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CAS Antitrust Notice

 The Casualty Actuarial Society is committed to adhering strictly 
to the letter and spirit of the antitrust laws.  Seminars conducted 
under the auspices of the CAS are designed solely to provide a 
forum for the expression of various points of view on topics 
described in the programs or agendas for such meetings.  

 Under no circumstances shall CAS seminars be used as a 
means for competing companies or firms to reach any 
understanding – expressed or implied – that restricts 
competition or in any way impairs the ability of members to 
exercise independent business judgment regarding matters 
affecting competition.  

 It is the responsibility of all seminar participants to be aware of 
antitrust regulations, to prevent any written or verbal discussions 
that appear to violate these laws, and to adhere in every respect 
to the CAS antitrust compliance policy.
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Reserves in a Stochastic World

 At a point in time (valuation date) there is a range of possible 
outcomes for a book of (insurance) liabilities.  Some possible 
outcomes may be more likely than others

 Range of possible outcomes along with their corresponding 
probabilities are the distribution of outcomes for the book of 
liabilities – i.e. reserves are a distribution

 The distribution of outcomes may be complex and not 
completely understood

 Uncertainty in predicting outcomes comes from
– Process (pure randomness)

– Parameters (model parameters uncertain)

– Model (selected model is not perfectly correct)
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Basic Traditional Actuarial Methods

 Traditional actuarial methods are simplifications of reality
– Chain ladder

– Bornhuetter-Ferguson or it’s close relative Cape Cod

– Berquist-Sherman Incremental Average

– Others

 Usually quite simple thereby “easy” to explain

 Traditional reserve approaches rely on a number of methods –
model uncertainty explicitly addressed

 Practitioner “selects” an “estimate” based on results of several 
traditional methods

 No explicit probabilistic component
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Stochastic Models

 In the actuarial context a stochastic model could be considered 
as a mathematical simplification of an underlying loss process 
with an explicit statement of underlying probabilities

 Two main features
– Simplified Statement

– Explicit probabilistic statement

 In terms of sources of uncertainty two of three sources may be 
addressed
– Process

– Parameter

 Within a single model, the third source (model uncertainty) 
usually not explicitly addressed
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A Simple Stochastic Model

 Flip of a fair coin
– Simplified view of reality – a process that generates only two 

possible outcomes, called H and T.

– Stochastic statement – the two outcomes are equally likely

– Only source of uncertainty in next trial is random (process)

 Flip of an uncertain coin
– Same simplified view of reality

– Stochastic statement, the chance of H is p, and the chance of T is 1 
– p. p is unknown but fixed

– Here two sources of uncertainty in next trial, random still exists, but 
we are also uncertain about p, so also have parameter uncertainty

– Without additional information nothing more can be said
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A Bayesian Digression

 At this point a Bayesian would ask where you got the coin

 If you said “In change at the grocery store” the Bayesian may be 
pretty sure that p = 0.50

 If you said “Joe gave it to me” the Bayesian may still guess p = 
0.50 but not be as certain

 If Joe was well-known to be a prankster the Bayesian’s 
uncertainty would be probably be substantially greater

 The Bayesian does not restrict him/herself to simply the 
observed data but considers prior experience with the situation 
or similar ones

 The Bayesian, though allows his/her beliefs to be modified in the 
presence of additional data
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Estimating p

 How to estimate p?

 What can we go on?

 Nothing so far gives any clue.

 Suppose we can actually flip the subject coin a number (N) of 
independent times and observe the number (x) of heads and N 
– x tails (that is, the experiment is replicable)

 One estimate of p would then be x/N.

 Is this estimate any good?

 Given this information is there another estimate that is in some 
way “better?”

 What is the “best” estimate in some sense?
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Maximum Likelihood

 If we assume all flips are independent, the chance of seeing x 
heads in N tosses is the likelihood function

 One estimate we could take for p would be that value that gives 
the largest chance of observing x heads in N tosses 

 In this case that value is x/N, the observed proportion of heads 
in our “experiment”

 The value of a parameter that maximizes the likelihood of the 
observed outcome of a particular experiment is called the 
maximum likelihood estimator (MLE) of that parameter
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Some Properties of MLEs

 As the number of observations in an experiment gets large the 
resulting MLE is

– Asymptotically unbiased (is expected to converge to the parameter)

– Asymptotically efficient (no other estimator has lower variance)

– Asymptotically normal

 Define the Fisher information matrix as the expected value of 
the Hessian matrix (matrix of second partial derivatives with 
respect to the parameters) of the negative log-likelihood function

 The variance-covariance matrix of the limiting Gaussian 
distribution is the inverse of the Fisher information matrix 
typically evaluated at the parameter estimates
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MLE Example

 In this coin example the negative log likelihood is

 With derivatives

       ln 1 ln 1 ln ln
N xx

N N
p p p x N p x p
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

 Thus the MLE for p, p0 = x/N is asymptotically normal with 
variance approximately equal to p0(1 - p0)/N.
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Reserving Context – Usual Triangles

