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A better Bootstrap, Mack, and the ELRF and PTF
modelling Frameworks
» Bootstrap technique- a powerful diagnostic tool for testing a
model;
« The Bootstrap is a technique not a model;
* When is the Bootstrap technique needed or necessary?
» Bootstrap samples (are supposed to) replicate the statistical
features of the real loss development (array);
* Two Families of models:
o Extended Link Ratio Family (ELRF) that includes Mack,
Murphy and extensions/derivatives thereof;
o Probabilistic Trend Family (PTF) that fit a distribution to
every cell, equivalently fit the trends in the three directions

and the quality of the volatility about the trend structure
"Q;Insureware

Summary- Link Ratio Methods including Mack and relatives thereof

» Link ratio methods - Mack & Murphy & quasi-Poisson GLM are
structure-less, information free, no descriptors of the features in
the data. Give incorrect calendar period liability stream;

* On updating, estimates of mean ultimates may be grossly
inconsistent;

» Bootstrap samples generated from Mack method are easily
distinguishable from the real data;

* Mack, equivalently, volume weighted average (CL) link ratios do
not distinguish between development and accident periods! It's
the same arithmetic irrespective of the statistical features in the
data;
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Summary

* PTF (and MPTF) modeling framework for building single-/multi-
triangle models that can capture trend structure and volatility in
real data- the latter also the three types of correlations

« |dentified model in PTF framework describes the trend structure
and volatility succinctly (four pictures). All assumptions tested
and validated.

* Model satisfies axiomatic trend properties of every real datset

» Real loss triangle can be regarded as sample path from fitted
probabilistic model. Can't tell the difference between real and
simulated triangles. Also Bootstrap samples are
indistinguishable from the real data
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8/29/2011

Summary

« Two LOBs written by the same company rarely have the same trend
structure (including in the calendar year direction) and often process
(volatility) correlation is either zero or very low. Reserve distribution
correlation is often zero and if significant quite low.

* No two companies are the same in respect of trend structure, and
process (volatility) correlation is often zero (for the ‘same’ LOB).

« No company is the same as the industry, unless it is a very large
proportion of the industry.

« All the above are demonstrated with real life data.
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Summary- Advantages of the PTF and MPTF
modelling frameworks

« Readily obtain percentiles , V@R and T-V@R tables for total reserve and
aggregates, by calendar year and accident year for the aggregate of multiple
LOBs and each LOB, conditional on explicit auditable assumptions

« Measurement of the three types of correlations (relationships) between LOBs

« Obtain consistent estimates of prior year ultimates, and Sll and IFRS 4
metrics on updating

« Calendar year liability stream distributions (and their correlations) are critical
for risk capital allocation and cost of capital calculations; and Sll and IFRS 4
metrics (What do they depend on?)

« Pricing future underwriting years
« No two companies are the same in respect of volatility and correlations
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Variability and Uncertainty

« different concepts; not interchangeable

“Variability is a phenomenon in the physical world to be
measured, analyzed and where appropriate explained. By
contrast uncertainty is an aspect of knowledge.”

— Sir David Cox
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Example: Coin vs Roulette Wheel

Coin "Roulette Wheel"
100 tosses fair coin ~ (#H?) No. 0,1, ..., 100
Mean = 50 Mean = 50

Std Dev =5 Std Dev = 29

CI [50,50] Cl150.50]

In 95% of experiments
with the coin the number
of heads will be in interval
[40,60].

In 95% of experiments with
the wheel, observed number
will be in interval [2, 97].

Where do you need more risk capital?
Introduce uncertainty into our knowledge - if coin or roulette
wheel are mutilated then conclusions could be made only on
the basis of observed data
"‘_p_‘lnsureware

ELRF (Extended Link Ratio Family) Modelling Framework- Regression
formulation of link ratios and extensions. Includes Mack, Murphy.

X is cumulative at dev. j-1 and y is cumulative at dev. j

= Link Ratios are a comparison of = We can graph the ratios of Y:X -
columns . line through O?

