

Optimal Layers for Catastrophe Reinsurance

Luyang Fu, Ph.D., FCAS, MAAA C. K. "Stan" Khury, FCAS, MAAA

September 2010

Auto

Home

Business

STATEAUTO.COM

Agenda

- Introduction
- > Optimal reinsurance: academics
- Optimal reinsurance: RAROC
- > Optimal reinsurance: our method
- A case study
- Conclusions
- ➤ Q&A

1. Introduction

- > Bad property loss ratios of insurance industry, especially homeowners line
- >Increasing property losses from wind-hail perils
- >Insurers buy cat reinsurance to hedge against catastrophe risks

1. Introduction

Reinsurance decision is a balance between cost and benefit

- > Cost : reinsurance premium loss recovered
- ➤ Benefit : risk reduction
 - >Stable income stream over time
 - >Protection again extreme events
 - > Reduce likelihood of being downgraded

1. Introduction

How to measure risk reduction

- ➤ Variance and standard deviation
- ➤ Not downside risk measures
- ➤ Desirable swings are also treated as risk
- ➤ VaR (Value-at-Risk), TVaR, XTVaR
- ➤ VaR: predetermined percentile point
- >TVaR: expected value when loss>VAR
- >XTVaR: TVaR-mean

1. Introduction

How to measure risk reduction

>Lower partial moment and downside variance

$$LPM(L \mid T, k) = \int_{-\infty}^{\infty} (L - T)^{k} dF(L)$$

- >T is the maximum acceptable losses, benchmark for "downside"
- ${\succ}k$ is the risk perception parameter to large losses, the higher the k, the stronger risk aversion to large losses
- >When k=1 and T is the 99th percentile of loss, LPM is equal to 0.01*VaR
- ➤When K=2 and T is the mean, LPM is semi-variance
- >When K=2 and T is the target, LPM is downside variance

1. Introduction How to measure risk reduction >EPD expected policyholder deficit ➤ EPD=probability of default * average loss from Cost of default option >An insurer will not pay claims once the capital is >A put option that transfers default risk to policyholders >PML (probable maximum loss per event) and AAL (average annual Loss) 2. Optimal reinsurance: academics ▶Borch, K., 1982, "Additive Insurance Premium: A Note", Journal of Finance 37(5), 1295-1298 Froot, K. A., 2001, "The Market for Catastrophe Risk: A Clinical Examination", Journal of Financial Economics 60, 529-571 ≽Gajek, L., and D. Zagrodny, 2000, "Optimal Reinsurance Under General Risk Measures", *Insurance: Mathematics and Economics*, 34, 227-240. ► Lane, M. N., 2000, "Pricing Risk Transfer Functions", ASTIN Bulletin 30(2), 259-293. ➤ Kaluszka M., 2001, "Optimal Reinsurance Under Mean-Variance Premium Principles", *Insurance: Mathematics and Economics*, 28, 61-67 FGajek, L., and D. Zagrodny, 2004, "Reinsurance Arrangements Maximizing Insurer's Survival Probability", *Journal of Risk and Insurance* 71(3), 421-435.

2. Optimal reinsurance: academics

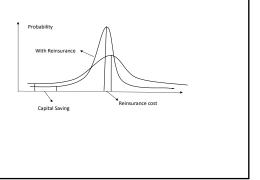
- >Cat reinsurance has zero correlation with market index, and therefore zero beta in CAPM.
- >Because of zero beta, reinsurance premium reinsurance premium should be a dollar-to-dollar.
- > Reinsurance reduces risk at zero cost. Therefore optimizing profit-risk tradeoff implies minimizing risk
 - >buy largest possible protection without budget constraints
 - >buy highest possible retention with budget constraints

2. Optimal reinsurance: academics Academic Assumption Profit B Great Risk

2. Optimal reinsurance: academics

Those studies do not help practitioners

- >Reinsurance is costly.
 - Reinsurers need to hold a large amount of capital and require a market return on such a capital.
 - > Reinsurance premium/Loss recovered can be over 10 in reality
- ➤No reinsurers can fully diversify away cat risk
- >Only consider the risk side of equation and ignore cost side.


