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Outline

1 Summary of the 1st part
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WIPM versus CAPM

Let’s confine to a pair of loss random variables (r.v.’s) (X ,Y ) with the
aggregate loss r.v. S = X +Y . Similarly to the CAPM, the WIPM provides
a price of the loss X , when it’s considered a part of the risk portfolio (r.p.)
(X ,Y ). However, there are differences:

CAPM WIPM

Risk measure (r.m.) modified variance any weighted r.m.

Heavy-tailedness finite 2nd moment finite 1st moment

Risks’ distribution
real domains ?

symmetric ?
same (tail) dependence ?

Recall

We want to have a CAPM-like equation for r.p.’s (X ,Y ) of positive losses,
possibly with heavy tails and positive skewness. Is it feasible at all?
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WIPM versus CAPM

Positivity of the losses implies that E[X | S = 0] = E[Y | S = 0] = 0, and
so, we have immediately that:

CAPM WIPM

Assumption E[X | S = s] = a + bs E[X | S = s] = bs

Moreover, in the CAPM the ‘beta’ can in principle be negative, but not so
in the WIPM. Indeed, E[E[X | S ]] = bE[S ] yields b = E[X ]/E[S ].

Problem

Describe a class of r.p.’s (X ,Y ) that have decumulative distribution func-
tions (d.d.f.’s) such that for S = X + Y , the regression of the loss r.v. X
on the aggregate loss r.v. S is linear.
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Recall

Let (X ,Y ) ∼ N2(µ,Σ), where µ := (µX , µY )′ is the vector of means, and
Σ is the variance-covariance matrix with diagonal entries σ2X and σ2Y , and
the off-diagonal entries equal to σX ,Y . Then (X ,S) ∼ N2(µ∗,Σ∗) with

µ∗ = (µX , µS)′

and

Σ∗ =

(
σ2X σX ,S
σX ,,S σ2Y

)
,

where µS = µX +µY , σX ,S = σ2X + σX ,Y . Then, as it’s well-known that in
the normal case, the regression is linear, we readily have that

E[X | S = s] = µX +
σX ,S
σ2S

(s − µS), s ∈ (−∞,∞).

Good for the CAPM; can be extended to jointly elliptical losses to augment
heavy-tailedness. No good for the WIPM; so what about positive loss r.v.’s?
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I.I.D. loss r.v.’s

Let X and Y be independent and identically distributed (i.i.d.) Then as

E[X | S = s] = E[Y | S = s] for all s ≥ 0

and, also,

E[X | S = s] + E[Y | S = s] = E[S | S = s] = s for all s ≥ 0,

we must have that

E[X | S = s] =
s

2
for all s ≥ 0.

Then, for every w weight function, such that the quantities below are well-
defined and finite, the price of X is simply:

Πw [X , S ] =
1

2
πw [S ].
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Note

We have that b = 1/2 doesn’t depend on the w weight function, and that

πw [S ] :=
E[Sw(S)]

E[w(S)]

doesn’t carry any information about the joint c.d.f. of the pair (X ,S).

Note

If the losses X and Y are not i.i.d., then E[X | S = s] = bs, s ≥ 0 comes
as a reasonable initial guess, which is equivalent to assuming that

E[X | S ]

E[Y | S ]
=

E[X ]

E[Y ]
.

Question

In short, a simple (a là the CAPM) WIPM equation is feasible for positive
i.i.d. r.v.’s. Can we relax the i.i.d. assumption and yet have the WIPM?

November 13-16, 2016 The CAPM: an Insurance Variant CAS Annual Meeting 7 / 21



Identically distributed but dependent loss r.v.’s

Simple multiplicative background risk model

Let X1,Y1 and Z be independent and positive r.v.’s. The former two can
be interpreted as idiosyncratic risk factors (r.f.’s) and the latter one - as a
systemic r.f. Assume that X1 and Y1 are identically distributed, and the
c.d.f. of Z is arbitrary. Then set X = ZX1 and Y = ZY1. In this case, we
again have that the ‘weighted’ price of X is

Πw [X , S ] =
1

2
πw [S ],

for every w weight function such that the quantities above are well-defined
and finite.

Example

Put X1 ∼ E1, Y1 ∼ E1 and assume that Z is distributed inverse gamma

with some parameters. Then the r.p. (X ,Y )
d
= (ZX1,ZY1) was considered

by, e.g., Albrecher et al. (2011), IME in the context of Ruin Theory.
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Non-identically distributed but independent loss r.v.’s

Simple additive background risk model

Let X and Y be two independent loss r.v.’s with infinitely divisible d.d.f.’s,
such that the following equation holds MX (t) = (MY (t))γ , where MX and
MY are moment generating functions of X and Y , respectively, and γ =
E[X ]/E[Y ]. Then, for every w weight function, such that the expressions
below make sense, the price of X is

Πw [X , S ] =
E[X ]

E[S ]
πw [S ].