X=Cum. @ j-1
Y=Cum. @j

Using ratios => E(Y|x) = Bx
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Mack (1993) =1

is aregression formulation of volume weighted average link ratios
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y=bx +¢& : V(c)=02x?

Minimize Sw (y-bx Y
hi = 1
where w 45
Yy
. X
1. 6§=1, b=""x_2
X zx
Chain Ladder Ratio (Volume Weighted Average)
2. 5 = 2, - Lty 2
n X
Arithmetic Average
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IL(C) Data

Mack (=volume weighted average) weighted standardized residuals

« Note trend in residuals versus fitted values (bottom right)
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IL(C) Data

Need intercepts- best link ratios are not through origin- hence method over fits

big values and under fits small values

Cum(1) vs Cum,(0) Cum,(2) vs Cum,(1)




Intercept (Murphy (1994))

y=a+bx+e : V(e)=0"x"

Since y already includes x:y =x +p,iep =y - X

p=a+(b-1x+s : Vg)=c™
T 0
Incremental  Cumulative
atj atj-1
Is b -1 significant ? Venter (1996)
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IL(C) data
Link Ratios=1 in presence of an intercept. Zilch Predictive power

Incremental incurred not correlated to previous period cumulatives!

Incr.(1) vs Cum,(0) Incr.(2) vs Cum,(1)

Corr. =-0.117, P-value = 0.764

Abandon Link Ratios - No predictive power

Cumulative Incremental

i1

V

p=a+ b lx+£
Case (i) b>1 a=0
Case (ii) b=1 a =0 Linkratio b has no predictive power
= Ave(Incrementals)

é
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Is assumption E(p|x)=a+ (b-1) x tenable?

* Note: If corr(x, p) =0, then corr((b-1)x, p) =0
« If x, p uncorrelated, no ratio has predictive power

» Ratio selection by actuarial judgment can’t overcome zero
correlation.

» Corr. often close to 0
» Sometimes not
— Does this imply
ratios are a good
model?

— Ranges?

X A Insureware

8/29/2011

Extended Link Ratio Family (ELRF) Modelling Framework

Cumulative Incremental
1 1 %0

B

Condition 1: *x ‘ x x

p=a+(b-Dx+e : Ve =Wozx5

Constant Trend

=

Condition 2:

T .
. A Insureware [16]

Now Introduce Trend Parameter For Incrementals

2 P
: -
w p=a,+aw+(b-x+e
a, = Intercept p vs acci. yr,
a,=Trend and pre\_/ious
cumulative

b = Ratio
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The Probabilistic Trend Family (PTF) Modelling Framework
Study in later slides
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Condition 3:

Incremental

Review 3 conditions:
Condition 1: Zero trend

Condition 2: Constant trend, positive or negative

Condition 3: Non-constant trend

¥ Insureware

Mack=Chain Ladder (volume weighted average)
treats accident years like development years

Can cumulate across or down. Does not matter!
Dev per ratios across project across

A

ratios down project down

2:
cumulate
Acci down
per
e 19
‘¢‘ Insureware @

1 [ EENE
array

cumulate

Acci across

per

Dev per

Mack does not distinguish between accident years
and development years

]

p:y(u_1)=ﬁ
a

a

The standard
deviations are
different because
of different
conditioning
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Dataset ABC- Worker’s Comp large company

Data versus development year Data versus accident year
0 = Do Ve

Very different structure. So CL (Mack) ignores this information that sticks out!
A Insureware

The Probabilistic Trend Family (PTF)Modelling Framework
Here | will use the highlighter to illustrate rudimentary concepts

No Need for BF

The PTF Modelling Framework

Trend axioms satisfied by every real incremental triangle

» Trends occur in three directions:

