ladder model PPCI model PPCF model

Loss reserve forecast by

Chain ladder model PPCI model PPCF model

Loss reserve forecast by
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C . 7 Company #4731

Accident Actual

year claim cost

($000) Amount CoV Ratio to Amount CoV Ratio to Amount CoV Ratio to 

($000) (%) actual (%) ($000) (%) actual (%) ($000) (%) actual (%)

1989 294 198 76 67 213 73 72 120 93 41

1990 396 704 38 178 686 38 173 454 44 115

1991 714 1,142 29 160 1,091 28 153 930 28 130

1992 2,338 2,195 21 94 1,674 21 72 1,664 19 71

1993 1,774 3,010 17 170 2,533 16 143 3,027 14 171

1994 4,034 5,572 12 138 4,283 12 106 5,546 10 137

1995 6,206 6,725 9 108 5,951 9 96 7,279 9 117

1996 6,751 9,063 7 134 7,107 7 105 8,226 7 122

1997 13,780 15,964 5 116 11,192 5 81 12,242 6 89

Total 36,287 44,571 8 123 34,730 8 96 39,487 8 109

C . 8 Company #4740

Accident Actual

year claim cost

($000) Amount CoV Ratio to Amount CoV Ratio to Amount CoV Ratio to 

($000) (%) actual (%) ($000) (%) actual (%) ($000) (%) actual (%)

1989 3,277 3,800 46 116 3,470 37 106 710 45 22

1990 7,745 6,152 32 79 5,947 26 77 2,148 24 28

1991 8,884 9,099 23 102 9,370 19 105 4,616 17 52

1992 12,292 13,473 18 110 13,539 15 110 8,106 15 66

1993 17,580 19,698 14 112 19,185 12 109 14,927 13 85

1994 26,352 30,824 10 117 29,495 9 112 25,983 11 99

1995 48,915 48,412 7 99 42,641 7 87 40,280 10 82

1996 70,153 77,265 5 110 68,266 6 97 65,274 8 93

1997 111,150 111,064 5 100 95,148 5 86 89,300 6 80

Total 306,348 319,786 7 104 287,060 6 94 251,343 7 82

C . 9 Company #38733

Accident Actual

year claim cost

($000) Amount CoV Ratio to Amount CoV Ratio to Amount CoV Ratio to 

($000) (%) actual (%) ($000) (%) actual (%) ($000) (%) actual (%)

1989 44 66 215 150 57 197 130 128 154 290

1990 36 189 96 524 180 84 501 1,939 75 5,386

1991 337 450 60 133 326 54 97 7,249 32 2,151

1992 380 850 38 224 707 32 186 9,269 32 2,439

1993 1,286 1,206 26 94 1,210 23 94 10,575 30 822

1994 1,623 1,814 17 112 2,038 16 126 11,017 27 679

1995 4,141 3,333 11 80 3,419 12 83 11,843 24 286

1996 5,654 5,187 8 92 5,962 10 105 14,088 19 249

1997 16,054 12,884 5 80 12,370 8 77 19,373 13 121

Total 29,555 25,978 10 88 26,270 9 89 85,481 22 289

Loss reserve forecast by

Chain ladder model PPCI model PPCF model

Loss reserve forecast by

Chain ladder model PPCI model PPCF model

Loss reserve forecast by

Chain ladder model PPCI model PPCF model
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