11

3. Optimal reinsurance: RAROC

RAROC (Risk-adjusted return on capital) approach is popular in practice

- >Economic capital (EC) covers extreme loss scenarios
- > Reinsurance cost = reinsurance premium expected recovery
- ➤ Capital Saving = EC w/o reinsurance EC w reinsurance
- > Cost of Risk Capital (CORC) = Reinsurance cost / Capital Saving
- CORC balances profit (numerator) and risk (denominator)

3. Optimal reinsurance: RAROC

3. Optimal reinsurance: RAROC

- ➤ There is no universal definition of economic capital
- ➤ Use VaR or TVaR to measure risk
 - >Only consider extreme scenarios. Insurance companies also dislike small losses
 - >Linear risk perception. 100 million loss is 10 times worse than 10 million loss by VaR. In reality, risk perception is exponentially increasing with the size of loss.

14

4. Optimal Reinsurance: DRAP Approach

Downside Risk-adjusted Profit (DRAP)

$$DRAP = Mean(r) - \theta * LPM(r | T, k)$$

$$LPM(r | T, k) = \int_{0}^{T} (T - r)^{k} dF(r)$$

- ➤r is underwriting profit rate
- >θ is the risk aversion coefficient
- >T is the bench mark for downside
- >K measures the increasing risk perception toward large losses

4.5

4. Optimal Reinsurance: DRAP Approach

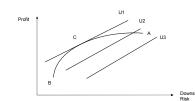
Loss Recovery

$$G(x_i,R,L) = \begin{cases} 0 & \text{if} \quad x_i <= R \\ (x_i-R) * \phi & \text{if} \quad R < x_i <= R+L \\ L * \phi & \text{if} \quad x_i > R+L \end{cases}$$

- ➤R is retention
- ▶L is the limit
- ▶ Ф is the coverage percentage
- $\triangleright x_i$ is cat loss from the ith event

40

4. Optimal Reinsurance: DRAP Approach


Underwriting profit

$$r = 1 - \frac{EXP + Y + RP(R, L)}{EP} - \frac{\sum_{i=1}^{N} x_i - G(x_i, R, L) + RI(x_i, R, L)}{EP}$$

- ➤EP: gross earned premium
- ➤EXP: expense
- ➤Y non cat losses
- ➤RP(R, L): reinsurance premium
- ►RI (xi, R, L): reinstatement premium
- ➤N: number of cat event

4. Optimal Reinsurance: DRAP Approach

$$M_{p,r}$$
 Mean $(r) - \theta * LPM(r|T,k)$

AB is efficient frontier

U1, U2, U3 are utility curves

 $\ensuremath{\mathsf{C}}$ is the optimal reinsurance that maximizes $\ensuremath{\mathsf{DRAP}}$

	٦
Optimal Reinsurance: DRAP Approach	
Advantages to conventional mean-variance	
studies in academics	
An ERM approach.	
Considers both catastrophe and non-catastrophe losses simultaneously	
Overall profitability impacts the layer selection.	
High profitability enhances an insurer's ability to more cat risk.	
➤Use a downside risk measure (LPM) other	
than two-side risk measure (variance)	
19	<u> </u>
	٦
Optimal Reinsurance: DRAP Approach	
<u> </u>	
Parameter estimations	
➤Theta may not be constant by the size of loss	-
➤For loss that causes a bad quarter, theta is low	
For loss that causes a bad year and no annual	
bonus, theta will be high For loss that cause a financial downgrade or	
replacement of management, theta will be even	
higher	
Theta is time variant	
➤Theta varies by individual institution	
20	J
	٦
1. Optimal Reinsurance: DRAP Approach	
т трительный при	-
Parameter estimations	
➤Theta is difficult to measure.	-
≻How much management is willing to pay to be risk	
free?	-
➤ How much investors require to take the risk? ➤ index risk premium = index return – risk free rate	
➤Insurance risk premium= insurance return-risk free rate	
>cat risk premium= cat bond yield- risk free rate	

