

Two Symmetric Families of Loss Reserving Methods

2012 CLRS - Denver

Andy Staudt

7 September 2012

Outline

- Two Symmetric Families of Loss Reserving Methods
 - Actual vs. Expected Family
 - Mean Reverting Family
- Outline
 - Data
 - Actual vs. Expected Family
 - Variation Generalized Actual vs. Expected Family
 - Mean-Reverting Family
 - Variation Adjusted Mean-Reverting Family
 - Take home methods
 - Contact details

Data

Federal Crop Insurance Program – Texas – Frequency

	Total	Policies	Ultimate	Init. Exp.					Policie	es Indem	nified by	Month				
Year	Policies	Indemnified	Frequency	Frequency	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2001	232	95	40.7%	35.0%	0	4	7	12	18	31	53	71	82	88	91	95
2002	225	86	38.3%	35.0%	0	4	10	19	28	39	58	69	78	81	84	86
2003	228	87	38.4%	35.0%	0	1	3	9	17	25	56	66	78	84	86	87
2004	207	38	18.5%	35.0%	1	4	5	8	12	16	26	28	30	33	35	38
2005	194	36	18.4%	35.0%	0	1	1	3	7	13	22	26	29	31	33	36
2006	196	104	52.8%	35.0%	0	10	15	24	37	55	78	90	95	98	101	104
2007	226	37	16.5%	35.0%	0	6	7	12	17	21	29	33	35	35	36	37
2008	245	115	46.9%	35.0%	0	12	15	27	35	51	83	97	102	104	111	115
2009	237	98	41.5%	35.0%	0	11	17	33	50	60	80	90	94	96	97	98
2010	203	21	10.1%	35.0%	0	1	1	2	4	6	11	15	17	18	20	21
Total	2,194	718	32.7%	35.0%	1	53	81	149	225	318	497	586	641	669	696	718

The Actual vs. Expected Family

(1) As an alternative to a fixed IELR

The trouble with a fixed IELR

- Consider the projection error over time for the...
 - Initial Expected (IE) method

$$U_{IE} = U_0$$

Bornhuetter-Ferguson (BF) method $U_{BF} = C_k + (1 - p_k)U_0$

$$U_{BF} = C_k + (1 - p_k)U_0$$

A (natural) way to adjust the fixed IELR

- The Actual vs. Expected (AE) Family
 - The general formulation

$$U_{AEi} = U_0 + w_i (C_k - p_k U_0)$$
Initial Weight Actual vs. Expected Adjustment

A specific member

$$U_{AEBF} = U_0 + p_k \left(C_k - p_k U_0 \right)$$

$$\hat{U}_{BF} = C_k + (1 - p_k)U_{AEBF}$$

But what is the best choice for the weight function

Recall the general formulation

$$U_{AEi} = U_0 + w_i \left(C_k - p_k U_0 \right)$$

- Let's first establish some bounds
- $w_i \in [0,1]$
- Which leads us to the following possible members of the AE Family

Note that the IE and BF methods are both members at the extremes

If
$$W_i = 0$$
 then $U_{AEi} = U_0 + W_i (C_k - p_k U_0) = U_0 + 0 (C_k - p_k U_0) = U_0$

If
$$W_i = 1$$
 then $U_{AEi} = U_0 + W_i (C_k - p_k U_0) = U_0 + 1 (C_k - p_k U_0) = C_k + (1 - p_k) U_0$

But that isn't really that useful (lets do some mathamagic)