 In reserving we are faced with the problem of “squaring the 
triangle”

 Suppose Cij is the amount paid for accident year i during year j, 
counting from the start of the accident year

 Keeping things simple, if we have 10 years of experience at 
annual valuations, we “see” 55 historical points Cij, for i running 
from 1 to 10, and j running from 1 to 10 – i + 1

 Name of the game is to estimate the remaining 45 values of Cij

for j running from 10 – i to 10
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Traditional Methods

 Traditionally actuaries have relied on a number of methods to 
“square the triangle”

 Essentially the Bornhuetter-Ferguson method assumes Cij = αiβj 

with restrictions on some parameter values to keep the problem 
well posed, leading to 19 parameters for a 10 x 10 triangle

 The Berquist-Sherman is a special case of the Bornhuetter-
Ferguson with a smooth trend, Cij = α0 τi βj and a total of 11 
parameters for a 10 x 10 triangle

 The chain ladder can be seen as another special case of the 
Bornhuetter-Ferguson, imposing the requirement that expected 
totals to date match historical total to date which can be 
parameterized with 9 parameters.
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Stochastic Versions of Traditional Methods

 Note that in each of the traditional methods each of the 
incremental amounts Cij can be written a function gij(θ) of some 
parameter vector θ

 Other methods can also be written down in a similar fashion, not 
just the usual simple traditional methods

 This is the first step – a simplified view of reality

 To make this a stochastic problem we need to make some 
statement about the distribution of the Cij amounts, for example 
that they have probability density functions that may themselves 
depend on additional parameters say fij(x|θ,γ)
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MLE in Reserve Applications

 In this framework, the negative log likelihood function given the 
values observed in the triangle becomes

 If we find values of the parameter vectors θ and γ that minimize 
this negative log likelihood (equivalent to maximizing the 
likelihood itself) we have estimates for the parameters for the 
model

 If we are willing to assume we have sufficient “replications” to 
bring in the asymptotic properties of MLEs we can also say 
something about the distribution of those parameters
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Forecast Distributions with MLEs

 Once we have (estimates of) parameters the model selected 
gives us distributions in each cell, past and forecast

 Can use Monte Carlo simulation to estimate process uncertainty 
in projections

 Assuming asymptotic normality of the MLEs we can also 
estimate distribution of the parameters, (multivariate) normal 
with mean (vector) equal to the MLE and variance (-covariance) 
matrix derived from information matrix

 Can use the latter to simulate parameters and then the 
parameters to estimate outcome distribution

 As the shampoo label says, “rinse, repeat.”

 In contrast to bootstrap, values outside observed range possible

16

Example Commercial Auto Liab. Paid Data 
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Results

 Some difference in expected reserves

 Is the difference random?

 Is the difference significant?

 How do you know?

 Stochastic models help answer these questions

Model Expected Reserves (000,000)

Berquist Incremental Severity $480

Cape Cod 391

Wright Model 388

Generalized Hoerl Curve 474

Chain Ladder 393
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Process vs. Parameter Uncertainty

Model
Total Reserve Process 

Std. Dev. (000)
Total Reserve Total 

Std. Dev. (000)

Berquist Incremental 
Severity $15,998 $29,090

Cape Cod 9,435 20,298

Wright Model 10,029 20,375

Generalized Hoerl Curve 16,115 29,728

Chain Ladder 9,448 15,704
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Reserve Forecasts by Model

300 350 400 450 500 550 600

Millions

Aggregate Reserves

CapeCod Berquist Wright Hoerl Chain

20

What Happened?

Berquist Cape Cod

Hoerl Chain Ladder

Standardized Residuals
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Some Observations

 The data imply that the variance for payments in a cell are 
roughly proportional to the mean to the 0.85 power for both 
Cape Cod and Chain Ladder, roughly to the mean for the Hoerl
model and to the mean to the 1.30 power for the Berquist
model.  

 Total standard deviation well above process, often more than 
double, meaning parameter uncertainty is significant

 Comparison of forecasts among models underlines the 
importance of model uncertainty

 Still more work to be done to get a handle on model uncertainty 
– possibly greater than the other two
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More Observations

 We chose a relatively simple models for the expected value

 Nothing in this approach makes special use of the structure of 
the models

 Models do not need to be linear nor do they need to be 
transformed to linear by a function with particular properties

 Variance structure is selected to parallel stochastic chain ladder 
approaches (overdispersed Poisson, etc.) and allow the data to 
select the power

 The general approach is also applicable to a wide range of 
models

 This allows us to consider a richer collection of models than 
simply those that are linear or linearizable

23

Some Cautions

 MODEL UNCERATINTY STILL NEEDS TO BE CONSIDERED
thus distributions are distributions of outcomes under a specific 
models and must not be confused with the actual distribution of 
outcomes for the loss process

 An evolutionary Bayesian approach can help address model 
uncertainty
– Apply a collection of models and judgmentally weight (a subjective 

prior)

– Observe results for next year and reweight using Bayes Theorem

 We are using asymptotic properties, no guarantee we are far 
enough in the limit to assure these are close enough

 Actuarial “experiments” not repeatable so frequentist approach 
(MLE) may not be appropriate



9 Stochastic Reserving Today (Beyond Bootstrap)

24

APPENDIX

 The following slides, not formally presented provide details 
behind the models used in this presentation.

