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Antitrust Notice
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Overview

Session is based on two call papers

Fitting a GLM to Incomplete Development triangles
Detailed description of model and how to go about fitting
it in MS Excel using Visual Basic

Bootstrapping GLMs for Development Triangles

using Deviance Residuals
Algorithm for rescaling deviance residuals and case study

of bootstrapping with Pearson residuals vs bootstrapping
with deviance residuals




Obijectives

Understand issues encountered when fitting a
regression model to an incomplete development
triangle

Understand nature of bootstrapping
Understand some practical limitations
encountered when bootstrap based on residual
resampling is employed

Fitting a GLM to Incomplete
Development Triangles

Outline of presentation
Description of the model

Issues encountered when dealing with incomplete
triangles

Quick introduction to graph theory

What can be learned about the model for a particular
development triangle

Description of the model

Multiplicative factorial GLM for incremental
development amounts (using exposure and
development period parameters)

Reserve projection based on out-of-sample
projection of future incremental development
amounts

Fit is accomplished using pseudo-likelihood

framework — i.e. model is specified by choice of
variance function




Description of the model

Multiplicative GLM = log link function
Factorial model = discrete parameters
Out-of-sample projection = we fit a regression
model to past development amounts
Pseudo-likelihood = fitting procedure only
depends on second moment assumptions

Description of model

Model is linear on log scale:
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Issues with incomplete triangles

Not enough data points for all parameters
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Issues with incomplete triangles

Choice of reference cell matters after all

X X X X X

Issues with incomplete triangles

Data splits into unrelated regions
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Issues with incomplete triangles

Exact fit cells
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Quick intro to graph theory

A graph is a collection of NODES which are
pair-wise connected by EDGES

Quick intro to graph theory

Maximal connected components
A,B,D,E&F
C,G&H

Quick intro to graph theory

Development triangles as graphs:
All cells in a row are pair-wise connected

All cells in a column are pair-wise connected
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Quick intro to graph theory

Breadth first search for triangles
Start with all included cells untested

Pick one cell to start with
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Quick intro to graph theory

Breadth first search for triangles (step 3)

Mark all cells in column of first untested cell with
component counter and column tested flag
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Quick intro to graph theory

Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and
mark other cells in row as row tested
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Quick intro to graph theory

Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and
mark other cells in row as row tested
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Quick intro to graph theory

Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and
mark other cells in row as row tested

O O & & @
O & &
o @&
2]

@ ® O O

Quick intro to graph theory

Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and
mark other cells in row as row tested
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Quick intro to graph theory

Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and

mark other cells in row as row tested
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Quick intro to graph theory

Breadth first search for triangles (step 06)

Loop over row tested cells: mark cell as done and

mark other cells in column as column tested
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Quick intro to graph theory

Breadth first search for triangles (step 06)

Loop over row tested cells: mark cell as done and

mark other cells in column as column tested
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Quick intro to graph theory

Breadth first search for triangles (step 6)

Loop over row tested cells: mark cell as done and

mark other cells in column as column tested
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Quick intro to graph theory

Breadth first search for triangles (step 06)

Loop over row tested cells: mark cell as done and

mark other cells in column as column tested
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Quick intro to graph theory

Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and

mark other cells in row as row tested
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Quick intro to graph theory

Breadth first search for triangles (step 3)

Mark all cells in column of first untested cell with

component counter and column tested flag
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Quick intro to graph theory

Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and

mark other cells in row as row tested
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Quick intro to graph theory

Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and

mark other cells in row as row tested
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Quick intro to graph theory

Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and
mark other cells in row as row tested
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Quick intro to graph theory

Breadth first search for triangles (step 06)

Loop over row tested cells: mark cell as done and

mark other cells in column as column tested
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What do we learn?

We can use the Breadth First algorithm to find
the maximal connected components of an
incomplete development triangle & Projecting
future development amounts is only possible
within the row and column range of each
maximal connected component

For each connected component we can also
analyze what each cell contributes to our
knowledge of the inherent variability

11



What do we learn?

Within a maximal connected component there
are three different types of nodes

r

What do we learn?

Effect of removing a single parameter cell

What do we learn?

Effect of removing a critical connector cell
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What do we learn?

Effect of removing a regression cell

What do we learn?

Single parameter cells and critical connector cells
are exact fit cells & no information about
variability for these cells

Fit for connected components of regression
cells is independent of what is going on in rest
of triangle = can be used to split regression fit

into isolated subcomponents (if there are any
critical connector cells)

What else is in the call paper?