Consider the alternative [credibility] formulation of the AE Family

$$U_{AEi} = p_k U_i + (1 - p_k) U_0$$

Plug-in an actuarial method and out pops an AE method

$$U_{AEi} = p_k U_i + (1 - p_k) U_0$$

$$U_{AEBF} = p_k U_{BF} + (1 - p_k) U_0$$

$$= p_k [C_k + (1 - p_k) U_0] + (1 - p_k) U_0$$

$$= p_k C_k + p_k U_0 - p_k^2 U_0 + U_0 - p_k U_0$$

$$= p_k C_k - p_k^2 U_0 + U_0$$

$$= U_0 + p_k (C_k - p_k U_0)$$

And here are five AE methods using common actuarial methods as the plug-in

Method	Credibility Formulation	Actual vs. Expected Formulation	Weight Function
AEIE	$U_{AEIE} = p_k U_{IE} + (1 - p_k) U_0$	$U_{AEIE} = U_0 + 0(C_k - p_k U_0) \Longrightarrow U_{IE}$	0
AEEA	$U_{AEEA} = p_k U_{EA} + (1 - p_k) U_0$	$U_{AEEA} = U_0 + p_k^2 (C_k - p_k U_0)$	p_k^{2}
AEBF	$U_{AEBF} = p_k U_{BF} + (1 - p_k) U_0$	$U_{AEBF} = U_0 + p_k (C_k - p_k U_0) \Longrightarrow U_{EA}$	$p_{\scriptscriptstyle k}$
AEGB	$U_{GB} = p_k U_{GB} + (1 - p_k) U_0$	$U_{AEGB} = U_0 + (2p_k - p_k^2)(C_k - p_k U_0)$	$2p_k - p_k^2$
AECL	$U_{AECL} = p_k U_{CL} + (1 - p_k) U_0$	$U_{AECL} = U_0 + 1(C_k - p_k U_0) \Rightarrow U_{BF}$	1

Why these five methods (because they form a pretty spectrum)

The Generalized Actual vs. Expected Family

(2) As a solution to the year-end roll-forward dilemma

The Generalized Actual vs. Expected Family

- The trouble with year-end roll-forwards at Lloyd's (and elsewhere)
- The Generalized Actual vs. Expected Family

$$U_{AEi} = U_0 + w_i \left(C_k - p_k U_0 \right)$$

$$U_{GAEBF} = U_k = U_{k-1} + \left(\frac{p_k - p_{k-1}}{1 - p_{k-1}}\right) \left(C_k - C_{k-1}\right) - \left(\frac{p_k - p_{k-1}}{1 - p_{k-1}}\right) \left(U_{k-1} - C_{k-1}\right)$$

And how does it work in practice

Movement in Projections relative to AvE - June to July

The Mean-Reverting Family

Or Garp's Method

Garp

Let's talk about dependence

Based on our prior expectations...

$$p_{\mathbf{k}}U_{0} \qquad (1-p_{\mathbf{k}})U_{0}$$

...how do we update future expectations based on experience (AvE vs. EvE)

But is it possible that losses could, sometimes, maybe exhibit a degree of negative dependence

- Sure, why not. Here are some examples:
 - Crop
 - Extended Warranty
 - Construction Defect
 - Credit Disability
- Any line where the occurrence (or absence) of an event decreases (or increases) the likelihood of a future event

So what do we do – a (natural) way to introduce negative dependence

General Formulation of the Mean-Reverting Family

Specific Formulations

Absolute vs. Relative Mean-Reversion

Unadjusted Methods

Method	Outstanding Reserve	Dependence
CL Method	$U_0(1-p_k)+\left(\frac{1-p_k}{p_k}\right)(C_k-p_kU_0)$	$p_k \in (0,1] \Rightarrow Positive$
BF Method	$U_0(1-p_k)+(0)(C_k-p_kU_0)$	$p_k \in (0,1] \Rightarrow Independent$

Adjusted Methods

Method	Outstanding Reserve	Dependence
	(1 24)	$(0,0.5) \Rightarrow Positive$
MRCL Method	$U_0(1-p_k)+\left(\frac{1-2p_k}{p_k}\right)(C_k-p_kU_0)$	$p_k \in \begin{cases} (0,0.5) & \Rightarrow Positive \\ 0.5 & \Rightarrow Independent \\ (0.5,1] & \Rightarrow Negative \end{cases}$
	(P_k)	$(0.5,1] \Rightarrow Negative$
MRBF Method	$U_0(1-p_k)-(p_k)(C_k-p_kU_0)$	$p_k \in \{(0,1] \implies Negative$

Are there any other members of the Mean-Reverting (MR) family?