 The models used here will be presented in greater detail in “A 
Flexible Framework for Stochastic Reserving Models,” in 
Volume 7, Issue 2 of Variance scheduled to be published late 
2013 or early 2014.
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A Stochastic Framework

 Instead of incremental paid, consider incremental average Aij = 
Cij/Eij

 The amounts are averages of a (large?) sample, assumed from 
the same population

 Law of large numbers would imply, if variance is finite, that 
distribution of the average is asymptotically normal

 Thus assume the averages have Gaussian distributions (next 
step in stochastic framework)

 Note here we have not specified which of the above traditional 
methods we are considering
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A Stochastic Incremental Model – Cont.

 Now that we have an assumption about the distribution 
(Gaussian) and expected value all needed to specify the model 
is the variance in each cell

 In stochastic chain ladder frameworks the variance is assumed 
to be a fixed (known) power of the mean 

 We will follow this general structure, however allowing the 
averages to be negative and the power to be a parameter fit 
from the data, reflecting the sample size for the various sums
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An Observation on the Methods

 Each of the five traditional methods can be expressed as a 
function of a number of parameters

 Here θ represents a vector of the parameters with different 
lengths for different models

 Instead of specifying a particular method now we will talk in 
terms of a general method where the incremental amounts can 
be expressed as a function of a vector of parameters

 For the stochastic version we assume

 ij ijC g θ

   E ij ijA g θ
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Parameter Estimation

 Number of approaches possible

 If we have an a-priori estimate of the distribution of the 
parameters we could use Bayes Theorem to refine those 
estimates given the data

 Maximum likelihood is another approach

 In this case the negative log likelihood function of the 
observations given a set of parameters is given by
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Distribution of Outcomes Under Model

 Since we assume incremental averages are independent once 
we have the parameter estimates we have estimate of the 
distribution of future outcomes given the parameters

 This is the estimate for the average future forecast payment per 
unit of exposure, multiplying by exposures

 This assumes parameter estimates are correct – does not 
account for parameter uncertainty
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The Information Matrix

 Key to calculating the variance-covariance matrix for the 
parameter estimates is calculating the Fisher Information Matrix

 Recall the negative log likelihood function is a function of the 
parameters θ, κ, and p.

 So the Hessian and hence its expected value is a function of the 
parameters κ and p, as well as the partial derivatives of gij with 
respect to the θ parameters otherwise independent of gij
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Incorporating Parameter Uncertainty

 If we assume 
– The parameters have a multi-variate Gaussian distribution with 

mean equal to the maximum likelihood estimators and variance-
covariance matrix equal to the inverse of the Fisher information 
matrix

– For fixed parameters the losses have a Gaussian distribution with 
the mean and variance the given functions of the parameters

 The posterior distribution of outcomes is rather complex

 Can be easily simulated:

– First randomly select parameters from a multi-variate Gaussian 
Distribution

– For these parameters simulate losses from the appropriate 
Gaussian distributions
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Parameterization – Cape Cod

 Simple parameterization for the Cape Cod above overspecifies the 
model

 We use the following (similar to England & Verall)

 θ1 is the upper left corner incremental

 θi for i = 2, …, n is change in incremental from accident year i-1 to age i

 θi for i = n+1, …, m+n-1is change from age i – n to accident year i – n +1
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Parameterization – Berquist-Sherman

 Actually a special case of the Cape Cod

 Replace the accident year change parameters by trend

 θj  for j = 1, …, n is the accident year 0 average incremental cost 
at age j

 θn+1  is the natural log of the annual trend in the data

  1ni
ij jg e  θ
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Parameterization – Wright & Hoerl Models

 Actually a special cases of the Cape Cod

 For Wright replace the development year parameters by a curve

 θi for i = 1, …, m sets the accident year loss level

 Emergence defined by 3-parameter curve

 Hoerl model replaces separate accident year levels with trend 
from above

    2
1 2 3exp ln , 1, , , 1, ,ij i m m mg j j j i m j n          θ  

    2
1 2 3 4 5exp lnijg j j j i        θ
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Parameterization – Chain Ladder

 Basic requirements for expected values
– Ratio of cumulative averages from one age to the next same for all 

accident years

– The expected amount to date (on the diagonal) is observed amount 
to date 

 In our parameterization we label the amount to date for accident 
year i as Pi and the age of accident year i to date as ni

 Also in our parameterization we can think of the parameters θj

as the portion of the total amounts emerging at age j

 The incremental percentages can be negative or larger than 1

 We force the percentage for the last age to be the complement 
of the remainder resulting in n – 1 parameters.
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Parameterization – Chain Ladder (Continued)
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