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Antitrust Notice 

The Casualty Actuarial Society is committed to adhering strictly to the 

letter and spirit of the antitrust laws.  Seminars conducted under the 

auspices of the CAS are designed solely to provide a forum for the 

expression of various points of view on topics described in the 

programs or agendas for such meetings.   

 

Under no circumstances shall CAS seminars be used as a means for 

competing companies or firms to reach any understanding – expressed 

or implied – that restricts competition or in any way impairs the ability of 

members to exercise independent business judgment regarding 

matters affecting competition.   

 

It is the responsibility of all seminar participants to be aware of antitrust 

regulations, to prevent any written or verbal discussions that appear to 

violate these laws, and to adhere in every respect to the CAS antitrust 

compliance policy. 
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Why Bayes, Why Now 

From John Kruschke, Indiana University:  

“An open letter to Editors of journals, Chairs of departments, Directors of funding programs, 

Directors of graduate training, Reviewers of grants and manuscripts, Researchers, 

Teachers, and Students”: 

 

Statistical methods have been evolving rapidly, and many people think it’s time to adopt 

modern Bayesian data analysis as standard procedure in our scientific practice and in our 

educational curriculum. Three reasons: 

 

1. Scientific disciplines from astronomy to zoology are moving to Bayesian data analysis.                 

We should be leaders of the move, not followers. 

2. Modern Bayesian methods provide richer information, with greater flexibility and broader 

applicability than 20th century methods. Bayesian methods are intellectually coherent and intuitive. 

Bayesian analyses are readily computed with modern software and hardware. 

3. Null-hypothesis significance testing (NHST), with its reliance on p values, has many problems. 

There is little reason to persist with NHST now that Bayesian methods are accessible to 

everyone. 

 

My conclusion from those points is that we should do whatever we can to encourage the 

move to Bayesian data analysis.  

 

   

(I couldn’t have said it better myself…) 
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Why Bayes, Why Now 

From an Interview with Sharon Bertsch McGrayne in Chance Magazine:  

 

“When I started research on [my] book, I could Google the word ‘Bayesian’ and get 100,000 

hits.  Recently I got 17 million.” 
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Our Profession’s Bayesian Heritage:  Early 

• Late 18th Century:  Thomas Bayes and Pierre-Simon Laplace 

formulate the principles of “inverse probability”  
• Probabilistic inference from data to model parameters 

• Bayes’ intellectual executor, Richard Price, became perhaps the world’s first 

consulting actuary (Equitable Life Assurance company, London) 

• Price’s – and perhaps Bayes’ – thinking was influenced by the publication of 

David Hume’s Treatise on Human Nature (1740) 

 

• 1918:  A. W. Whitney “The Theory of Experience Rating”. 
• Advocated combining the claims experience of a single risk with that of a 

cohort (class, portfolio, …) of similar risks. 

 

 

 

• Estimated pure premium should be a weighted average of the individual risk’s 

claim experience with that of the cohort… k is judgmentally determined. 
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Our Profession’s Bayesian Heritage:  Early-Modern 

• 1950:  Arthur Bailey publishes “Credibility Procedures:  Laplace’s 

Generalization of Bayes’ Rule and the Combination of Collateral 

Knowledge with Observed Data”.  
• Anticipates Hans Bühlmann's subsequent work. 

• Quoted Richard Price on making inferences from available data.  

“At present, practically all methods of statistical estimation appearing in textbooks… 

are based on an equivalent to the assumption that any and all collateral information 

or a priori knowledge is worthless.  There have been rare instances of rebellion 

against this philosophy by practical statisticians who have insisted that they actually 

had a considerable store of knowledge apart from the specific observations being 

analyzed… However it appears to be only in the actuarial field that there has been an 

organized revolt against discarding all prior knowledge when an estimate is to be 

made using newly acquired data.” 
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Our Profession’s Bayesian Heritage:  Mid-Century Modern 

• 1967:  Bühlmann’s “greatest accuracy” Bayes credibility model.  
• Let Xij denote dollars of loss associated with risk i at time j. 

• Assume X1, …, Xm are iid, conditional on a parameter (vector) θ 

• Let m(θi) denote “risk premium”:  m(θi)≡E[Xij|θi] 

 

 

• Bühlmann minimizes mean squared errors: 

 

• … to arrive at an estimator for m(θi): 

 

• … where: 

 

 

 

• The within/between variances in k are estimated from the data. 
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Our Profession’s Bayesian Heritage:  Modern 

? 
 



Loss Reserving and its 
Discontents 
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Loss Reserving and its Discontents 

• Much loss reserving practice is still “pre-theoretical” in nature. 
• Techniques like chain ladder, BF, and Cape Cod aren’t performed in a 

statistical modeling framework. 

