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Interplay between Industry and Academia

The best actuarial example is the well-known credibility theory
In the context of industrial workers’ compensation premiums,
Mowbray in 1914 introduced the idea of using a weighted
average of average claims of (1) a given risk class and (2) all
risk classes.
Over 50 years, later Bühlmann in 1967 showed how to
express credibility formulas in what we now call a statistical
“random effects” framework.
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ISO Collaboration between Industry and
Academia

We (Frees, Meyers and Cummings) wrote papers that
appeared in the top statistical and actuarial journals. These
were:
Dependent Multi-Peril Ratemaking Models

Astin Bulletin: Journal of the International Actuarial Association,
2010.

Summarizing Insurance Scores Using a Gini Index
Journal of the American Statistical Association, 2011.

Predictive Modeling of Multi-Peril Homeowners Insurance
Variance, 2012.

Insurance Ratemaking and a Gini Index
Journal of Risk and Insurance, 2014.
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The Lorenz Curve

We consider methods that are variations of well-known tools
in economics, the Lorenz Curve and the Gini Index.
A Lorenz Curve

is a plot of two distributions
In welfare economics, the vertical axis gives the proportion of
income (or wealth), the horizontal gives the proportion of people
See the example from Wikipedia
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The Gini Index

The 45 degree line is known as the “line of equality”
In welfare economics, this represents the situation where each
person has an equal share of income (or wealth)

To read the Lorenz Curve
Pick a point on the horizontal axis, say 60% of households
The corresponding vertical axis is about 40% of income
This represents income inequality
The farther the Lorenz curve from the line of equality, the greater is the amount
of income inequality

The Gini index is defined to be (twice) the area between the
Lorenz curve and the line of equality
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A World Bank Example

BEYOND ECONOMIC GROWTH

28

10:1 in Sub-Saharan Africa, and 12:1 in
Latin America.

Lorenz Curves and Gini Indexes

To measure income inequality in a coun-
try and compare this phenomenon among
countries more accurately, economists use
Lorenz curves and Gini indexes. A Lorenz
curve plots the cumulative percentages of
total income received against the cumula-
tive percentages of recipients, starting with
the poorest individual or household
(Figure 5.2). How is it constructed?

First, economists rank all the individuals
or households in a country by their
income level, from the poorest to the rich-
est. Then all of these individuals or house-
holds are divided into 5 groups (20

percent in each) or 10 groups (10 percent
in each) and the income of each group is
calculated and expressed as a percentage of
GDP (see Figure 5.1). Next economists
plot the shares of GDP received by these
groups cumulatively—that is, plotting the
income share of the poorest quintile
against 20 percent of population, the
income share of the poorest quintile and
the next (fourth) quintile against 40 per-
cent of population, and so on, until they
plot the aggregate share of all five quintiles
(which equals 100 percent) against 100
percent of the population. After connect-
ing all the points on the chart—starting
with the 0 percent share of income
received by 0 percent of the population—
they get the Lorenz curve for this country.

The deeper a country's Lorenz curve, the
less equal its income distribution. For

Figure 5.2
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An Insurance Example
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The left-hand panel is a histogram of premiums from a group of 359,454
policyholders, showing a distribution that is right-skewed
The right-hand panel provides the corresponding Lorenz curve
The arrow marks the point where 60% of the policyholders pay 40% of
premiums8 / 38
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More World Bank Examples
BEYOND ECONOMIC GROWTH

30

education and contributing to crime.
Think also about the following effects of
high income inequality on some major
factors of economic growth:

• High inequality threatens a country’s
political stability because more peo-
ple are dissatisfied with their eco-
nomic status, which makes it harder
to reach political consensus among
population groups with higher and
lower incomes. Political instability
increases the risks of investing in a
country and so significantly under-
mines its development potential (see
Chapter 6).

• High inequality limits the use of
important market instruments such
as changes in prices and fines. For
example, higher rates for electricity
and hot water might promote

energy efficiency (see Chapter 15),
but in the face of serious inequality,
governments introducing even
slightly higher rates risk causing
extreme deprivation among the
poorest citizens. 