01 Development year
d
g Q"‘}
N o
&
1986 L
1987 :
1998 t=w+d
w

Accident year
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M3IR5 Data- Deterministic data with a single development period trend
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0 1 2 3 4 5 6 7 8 9 10 " 12 13
100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 13534 11080 9072 7427
100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 13534 11080 9072
100000 81873 67032 54881 44933 36788 30110 24660 20190 16530 13534 11080
100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 13534
100000 81873 67032 54881 44933 36788 30119 24660 20190 16530
100000 81873 67032 54881 44933 36788 30119 24660 20190
100000 81873 67032 54881 44933 36788 30119 24660 o-0.2d
100000 81873 67032 54881 44933 36788 30119
100000 81873 67032 54881 44933 36788
100000 81873 67032 54881 44933 d
100000 81873 67032 54881 alpha = 11.513 T
100000 81873 67032 -0.2
100000 81873 [
100000 PAID LOSS = EXP(alpha- 0.2d)

&/ Insureware

Probabilistic Modelling
We introduce three calendar year trends

Axiomatic Properties of Trends

1978 Qe
01
3
015
1982
1993
0.15
1991 03
0.1
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Resultant development year trends (and accident
year trends)

125

Acidert year 1983

Accident year 1978 Acciderd year 1879
sl
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Trends + randomness

Development yest

A Insureware
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MODEL DISPLAYS- four integral graphs
Graph bottom right represents process variability

Dev. V1 Trends “Acc. V1 Trends

MLE Standard Deviation vs Dev. YT

‘Qt Insureware

Normal distribution about trend structure
- integral part of model

Witd Res Normality Plot

0.2 R 4
0.15

0.1
0.05

*

N =105, P-value =0.3867, R"2 =0.9878

A Insureware
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Validation analyses- removal of years

[ Forecast Means and Standard Deviations vs Last Calendar Period

28500,000{ TTTTveeeao_ .

28,000,000
e
26,500,000 1007 088

25,894,886
- 2,868,045|

24,850,054]
- 1,526,245|

1Unit=$1

At end of 1991 Reserve dsn mean=23.4, SD=0.928, and at end 1987 mean=25.9, SD=2.87

A Insureware
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Forecast lognormals for each cell

» All assumptions are explicit
* Process variability and parameter uncertainty included
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Simulate from forecast correlated lognormals
Percentiles (Quantiles) and V@R statistics

« All assumptions are explicit

* Process variability and parameter uncertainty included
Quantile Statistics and Value
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Trends+

variation

about /
trends o 4 ‘ 4
Simulated triangles cannot be distinguished from real data — similar

trends, trend changes in same periods, same amount of random
variation about trends

Models project past volatility into the future |
A Insureware
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Dataset ABC: The PTF model

The optimal PTF identified model. Note the model fits a normal
distribution to each cell. The means are related via the trend
structure.

Note major calendar year trend shift R\I lisireware

Dataset ABC

» As you move down the accident years the “kick-up” is one
development period earlier

* Real data satisfies axiomatic trend properties.

3

% Insureware
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Dataet ABC
PTF-Calendar Year Trends

Have control on future assumptions

Cal. Yr Trends

¥ Insureware
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Dataset ABC: Three simulated triangles from the fitted model, and the real
data triangle? Which is real data?

nsureware .

Dataset ABC: Three simulated, one real. Residuals of fitting only one parameter in each direction. Which is the
eal data? Simulated triangles have the same statistical features as the real data! We will use Bootstrap

echnique later to do same thing

13



Dataset ABC- Wtd Standardized Residuals of Mack method
(CL link ratios)

Itis impossible for any link ratio method including Mack (=CL ratios) to capture
and describe trends in any direction, let alone the calendar years.

A Insureware
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Dataset ABC

ELRF- Mack (volume weighted average link ratios) Residuals versus calendar year. Cannot
capture calendar year trend structure. No control on assumptions going forward either, and
averager calendar year trend captured cannot be discerned.

Mack Residuals Calendar Year trends in incrementals

Left) Residuals after applying Mack method to the loss array for Dataset ABC.
Note the sharp trend after 1984. Mack under fits recent calendar years and
overfits earlier years. (Right) Probability Trend Family model picks up the change
in trend structure in this direction, the other two directions and the volg‘&i\

nsureware

Dataset ABC- Removing the three calendar year trends. That is setting
the trend to zero for all calendar years in the PTF modelling framework

Looks a bit like the Mack residuals (but on a log scale)

Wid Std Res vs Cal. Yr

A Insureware
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Dataset Mack (CL ratios) reserve too high by a factor
of 2!