• (Do people agree with this statement?) 

 

• Traditional methods aren’t necessarily optimal from a statistical 

POV. 
• Potential of over-fitting small datasets 

• Difficult to assess goodness-of-fit, compare nested models, etc 

• Often no concept of out-of-sample validation or diagnostic plots 

 

• Related point:  traditional methods produce point estimates only. 
• Reserve variability estimates are often ad-hoc 



13 Deloitte Analytics Institute © 2010 Deloitte LLP 

Models vs Methods 

• Rather than promulgating a collection of loss reserving methods, 

we build statistical models of loss development. 
• Attempt to place loss reserving practice on a sound scientific footing. 

• Field is developing rapidly 

 

• Today:  Sketch non-linear hierarchical Bayesian models 
• Natural, parsimonious models of the loss development process 

• Initially motivated by Dave Clark’s [2003] paper as well as hierarchical 

Bayesian modeling theory. 

 

• By the way:  the debate over “models vs methods” is misleading 
• Rather we want to have a flexible and extensible modeling methodology 

• A framework that can always be tailored to the specifics of a given situation 

• Spreadsheets aren’t the only way to accomplish this 
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Four Essential Features of Loss Reserving 

• Repeated measures 
• Loss reserving is longitudinal data analysis 

 

• A “bundle” of time series 
• A loss triangles is a collection of time series that are “related” to one another 

• … but no guarantee that the same development pattern is appropriate to all 

 

• Non-linear 
• Each year’s development patter is inherently non-linear 

• Ultimate loss (ratio) is an asymptote 

 

• Incomplete information 
• Few loss triangles contain all of the information needed to make forecasts 

• Most reserving exercises must incorporate judgment and/or background 

information 

 Loss reserving is inherently Bayesian! 

Cumulative Losses in 1000's

AY premium 12 24 36 48 60 72 84 96 108 120

1988 2,609 404 986 1,342 1,582 1,736 1,833 1,907 1,967 2,006 2,036

1989 2,694 387 964 1,336 1,580 1,726 1,823 1,903 1,949 1,987

1990 2,594 421 1,037 1,401 1,604 1,729 1,821 1,878 1,919

1991 2,609 338 753 1,029 1,195 1,326 1,395 1,446

1992 2,077 257 569 754 892 958 1,007

1993 1,703 193 423 589 661 713

1994 1,438 142 361 463 533

1995 1,093 160 312 408

1996 1,012 131 352

1997 976 122
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Towards a More Realistic Loss Reserving Framework 

• How many stochastic reserving techniques reflect all of these 

considerations? 
1. Repeated Measures (isn’t loss reserving a type of longitudinal data analysis?) 

2. Multiple time series 

3. Non-linear   (are GLMs really appropriate?) 

4. Incomplete Information  (“Bayes or Bust”!) 

 

• 1-2   We need hierarchical models 

• 3  They should use growth curves 

• 4  Non-linear hierarchical models should be Bayesian 

Cumulative Losses in 1000's

AY premium 12 24 36 48 60 72 84 96 108 120

1988 2,609 404 986 1,342 1,582 1,736 1,833 1,907 1,967 2,006 2,036

1989 2,694 387 964 1,336 1,580 1,726 1,823 1,903 1,949 1,987

1990 2,594 421 1,037 1,401 1,604 1,729 1,821 1,878 1,919

1991 2,609 338 753 1,029 1,195 1,326 1,395 1,446

1992 2,077 257 569 754 892 958 1,007

1993 1,703 193 423 589 661 713

1994 1,438 142 361 463 533

1995 1,093 160 312 408

1996 1,012 131 352

1997 976 122
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Another Big Motivation:  Predictive Distributions 

• This can be read as a request for a Bayesian analysis 
• Bayesians (unlike frequentists) are willing to make probability statements 

about unknown parameters 

• Ultimate losses are “single cases” – difficult to conceive as random draws 

from a “sampling distribution in the sky”. 

‒ Frequentist probability involved repeated trials of setups involving physical randomization.   

‒ In contrast it is meaningful to apply Bayesian probabilities to “single case events” 

• The Bayesian analysis yields an entire posterior probability distribution – not 

merely moment estimates 

 

 Bayesian statistics is the ideal framework for loss reserving! 

“Given any value (estimate of future payments) and our current state of knowledge, what is the 

probability that the final payments will be no larger than the given value?” 

   -- Casualty Actuarial Society 

     Working Party on Quantifying Variability in Reserve Estimates, 2004 
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The Bayesian Perspective 

“For Bayesians as much as for any other statistician, parameters 

are (typically) fixed but unknown.  It is the knowledge about these 

unknowns that Bayesians model as random… 

 

… typically it is the Bayesian who makes the claim for inference in 

a particular instance and the frequentist who restricts claims to 

infinite populations of replications.” 