Section 3 covers how to fit a GLM using MS
Excel based Visual Basic code

Section 4 covers how to calculate and plot
standardized residuals

Spreadsheet with illustrative implementation of
algorithms discussed in call paper is available
from author at request
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Illustrative spreadsheet

Input 10 x 10 triangle

Select data points to include in model

Analyze graph topology of incomplete triangle
Choose variance function

Fit GLM to incomplete triangle

Study standardized residual plots

Bootstrap range of reserve outcomes using
Pearson residuals of Deviance residuals

Bootstrapping GLMs for
Development Triangles using
Deviance Residuals

Not covered in presentation: Newton-Raphson
algorithm for rescaling deviance residuals based
on identity variance function

Covered in presentation: case study of
bootstrapping with Pearson residuals vs
bootstrapping with deviance residuals

Bootstrapping GLMs for
Development Triangles using
Deviance Residuals

Outline of presentation
What is bootstrapping?
Linear rescaling with Pearson residuals
Non-linear rescaling with Deviance residuals
Demonstration I: negative resampling values
Demonstration II: non-linear rescaling not possible

What do we learn?
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What is bootstrapping?

Approximates the distribution of a function that
depends on sampled data

Assumes that data is randomly distributed
according to specified stochastic model

Uses observed error structure to approximate
random distributions of model

Any distributions derived are conditional on
specified stochastic model being correct

Bootstrapping and
Stochastic Reserving

Reserves are a function of development triangle
Get bootstrap distribution of reserve estimates
by repeatedly resampling triangle

Above only gives parameter uncertainty

To approximate distribution of reserve
outcomes we also need process error

Can approximate process error using the same
resampling procedure used for triangle

Bootstrapping and
Heteroscedasticity

Use resampling of standardized residuals to
adjust for non-constant error structure

Multiple definitions for residuals available

Residual rescaling is the inverse process of
residual standardization

Want to approximate distributions of data

points = resampling distributions should be
consistent with stochastic model assumptions
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Data set Taylor & Ashe (1983)

443,160
396,132
440832
359,450

376,686

344014

847,631

1,061,648

986,608

Rescaling Example

6189
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847498

1131308

1443370

769,488

.
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705,960
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32099
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352053
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139950 227229
27804 266172 425046
495992 280405
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Data set Taylor & Ashe (1983) — Fitted Values

110,801
203,186
396,579
2140958

307,853

338,507

Rescaling Example

61200 358694

897, 746,895
1214515 1010295

655,660 545419

042791 784261
1052766 875,744
1183083 984,48
1,128,095
1,019,595

76,383

505,115

683246

665,564
762,913
689,536

592684

197,553
411,359
556426
300,393
431,937

482321
542025
621,305

561

55

482673

185,516
386,295
52,52
25209
105619
15295

509,000

583450

116,383
242,341
327,803
176968
254464
284,145
319520
566025
530321

284354

622
40653
596051
521,785
162697
516669
580,625

Iz

601,538

517,046

7,048
141486
191,382
103,319
148,564
165893
186429
203697
193,143

166,014

Rescaling Pearson Residuals

Definition residuals:

Definition resampling distribution:

Vi =9 +V()-s
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Rescaling Pearson Residuals

Resampling distribution - fitted mean of 185,586
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Rescaling Pearson Residuals

Resampling distribution - fitted mean of 67,948
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Rescaling Pearson Residuals

Resampling distribution - fitted mean of 67,948

(values below mean only)
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Rescaling Deviance Residuals

Definition residuals (identity variance function):

o =sign(y = 9)-~/2(y-log(y/9)-y +9)

Definition resampling distribution:
No closed form expression available
Substitute S for Iy in above equation and numerically
solve for y
Need slight correction to make sure model
assumption about variance function is satisfied

Rescaling Deviance Residuals

Resampling distribution - fitted mean of 185,586

325
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200
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Rescaling Deviance Residuals

Resampling distribution - fitted mean of 67,948
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Rescaling Deviance Residuals

Resampling distribution - fitted mean of 67,948

(values below mean only)
69
63
57
51
45
39
33
27
21
15

Demonstration I

Negative resampling values
Top right cell is only cell for which we get a negative
resampling value
Can directly compare bootstrapping results with
Pearson and deviance residuals for model excluding
top right cell
Bootstrapping with deviance residuals is also
possible for model including top right cell

Demonstration I

Bootstrapping results excluding top right corner

Pearson residuals (10,000 iterations)