Reserve = 901,941T +- 108,577T Reserve = 489,017T +_40,316T

WG S Res v Cal VT G S R ve G v

Data trend minus trend estimated An ELRF model that better captures
by Mack is negative calendar year trend in recent cys
A Insureware

The power of the PTF modelling framework

COMPANY XYZ: CREs versus Paids.
When was the company sold?
CREs Paids

G

‘+‘ Insureware

The Bootstrap Technique- it is not a model!
The Bootstrap can be used as a powerful diagnostic tool

According to Frangois Morin:

"Bootstrapping utilizes the sampling-with-replacement technique
on the residuals of the historical data",

and

"Each simulated sampling scenario produces a new realization of
"triangular data" that has the same statistical characteristics
as the actual data." (Emphasis added)

- Frangois Morin , Integrating Reserve Risk Models into Economic
Capital Models, CLRS Seminar, Washington D.C. 2008
A Insureware
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This is worth repeating

« "Each simulated sampling scenario produces a new realization
of "triangular data" that has the same statistical
characteristics as the actual data." (Emphasis added)

« This only true if the model has the same statistical features
as the data!

« Bootstrap samples are generated from a model

A Insureware
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Bootstrap Samples

Bootstrap samples
generated from model
BS1 BS2 BS3 Real Data

Fv.V Vv

‘Qt Insureware

Do you Bootstrap a triangle?
The observations in a triangle are not iid
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Bootstrapping the data is like assuming each fitted
value is zero. That is, aresidual = observation

Would anybody want to do that? Why not?

Abootstrap sample Data

TS e Do ¥

You can easily tell the difference between the BS sample and the real data.
So we need a better model ‘) Insureware
iy
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The Residuals

* These are the differences between the observed values and the
fitted values:

e=¥-1, i=1..N.

* The residuals represent the trends in the data
minus the trends estimated by the model.

‘Qt Insureware

Bootstrapped Dataset

Vi = ?g + g /_\] .
Data = Fit + residual é’o@

+ Working backwards from the bootstrapped residuals {7, - - - e}
we form a bootstrap dataset
Y=Y +e

Bootstrap sample = Fit + re-sample residual (scaled)

A Insureware
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Bootstrap sample for a loss development array

®data = fit + residual
- =
L =~ resample whole
V

@
Ve )
7 @ array of “Std

® Bootstrap data = fit + resample residuals

Al 4 4

—e——

Usually, r's scaled to constant
variance at step (2) then
rescaled at step (3)

A Insureware
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Mack and the bootstrap (Dataset ABC)
The bootstrap as a diagnostic tool

Mack fitted to the real "* m ERE [

data contains

structure by

calendar year
Bootstrap samples
from the Mack method

lose this structure as it|"a P—
i
has been randomized! | = el - e

‘Qt Insureware

Log-Linear Poisson Residuals versus Mack
Residuals- very different. It is not the same model!

The Log-Linear Poisson residuals for

Std.Peamonies ve Cal Y1 /Dataset ABC also show obvious
3 ] = structure in the calendar direction.
2 4 P

B

1 4% M IE:

s o
51 oogtd,. !t 3

edsgige
] § N
2 |
»

Mack residuals/

A Insureware
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Dataset ABC: The optimal identified PTF model

» The optimal PTF model for ABC (again)

A Insureware

Mack bootstrap sample versus bootstrap samples from the identified PTF
model (ABC)- The bootstrap technique as a diagnostic tool

Statistical CL applied

to four datasets:

Real, a Mack
bootstrap sample, and

two bootstrap samples
from the identified PTF

model?

No prize for guessing

the odd man out!

;.)" Insureware

Residuals of fitting the model with a single parameter in each direction
for three datasets: real and two BSs from the identified optimal PTF model

+  Which display is the real data? Impossible to tell!
——
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