Note

Even though X and Y are independent, the r.v.’s X and S are not so.

Note

Gamma, inverse Gaussian (cont.), binomial (disc.), and compound Poisson
with gamma secondary c.d.f. (mixed) are all infinitely divisible distributions.
In fact, the log-normal and Pareto distributions are so too.
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Non-identically distributed and dependent loss r.v.’s 1

Additive background risk model: continuation

Let X1, Y1 and Z be independent but not necessarily identically distributed
r.v.’s. Set X = Z + X1 and Y = Z + Y1, which reduces to our previous
example for Z = 0 almost surely. Then if there exist constants

b1 =
E[X1]

E[X1] + 2E[Z ]
and b2 =

E[Y1]

E[Y1] + 2E[Z ]
,

such that
E[X1 | X1 + 2Z = s] = b1s for all s ≥ 0

and
E[Y1 | Y1 + 2Z = s] = b2s for all s ≥ 0,

then the ‘weighted’ price of the loss r.v. X is

Πw [X , S ] =
E[X1] + E[Z ]

2E[Z ] + E[X1] + E[Y1]
πw [S ].
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Note

Even in this quite general case, we have that b doesn’t depend on the w
weight function.

Example

Let the idiosyncratic r.f.’s be distributed Γγ1,α and Γγ2,α, and the systemic
r.f. be distributed Γγ0,2α; all parameters are positive. Then we arrive at the
set-up of, e.g., F& Landsman (2005), Alai et al. (2013) and Xu & Mao
(2013), all published in the IME. For γ+ := γ0 + γ1 + γ2, we have that

b =
γ0 + 2γ1
γ+

,

and the price of the loss r.v. X is easy to calculate within the general
weighted class of r.m.’s.
Same can be done for such other than gamma r.v.’s, as inverse Gaussian
(Tweedie EDMs in general), Binomial, compound Poisson with gamma sec-
ondary c.d.f. Log-normal, Pareto?
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Non-identically distributed and dependent loss r.v.’s 2

Multiplicative background risk model

Let the loss r.v. Z have any distribution on [0,∞), and let X1 and Y1

be jointly distributed Dirichlet with some parameters. Set X = ZX1 and
Y = ZY1, then, for any w weight function, such that the quantities below
are well-defined and finite, we have that the price of the loss r.v. X is

Πw [X .S ] =
E[X1]

E[X1] + E[Y1]
= E[X1]πw [S ].

Example

Assume that Z is distributed generalized Pareto with parameters γ, ξ, θ, all
positive. Also, denote the Dirichlet parameters of X1 and Y1 by ξ1 and ξ2,
which are positive and such that ξ1 + ξ2 = ξ. Then we arrive at the set-up
in, e.g., Yang et al. (2011), IME.
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Half-way through summary

In our discussion hitherto we have shown that the WIPM equation is feasible
to have for loss r.v.’s that are:

positive (versus real), and

positively skewed (versus symmetric).

We have also shown that in the case when the WIPM holds, the underlying
r.p.’s are such that:

copulas of sub-portfolios can vary from one sub-portfolio to another
(versus same copula for the entire r.p.), and consequently

the tail dependence can be distinct for different sub-portfolios.

Last but not least, we have mentioned that

the WIPM (Gini version) requires finiteness of the 1st moments only
of the loss r.v.’s (versus 2nd moments, needed for the CAPM),

Question

Are infinite variances really supported by empirical evidences?
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Infinite variances but finite expectations in real world

Figure 1: Scatter plot of the indices of stability and skewness for the daily returns
of 382 stocks. Rachev et al. (2005)
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An application to real data

Gini Shortfall

Let’s look at the following r.m., for p ∈ [0, 1):

GSλp [X ,S ] := ESp[X ,S ] + λpTGinip[X , S ],

where

ESp[X ,S ] = E[X | S > sp],

TGinip[X , S ] =
4

1− p
Cov[X ,FS(S)| S > sp], and

λp =
1− p

2(1 + p)
.

We know that the GS r.m. is sub-additive, positively homogeneous, trans-
lation invariant and monotone - hence it’s coherent. Moreover, the GS r.m.
satisfies the SSD order, and it is also additive for co-monotonic loss r.v.’s.
Last but not least, the GS r.m. is a weighted r.m. (w(u) = u, u ∈ (0, 1)).
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Note

The GS r.m. is akin to the famous Standard Deviation (SD) r.m. Unlike
the latter, however, the GS r.m. is coherent and exists for all loss r.v.’s
with finite expectations, whereas the SD r.m. is not monotone (and so not
coherent), and requires finite variances.

Note

We have that

n∑
k=1

GSλp [Xk , S ] = GSλp [S ] := ESp[S ] + λTGinip[S ].