Period | Reserve | Projection [Development| Pred. Emor | Outcome

2 - - - R R
3 596,051 603,398 595,127 166,522 (254,940)
4 498,753 504,064 498,789 135273 (214,047)
5 1122779 1,134,746 1,125,780 224917 (345,901)
6 1,736070 1,751,181 1,734,825 302,852  (467,485)
7 2616534 2,640,194 2,612,849 407,758 (613,245)
8 4127340 4,164,901 4,132,367 586,633  (892,087)
9 4,956065 4,990,267 4,959,138 801,618 (1,232,452)
10 5,087,731 5,161,854 5082,052 1,393,141 (2,030,612)

Total | 20,741,324 20,950,606 20,740,927 2,504,915 (3,645,668)

Accident[ Modeled | Bootstrap | Sim. Future | Standard | 5%-ile Sim. | 95%-ile Sim.

Outcome

288,038
231,751
394,656
522,686
724,636
1,040,074
1,417,929
2,510,119
4,603,584
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Bootstrapping results excluding top right corner

Demonstration I

Deviance residuals (10,000 iterations)

Bootstrapping results including top right corner

Demonstration I

Deviance residuals (10,000 iterations)

Accident| Modeled | Bootstrap | Sim. Futre| Standard | 5%-ile Sim. | 95%-ile Sim.
Period | Reserve | Projection |Development| Pred. Error | Outcome | Outcome
T . . . . . .
2 . . . . - .
3 596051 601425 595682 165133  (254,824) 283543
4 498753 502,686 497,483 135937 (213,619 233681
5 1122779 1,130,897 1122776 ~ 225374  (348,761) 388,058
6 1736070 1748560 1735691 300235  (460,344) 514,240
7 2616534 2,636,940 2,619,302 409,205 (630,112 709,919
8 4127340 4,156,304 4,128423 582,196  (885,958) 1,016,114
9 4,956065 5002022 4962549 802,422 (1215009 1405855
10 5087,731 569,300 5088560 1,404,841 (2048,259) 2,501,894
Total | 20,741324 20,948,135 20,750,465 _ 2,530,813 (3.764,603) 4,599,894

Accident| Modeled | Bootstrap | Sim. Futre | Standard | 5%-ile Sim. | 95%-ile Sim.
Period | Reserve | Projection [Development| Pred. Emor | Outcome | Outcome
T . . . . . .

2 141486 148,558 141,810 99,435  (142,027) 181427

3 787433 802,512 786,345 227,758  (332,132) 415547

4 602073 612,774 600459 168,556  (252,157) 302,197

5 1271343 1,290547 1,271,004 266,900  (394,291) 476089

6 1901963 1,926,750 1,906391 343,783  (513,444)  607.984

7 2802963 2,834,990 2,804,315 448,446  (679,871) 795858

8 4341037 4,334,089 4338730 639,559 (958,332 1,144,621

9 5149209 5209231 5145549 844,468 (1,259,637) 1,509,566

10 5253745 5354869 5249988 1444013 (2074,331) 2,567,191

Total | 22,251,251 22,564,319 22,244,592 _ 2,868,629 (4,054,094 5235817

Data set Taylor & Ashe (1983) — Fitted Values

254672

223,
311,253

526,299

Demonstration I1

193

1,009,667

1,093,569
680214
946,198

1,042,841

1,169,412

665,359

84618

813,221
896282
1,005,065

1,161,796

434726
566,950
614,062
391955
31310
s85,577
s56650
730049
s84.067

587,034

320,588
418,09
452,830
281,672
391814
431,833
484215

59

504,464

433055

29529
390632
423093
263,169
366076
03,467
452436

522,990

404,608

184715
240,87
260915

162,293

9011
322520
290,660

249516

283,087
369,188
399,867
208723
545,981
381,319
12760

49

50

45454

382397

00
83,014
91,526

102635

118640

106,920

91,785
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Demonstration I1

Difference to previous example: the two data
points in column 6 excluded for demo I
Minimum value for fitted values is 67,948
Lower bound for deviance residuals is therefore
-368.64 = (2*67,948)"3 [detived in papet]
Unscaled deviance residual of -530.16 for cell
(3,0) is below this bound [equation 3.7 in paper]

Unable to rescale residual

What do we learn?

Limited scope of “distribution free” resampling
Reconsider parametric bootstrapping

Makes distributional assumptions

Avoids inconsistencies with model

Still captures correlations among parameter

estimates that are difficult to calculate explicitly
Further research into “robust” resampling
schemes is required

Contact Information

Spreadsheet with illustrative implementation of
algorithms discussed in call papers is available
from author at request
thomas.hartl@us.pwc.com

617-530-7524
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