. Optimal Reinsurance: DRAP Approach	
Parameter estimations	
k may not be constant by the size of loss	
For smaller loss, loss perception is close to 1, k=1;	-
For severe loss, k>1	
➤Academic tradition: k=2 ➤Recent literature: increasing evidences that risks	
measured by moments >2 were priced	
22	
4. Optimal Reinsurance: DRAP Approach	
Parameter estimations	
T is the bench mark for "downside"	
➤ Target profit: below target is risk	
➤Zero: underwriting loss is risk	
>Zero ROE: underwriting loss larger than	
investment income is risk >Large negative: severe loss is treated as risk	-
Large negative. Severe loss is fleated as fisk	
	-
23	
	1
5. Case Study	
	-
A hypothetical company	
Gross earned premium from all lines:10 billion	
Expense ratio: 33%	
➤ Lognormal non-cat loss from actual data mean=5.91 billion; std=402 million	
>Lognormal cat loss estimated from AIR data	
mean # of event=39.7; std=4.45	
>mean loss from an event=10.02 million; std=50.77 million	
≻total annual cat loss mean=398 million; std=323	
million	

5.	Case	Study

- ≻K=2
- >T=0%
- Theta is tested at 16.71, 22.28, and 27.85, which represents that primary insurer would like to pay 30%, 40%, and 50% of gross profit to be risk free, respectively.
- >UW profit without Insurance is 3.92%
- ➤ Variance 0.263%
- ➤ Downside variance is 0.07% (T=0%)
- ➤ Probability of underwriting loss is 18.41%
- ➤ Probability of severe loss (<-15%) is 0.48%

...

5. Case Study

Reinsurance quotes (million)

Retention	Upper Bound of Layer	Reinsurance Limit	Reinsurance Price	Rate-on-line
305	420	115	20.8	18.09%
420	610	190	21.7	11.42%
610	915	305	19.8	6.50%
610	1,030	420	25.2	5.99%
1,030	1,800	770	28.7	3.72%
1.800	3.050	1.250	39.1	3.13%

26

5. Case Study

Recoveries and penetrations by layers

	Retention (million)	Upper Limit (million)	Mean	Standard Deviation	Recovery/reinsura nce Premium	Penetration Probability
	305	420	8,859,074	29,491,239	42.59%	10.18%
	420	610	8,045,968	35,917,439	37.08%	6.04%
	610	915	6,496,494	41,009,356	32.81%	3.15%
	610	1,030	7,923,052	51,899,244	31.44%	3.15%
	1,030	1,800	4,858,545	55,432,115	16.93%	1.11%
_	1,800	3,050	2,573,573	48,827,021	6.58%	0.40%

5. Case Study

Reinsurance Price Curves Fitting

- >(x1, x2) represents reinsurance layer
- ➤ f(x) represent rate-on-line

$$p(x_1, x_2) = \int_{1}^{x_2} f(x) dx$$

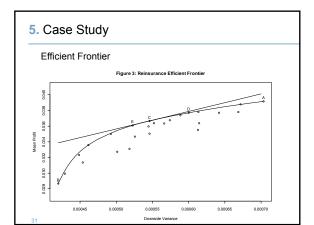
Add quadratic term. Logrithm, and inverse term to reflect nonlinear relations

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 \log(x) + \beta_4 x^{-1}$$

$$\begin{split} p(x_1, x_2) &= \beta_0(x_2 - x_1) + \frac{1}{2}\beta_1(x_2^2 - x_1^2) + \frac{1}{3}\beta_2(x_2^3 - x_1^3) \\ &+ \beta_3(x_2\log(x_2) - x_1\log(x_1)) + \beta_4(\log(x_2) - \log(x_1)) \end{split}$$