Thus, the GS r.m. can be used as an additive allocation rule.
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Example - Panjer and Jing (2001)

Consider a portfolio of ten Student − t risks. Assume that

µ = (25.69, 37.84, 0.85, 12.70, 0.15, 24.05, 14.41, 4.49, 4.39, 9.56)′

and B is

7.24 0 0.07 −0.07 0.28 −2.71 −0.51 0.28 0.23 −0.21
0 20.16 0.05 1.60 0.05 1.39 1.14 −0.91 −0.81 −1.74

0.07 0.05 0.04 0.00 −0.01 0.08 0.01 −0.02 −0.02 −0.07
−0.07 1.60 0.00 1.74 0.17 0.26 0.19 −0.14 0.18 −0.79
0.28 0.05 −0.01 0.17 0.32 −0.24 0.01 −0.02 0.08 −0.01
−2.71 1.39 0.08 0.26 −0.24 14.98 0.43 −0.33 −1.89 −1.60
−0.51 1.14 0.01 0.19 0.01 0.43 2.53 −0.38 0.13 0.58
0.28 −0.91 −0.02 −0.14 −0.02 −0.33 −0.38 0.92 −0.16 −0.40
0.23 −0.81 −0.02 0.18 0.08 −1.89 0.13 −0.16 1.12 0.58
−0.21 −1.74 −0.07 −0.79 −0.01 −1.60 0.58 −0.40 0.58 6.71


.

Clearly, µS = 134.13 and σS = 6.726.
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Example - cont.

Also, we readily have that (Xk ,S) is distributed t2(µk,S ,Bk,S , q), where,
for, k = 1, . . . , n and

Ak =

 0 0 0 0 0

k-th︷︸︸︷
1 0 0 0 0

1 1 1 1 1 1 1 1 1 1

′

the new parameters are

µk,S = A′kµ and Bk,S = A′kBAk .

And according to the WIPM, we obtain that:

GSλp [Xk ,S ] = µk +
βk,S
β2S

(
GSλp [S ]− µS

)
.
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Example - cont

The diversification effect due to the GS r.m. is stronger than the one due
to the Expected Shortfall r.m.

Lines of business
1 2 3 · · · 8 9 10 Total DIV

q = 1.5

SDSλ0 NaN NaN NaN · · · NaN NaN NaN NaN NaN
ESp 30.35 45.62 1.21 · · · 6.15 6.23 14.05 145.78 0.15
SDSλp NaN NaN NaN · · · NaN NaN NaN NaN NaN

GSλp 30.63 46.08 1.24 · · · 6.25 6.34 14.31 146.48 0.16

q = 2

SDSλ0 25.88 38.16 0.87 · · · 4.56 4.47 9.75 134.61 0.01
ESp 28.56 42.62 1.07 · · · 5.51 5.52 12.32 141.30 0.10
SDSλp 28.73 42.91 1.09 · · · 5.57 5.59 12.49 141.73 0.10

GSλp 30.40 45.70 1.22 · · · 6.17 6.25 14.10 145.91 0.15

q =∞

SDSλ0 25.88 38.16 0.87 · · · 4.56 4.47 9.75 134.61 0.01
ESp 29.11 43.54 1.12 · · · 5.71 5.74 12.85 142.68 0.11
SDSλp 29.20 43.70 1.12 · · · 5.74 5.77 12.94 142.91 0.12

GSλp 29.21 43.71 1.12 · · · 5.75 5.77 12.95 142.91 0.12

Table 1: Risk measures for the Student-t risks with varying degrees of freedom q,
the parameter choices p = 0.75 and λp = 0.0714, and the diversification per unit
of risk (DIV).
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Example - cont

Again, the diversification affect is stronger due to the GS r.m.

k 1 2 3 · · · 8 9 10

wk,S 0.10 0.46 0.01 · · · -0.03 -0.01 0.07
ESp[Xk , S ] 26.85 43.21 0.88 · · · 4.19 4.26 10.37
ESp[Xk ] 30.45 45.62 1.21 · · · 6.15 6.23 14.05

GSλp [Xk , S ] 26.92 43.53 0.89 · · · 4.17 4.25 10.42

GSλp [Xk ] 30.63 46.08 1.24 · · · 6.25 6.34 14.31

Table 2: Economic versus actuarial pricing using the ES and GS r.m.’s when
p = 0.75, q = 1.5 and λp = 0.0714.
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Conclusions

CAPM-like pricing is feasible to achieve for non-elliptical loss r.v.’s.

Simple prices via the WIPM can be derived for loss r.v.’s that are:

dependent or independent;

symmetric or positively skewed;

heavy- or light-tailed;

distributed according to a variety of probability laws of interest in insur-
ance, e.g., gamma, Pareto, inverse Gaussian, compound Poisson with
gamma secondary distribution, etc.

Pricing via the WIPM is simple based on such well-known r.m.’s as:

Expected Shortfall; and more generally

the class of distorted r.n.’s,

as well as based on the new Gini Shortfall.
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