Consider the alternative [credibility] formulation of the MR family

$$U_{MRi} = p_k U_0 + (1 - p_k) U_i$$

Plug in an actuarial method and out pops a member of the MR family

$$\begin{array}{lll} U_{MRi} & = & p_k U_0 + (1 - p_k) U_i \\ U_{AEBF} & = & p_k U_0 + (1 - p_k) U_{BF} \\ & = & p_k U_0 + (1 - p_k) \big[C_k + (1 - p_k) U_0 \big] \\ & = & p_k U_0 + C_k + U_0 - p_k U_0 - p_k C_k - p_k U_0 + p_k^2 U_0 \\ & = & U_{BF} - p_k C_k + p_k^2 U_0 \\ & = & U_{BF} - p_k \big(C_k - p_k U_0 \big) \end{array}$$

And here are five AE methods using common actuarial methods as the plug-in

Method	Credibility Formulation	Actual vs. Expected Formulation	Weight Function
MRIE	$U_{MRIE} = p_k U_0 + (1 - p_k) U_{IE}$	$U_{MRIE} = U_{IE} - 0(C_k - p_k U_0)$	0
MREA	$U_{MREA} = p_k U_0 + (1 - p_k) U_{EA}$	$U_{MREA} = U_{AE} - p_k^2 (C_k - p_k U_0)$	p_k^2
MRBF	$U_{MRBF} = p_k U_0 + (1 - p_k) U_{BF}$	$U_{MRBF} = U_{BF} - p_k (C_k - p_k U_0)$	$p_{\scriptscriptstyle k}$
MRGB	$U_{MRGB} = p_k U_0 + (1 - p_k) U_{GB}$	$U_{MRGB} = U_{GB} - (2p_k - p_k^2)(C_k - p_k U_0)$	$2p_k - p_k^2$
MRCL	$U_{MRCL} = p_k U_0 + (1 - p_k) U_{CL}$	$U_{MRCL} = U_{CL} - 1(C_k - p_k U_0)$	1

Note the symmetry (and hence the name of the paper)

Symmetry of the General Formulations

$$U_{AEi} = U_0 + w_i \left(C_k - p_k U_0 \right)$$

$$U_{MRi} = U_i - w_i \left(C_k - p_k U_0 \right)$$

Symmetry of the Credibility Formulations

$$U_{AEi} = p_k U_i + (1 - p_k) U_0$$

$$U_{MRi} = p_k U_0 + (1 - p_k) U_i$$

The Adjusted Mean-Reverting Family

Fixing a problem...

Whoops...

A problem with the Mean-Reverting Family...

As
$$p_k \to 100\%$$
 then $U_{MRi} = p_k U_0 + (1 - p_k)U_i \to U_0$

- But is it really a problem with the MR family of is it a problem with a fixed initial expectation
- So then, the natural solution might be to use a member of the AE family

$$U_{MRBF} = U_{BF} - p_k (C_k - p_k U_0)$$

$$U_{AMRBF} = U_{BF} - p_k (C_k - p_k U_{AEBF})$$

$$= U_{BF} - p_k (C_k - p_k [U_0 + p_k (C_k - p_k U_0)])$$

$$= U_{BF} - p_k C_k + p_k^2 U_0 + p_k^3 C_k - p_k^4 U_0$$

$$= U_{BF} - [C_k (p_k - p_k^3) - p_k U_0 (p_k - p_k^3)]$$

$$= U_{BF} - (p_k - p_k^3) (C_k - p_k U_0)$$

Putting it all together – hindsight testing

Losses beget losses

• But sometimes there is a little bit of mean-reversion

Conclusions

What methods should you take home...

Take-home methods

4 methods which should take home

Method	Formula
AEBF	$U_{AEBF} = U_0 + p_k \left(C_k - p_k U_0 \right)$
GAEBF	$U_{GAEBF} = U_k = U_{k-1} + \left(\frac{p_k - p_{k-1}}{1 - p_{k-1}}\right) \left(C_k - C_{k-1}\right) - \left(\frac{p_k - p_{k-1}}{1 - p_{k-1}}\right) \left(U_{k-1} - C_{k-1}\right)$
AMRBF	$U_{AMRBF} = U_{BF} - \left(p_k - p_k^3\right)\left(C_k - p_k U_0\right)$
AMRCL	$U_{AMRCL} = U_{CL} - (1 - p_k)(C_k - p_k U_0)$

- AEBF Used as an alternative of a fixed initial expectation
- GAEBF Used to credibly roll-forward prior indications
- AMRBF Used to introduce negative dependence
- AMRCL Used when losses are positively dependent with a touch of mean-reversion

Contact

- Two Symmetric Families of Loss Reserving Methods
- Andy Staudt
 - Towers Watson
 - 69 Leadenhall Street
 - London EC2A 3DB
 - **United Kingdom**
 - T +44 (0) 207 886 5146
 - E andy.staudt@towerswatson.com