 
    - Andrew Gelman and Christian Robert 
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Origin of the Approach:  Dave’s Idea + Random Effects 

+ 
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Current State of… uh… Development 
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Components of Our Approach 

• Growth curves to model the loss development process (Clark 2003)  
• Parsimony – obviates the need for tail factors 

 

• Loss reserving treated as longitudinal data analysis (Guszcza 2008) 
• A type of hierarchical modeling 

• Parsimony; similar approach to non-linear mixed effects models used in biological/social sciences 

 

• Further using the hierarchical modeling framework to simultaneously model 

multiple loss triangles (Zhang-Dukic-Guszcza 2012) 
• “Borrow strength” from other loss reserving triangles 

• Similar in spirit to credibility theory 

• Insufficient time to cover this aspect today 

 

• Building a fully Bayesian model by assigning prior probability distributions to all 

hyperparameters (Zhang-Dukic-Guszcza 2012) 
• Provides formal mechanism for incorporating background knowledge and expert opinion with data-

driven indications. 

• Results in full predictive distribution of all quantities of interest 

• Conceptual advantages:  Bayesian paradigm treats data as fixed and parameters are randomly 

varying 
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The Notion of Hierarchical Structure is Key 

• NB:  Bayesian models  Hierarchical models! 
• E.g. we could fit a Bayesian chain ladder by putting priors on the parameters of an overdispersed 

Poisson regression model… but this wouldn’t make it hierarchical. 

• Similarly non-Bayesian hierarchical models are a useful way to quickly fit “exploratory” models while 

gearing up to do a fully Bayesian analysis. 



Hierarchical Models 
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What is Hierarchical Modeling? 

• Hierarchical modeling is used when one’s data is grouped in 

some important way. 
• Claim experience by state or territory 

• Workers Comp claim experience by class code 

• Claim severity by injury type 

• Churn rate by agency 

• Multiple years of loss experience by policyholder. 

• Multiple observations of a cohort of claims over time 

 

• Often grouped data is modeled either by: 
• Building separate models by group 

• Pooling the data and introducing dummy variables to reflect the groups 

 

• Hierarchical modeling offers a “middle way”. 
• Parameters reflecting group membership enter one’s model through 

appropriately specified probability sub-models. 
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Common Hierarchical Models 

• Classical Linear Model 
• Equivalently: Yi ~ N(+Xi, 

2) 

• Same ,  for each data point 

 

• Random Intercept Model 
• Where:  Yi ~ N(j[i]+Xi, 

2) 

• And:  j ~ N(, 
2
)  

• Same  for each data point; but  varies by group j 

 

• Random Intercept and Slope Model 
• Both  and  vary by group 
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Simple Example:  PIF by Region 

• Simple example:  Change in 

PIF by region from 2007-10 

 

• 32 data points 
• 4 years 

• 8 regions 

 

• But we could as easily have 

80 or 800 regions 

• Our model would not 

change 

 

• We view the dataset as a 

bundle of very short time 

series 
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Classical Linear Model 

• Option 1:  the classical 

linear model 

 

• Complete Pooling 
• Don’t reflect region in the model 

design 

• Just throw all of the data into 

one pot and regress 

 

• Same  and  for each 

region. 

 

• This obviously doesn’t cut it. 
• But filling 8 separate regression 

models or throwing in region-

specific dummy variables isn’t 

an attractive option either. 

• Danger of over-fitting 

• i.e. “credibility issues” 
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Randomly Varying Intercepts 

• Option 2:  random intercept 

model 

 

• Yi = j[i] + Xi + i  

 

• This model has 9 

parameters: 

   {1, 2, …, 8, } 

 

• And it contains 4 

hyperparameters: 

   {, , , } 

 

• A major improvement 
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Randomly Varying Intercepts and Slopes 

• Option 3:  the random slope 

and intercept model 

 

• Yi = j[i] +  j[i] Xi + i  

 

• This model has 16 

parameters: 

   {1, 2, …, 8,  

      1, 2,…, 8} 
• (note that 8 separate models 

also contain 16 parameters) 

 

• And it contains 6 

hyperparameters: 

   {, , , , , } 

 

• To repeat:  the same 

number of hyperparameters 

if we had 80 or 800 regions 
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A Compromise Between Complete Pooling and No Pooling 
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Complete Pooling 
• Ignore group 

structure altogether 

 

No Pooling 
• Estimate a separate 

model for each group 

 

Hierarchical Model 
• Estimates parameters 

using a compromise 

between complete 

pooling and no pooling. 
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A Credible Approach 

• For illustration, recall the random intercept model: 

 

 

 

• This model can contain a large number of parameters {1,…,J,}. 