28

5. Case Study


Reinsurance Price Fitting

Retention	Upper Bound of Layer	Reinsurance Limit	Reinsurance Price	Rate-on-line	Fitted rate	Fitted Rate on-line
305	420	115	20.8	18.09%	20.84	18.12%
420	610	190	21.7	11.42%	21.69	11.41%
610	915	305	19.8	6.50%	19.87	6.51%
610	1,030	420	25.2	5.99%	25.18	6.00%
1,030	1,800	770	28.7	3.72%	28.73	3.73%
1,800	3,050	1,250	39.1	3.13%	39.10	3.13%
305	610	305	42.5	13.93%	42.52	13.94%
305	915	610	62.3	10.22%	62.39	10.23%
305	1,030	725	67.7	9.33%	67.70	9.34%
305	1,800	1,495	96.5	6.45%	96.43	6.45%
305	3,050	2,745	135.6	4.94%	135.53	4.94%
420	915	495	41.5	8.39%	41.55	8.39%
420	1,030	610	46.9	7.68%	46.87	7.68%
420	1,800	1,380	75.6	5.47%	75.60	5.48%
420	3,050	2,630	114.7	4.36%	114.69	4.36%
610	1,800	1,190	53.9	4.53%	53.91	4.53%
610	3,050	2,440	93	3.81%	93.01	3.81%
915	1,030	115	5.3	4.64%	5.32	4.62%
915	1,800	885	34	3.85%	34.04	3.85%
915	3,050	2,135	73.1	3.42%	73.14	3.43%
1,030	3,050	2,020	67.8	3.36%	67.83	3.36%

5. Case Study

Performance of Reinsurance Layers theta=22.28

Retention (million)	Upper Limit (million)	Prob r<0	Prob r<-15%	Mean	Variance	Downside Variance	Risk-adjuster Profit
No Rei	nsurance	18.41%	0.48%	3.916%	0.263%	0.070%	2.350%
305	420	19.02%	0.42%	3.781%	0.253%	0.067%	2.291%
420	610	19.17%	0.35%	3.771%	0.249%	0.064%	2.341%
610	915	19.31%	0.30%	3.779%	0.247%	0.061%	2.412%
610	1030	19.53%	0.27%	3.739%	0.243%	0.059%	2.428%
1030	1800	19.95%	0.26%	3.676%	0.243%	0.057%	2.397%
1800	3050	20.44%	0.41%	3.551%	0.247%	0.061%	2.186%
305	610	19.63%	0.33%	3.637%	0.241%	0.061%	2.268%
305	915	20.50%	0.25%	3.503%	0.228%	0.055%	2.287%
305	1,030	20.76%	0.22%	3.465%	0.224%	0.053%	2.293%
305	1,800	22.31%	0.13%	3.231%	0.210%	0.045%	2.231%
305	3,050	24.77%	0.04%	2.869%	0.200%	0.042%	1.934%
420	915	19.85%	0.25%	3.634%	0.235%	0.057%	2.373%
420	1,030	20.06%	0.22%	3.595%	0.232%	0.054%	2.382%
420	1,800	21.79%	0.14%	3.358%	0.216%	0.046%	2.330%
420	3,050	24.25%	0.05%	2.995%	0.206%	0.043%	2.038%
610	1,800	21.05%	0.16%	3.500%	0.226%	0.049%	2.402%
610	3,050	23.35%	0.11%	3.135%	0.215%	0.045%	2.124%
915	1,030	18.63%	0.40%	3.877%	0.258%	0.067%	2.380%
915	1,800	20.14%	0.21%	3.637%	0.239%	0.055%	2.407%
915	3,050	22.44%	0.17%	3.272%	0.226%	0.050%	2.155%
1030	3050	22.15%	0.20%	3.311%	0.230%	0.052%	2.156%
680	1390	20.00%	0.21%	3.667%	0.237%	0.055%	2.451%

5. Case Study

>Optimal Reinsurance Layers theta =16.71, 22.28, 27.85

Theta	Retention (million)	Upper Limit (million)	Mean	Downside Variance	Risk- Adjusted Profit theta=16.71	Risk- Adjusted Profit theta=22.28	Risk- Adjusted Profit theta=27.85
16.71	795	1220	3.771%	0.060%	2.768%	2.434%	2.100%
22.28	680	1390	3.667%	0.055%	2.755%	2.451%	2.147%
27.85	615	1460	3 610%	0.052%	2 736%	2 445%	2 154%

➤If the overall profit rate increases 2% and theta remains at 22.28, the optimal layers becomes (740, 1420)

6. Conclusions

- >The overall profitability (both cat and noncat losses) impacts optimal insurance decision
- >Risk appetites are difficult to measure by a single parameter.
- DRAP capture risk appetites comprehensively though theta (risk aversion coefficient), T (downside bench mark), and moment k (increasingly perception toward large loss)
- >DRAP provides an alternative approach to calculate optimal layers.

-	