 

• Regardless of J, it contains 4 hyperparameters {, , , }. 

 

• Here is how the hyperparameters relate to the parameters: 

 

 

 

 

Bühlmann credibility is a special case of hierarchical models. 
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A Fully Bayesian Model 
With a Case Study 
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Case Study Data 

• A garden-variety Workers Comp Schedule P loss triangle: 

 

 

 

 

 

 

 

 

 

 

 

• Let’s model this as a longitudinal dataset. 

• Grouping dimension:  Accident Year (AY) 

 

• We can build a parsimonious non-linear model that uses random effects to allow 

the model parameters to vary by accident year. 

Cumulative Losses in 1000's

AY premium 12 24 36 48 60 72 84 96 108 120 CL Ult CL LR CL res

1988 2,609 404 986 1,342 1,582 1,736 1,833 1,907 1,967 2,006 2,036 2,036 0.78 0

1989 2,694 387 964 1,336 1,580 1,726 1,823 1,903 1,949 1,987 2,017 0.75 29

1990 2,594 421 1,037 1,401 1,604 1,729 1,821 1,878 1,919 1,986 0.77 67

1991 2,609 338 753 1,029 1,195 1,326 1,395 1,446 1,535 0.59 89

1992 2,077 257 569 754 892 958 1,007 1,110 0.53 103

1993 1,703 193 423 589 661 713 828 0.49 115

1994 1,438 142 361 463 533 675 0.47 142

1995 1,093 160 312 408 601 0.55 193

1996 1,012 131 352 702 0.69 350

1997 976 122 576 0.59 454

chain link 2.365 1.354 1.164 1.090 1.054 1.038 1.026 1.020 1.015 1.000 12,067 1,543

chain ldf 4.720 1.996 1.473 1.266 1.162 1.102 1.062 1.035 1.015 1.000

growth curve 21.2% 50.1% 67.9% 79.0% 86.1% 90.7% 94.2% 96.6% 98.5% 100.0%
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Growth Curves – At the Heart of the Model 

• We want our model to 

reflect the non-linear nature 

of loss development.  
• GLM shows up a lot in the 

stochastic loss reserving 

literature… 

• … but are GLMs natural models 

for loss triangles? 

 

• Growth curves (Clark 2003) 
•  = ultimate loss ratio 

•  = scale 

•  = shape (“warp”) 

 

• Heuristic idea 
• We judgmentally select a 

growth curve form 

• Let  vary by year (hierarchical) 

• Add priors to the 

hyperparameters (Bayesian) 
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An Exploratory Non-Bayesian Hierarchical Model 

• It is easy to fit non-Bayesian hierarchical 

models as a data exploration step. 
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Adding Bayesian Structure 

• Our hierarchical model is “half-way Bayesian” 
• On the one hand, we place probability sub-models on certain parameters 

• But on the other hand, various (hyper)parameters are estimated directly from the data. 

 

• To make this fully Bayesian, we need to put probability distributions on all 

quantities that are uncertain.   

 

• We then employ Bayesian updating:  the model (“likelihood function”) together with 

the prior results in a posterior probability distribution over all uncertain quantites. 
• Including ultimate loss ratio parameters and hyperparameters! 

•  We are directly modeling the ultimate quantity of interest.  

 

• This is not as hard as it sounds:   
• We do not explicitly calculate the high-dimensional posterior probability distribution. 

• We do use Markov Chain Monte Carlo [MCMC] simulation to sample from the posterior. 

• Technology:  JAGS (“Just Another Gibbs Sampler”), called from within R. 
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Results of a Fully Bayesian Hierarchical Model  

• Now we fit a fully Bayesian version of the model by providing prior distributions 

for all of the model hyperparameters, and simulating the posterior distribution. 
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Results of a Fully Bayesian Hierarchical Model  

• Here we are using the most recent Calendar Year (red) as a holdout sample. 

• The model fits the holdout well. 
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Bayesian Credible Intervals 

• Now refit the model on all of the data and re-calculate the posterior credible intervals. 
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Comparison with the Chain Ladder 

• For comparison, superimpose the “at 120 months” chain ladder estimates on the 

posterior credible intervals. 
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Posterior Distribution of Aggregate Outstanding Losses 

• In the top two images, we sum 

up the projected losses for all 

estimated AY’s evaluated at 120 

(180) months; then subtract 

losses to date (LTD). 
• For the 120 month estimate, the 

posterior median (1519) comes very 

close to the chain ladder estimate 

(1543) 

 

• In the bottom image, we multiply 

the estimated ultimate loss ratio 

parameters by premium and 

subtract LTD. 

 

• Deciding which of these options 

is most appropriate is akin to 

selecting a tail factor. 
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