• High inequality may discourage
certain basic norms of behavior
among economic agents (individu-
als or enterprises) such as trust and
commitment. Higher business risks
and higher costs of contract
enforcement impede economic
growth by slowing down all eco-
nomic transactions.

These are among the reasons some inter-
national experts recommend decreasing
income inequality in developing coun-
tries to help accelerate economic and
human development.

Average for middle-income countries, 1989

Average for OECD countries, 1989

20% 22%
25% 26% 27% 28%

33%
40% 41%

48% 50% 50%
56% 58%

63%

Figure 5.3 Income inequality in selected countries, various years 
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Other Applications of the Gini Index

Gastwirth (1971, 1972) helped to emphasize the importance
of the Lorenz curve and the Gini index as tools for comparing
distributions, particularly in economic applications. The
subsequent literature is extensive.
Researchers have sought to understand differences in
economic equality among population subgroups (e.g.,
Lambert and Decoster, 2005, Gastwirth, 1975).

Analysts have introduced weight functions into the Lorenz
curve (e.g., to account for the number of publications when
studying impact factors, Egghe, 2005).
Yitzhaki (1996) describes how weighted regression sampling
estimators can be of interest in welfare economic
applications. Here, the idea is to adjust regression weights for
social attitudes toward inequality.
Analysts have used the Gini index for model selection in
genomics (Nicodemus and Malley, 2009) and in classification
trees (Sandri and Zuccolotoo, 2008).
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Our Problem

Notation
Let xi be the set of characteristics (explanatory variables)
associated with the ith contract
Let P(xi) be the associated premium
Let yi be the loss (often zero)

y is the cost of the insurance product, P is the revenue. In a
competitive market, we would like these two numbers to be
close
It is difficult for the marketplace to ensure this because

y is random with a distribution of outcomes
the distribution of y is complex, with many zeroes and when
positive, right-skewed and long-tailed
many different sets of insureds, corresponding to a variety of
xi’s
many different contract variations (deductibles, limits,
coverages, riders, and so forth)
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Premiums and Risk Based Scores

One point of view is the premium should be the expected loss
This viewpoint is supported in the context of

many independent contracts
a competitive market

Suppose that the insurer is considering refining the
classification system through the introduction of a risk based
score, S(xi)

The relativity is R(xi) = S(xi)/P(xi).
Through the relativities, we can form portfolios of policies and
compare losses to premiums to assess profitability

This is the goal of the ordered Lorenz curve that we introduce
in this research
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Example: Homeowners Insurance
Astin Bulletin: Journal of the International Actuarial Association

We drew two random samples from a homeowners database
maintained by the Insurance Services Office.

This database contains over 4.2 million policyholder years.
Policies issued by several major insurance companies in the
United States, thought to be representative of most geographic
areas in the US.
These policies were almost all for one year and so we will use a
constant exposure (one) for our models.

Our in-sample, or “training,” dataset consists of a
representative sample of 404,664 records taken from this
database.

We estimated several competing models from this dataset

We use a held-out, or “validation” subsample of 359,454
records, whose claims we wish to predict.
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p = 9 Perils in Homeowners Insurance

Table: Summarizing 404,664 Policy-Years

Peril (j) Frequency Number Median
(in percent) of Claims Claims

Fire 0.310 1,254 4,152
Lightning 0.527 2,134 899
Wind 1.226 4,960 1,315
Hail 0.491 1,985 4,484
WaterWeather 0.776 3,142 1,481
WaterNonWeather 1.332 5,391 2,167
Liability 0.187 757 1,000
Other 0.464 1,877 875
Theft-Vandalism 0.812 3,287 1,119
Total 5.889∗ 23,834∗ 1,661
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Many Good Scoring Methods

We documented many good scoring algorithms in papers that
appeared in Astin Bulletin and in Variance. Here are a few:

Score Description
Basic, Single-peril

SP_FreqSev Frequency and Severity model
SP_PurePrem Pure premium Tweedie model
IND_FreqSev Multi-peril Frequency and Severity model

Assumes independence among perils
Instrumental Variable Multi-peril Frequency and Severity models

IV_FreqSevA Uses instruments for frequency component
IV_FreqSevB Uses instruments for severity component
IV_FreqSevC Uses instruments for frequency and severity components

Multi-peril pure premium Tweedie models
IND_PurePrem Assumes independence among perils
IV_PurePrem Instrumental Variable version
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Gini - Research Motivation

We have several new methods for determining premiums
(e.g., instrumental variables, copula regression)

How to compare?
No single statistical model that could be used as an “umbrella”
for likelihood comparisons

Would like to consider the degree of separation between
insurance losses y and premiums P

For typical portfolio of policyholders, the distribution of
premiums tends to be relatively narrow and skewed to the right
In contrast, losses have a much greater range.
Losses are predominantly zeros (about 94% for homeowners)
and, for y > 0, are also right-skewed
Difficult to use the squared error loss - mean square error - to
measure discrepancies between losses and premiums

Want a measure that not only looks at statistical but also
monetary impact
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Ordered Lorenz Curve

We consider an “ordered” Lorenz curve, that varies from the
usual Lorenz curve in two ways

Instead of counting people, think of each person as an
insurance policyholder and look at the amount of insurance
premium paid
Order losses and premiums by a third variable that we call a
relativity

Policies are profitable when expected claims are less than
premiums
Expected claims are unknown but we will consider one or
more candidate insurance scores, S(x), that are
approximations of the expectation

We are most interested in polices where S(xi)< P(xi)

One measure (that we focus on) is the relative score

R(xi) =
S(xi)

P(xi)
,

that we call a relativity.
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Ordered Lorenz Curve

Notation
xi - explanatory variables, P(xi) - premium, yi - loss, Ri = R(xi),
I(·) - indicator function, and E(·) - mathematical expectation

The Ordered Lorenz Curve
Vertical axis

FL(s) =
E[yI(R≤ s)]

E y
=

empirical

∑
n
i=1 yiI(Ri ≤ s)

∑
n
i=1 yi

that we interpret to be the market share of losses.
Horizontal axis

FP(s) =
E[P(x)I(R≤ s)]

E P(x)
=

empirical

∑
n
i=1 P(xi)I(Ri ≤ s)

∑
n
i=1 P(xi)

that we interpret to be the market share of premiums.
The distributions are unchanged when we

rescale either (or both) losses (y) or premiums (P(xi)) by a
positive constant
transform relativities by any (strictly) increasing function
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Homeowners Example

To read the ordered Lorenz Curve
Pick a point on the horizontal axis, say 60% of premiums
The corresponding vertical axis is about 53.8% of losses
This represents a profitable situation for the insurer

Uses “SP_FreqSev_Basic” = base premium, relativity uses score “IND_FreqSev”

The “line of equality” represents a break-even situation

An Ordered Lorenz Curve. For this curve, the corresponding Gini index is
10.03% with a standard error of 1.45% .
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Another Example

Suppose we have only n = 5 policyholders

Variable i 1 2 3 4 5 Sum
Loss yi 5 5 5 4 6 25
Premium P(xi) 4 2 6 5 8 25
Relativity R(xi) 5 4 3 2 1
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Ordered Lorenz Curve Characteristics

Additional notation: Define m(x) = E(y|x), the regression function.
Recall the distribution functions

FL(s) =
E[yI(R≤ s)]

E y
and FP(s) =

E[P(x)I(R≤ s)]
E P(x)

1 Independent Relativities. Relativities that provide no
information about the premium or the regression function

Assume that {R(x)} is independent of {m(x),P(x)}.
Then, FL(s) = FP(s) = Pr(R≤ s) for all s, resulting in the line of
equality.

2 No Additional Information in the Scores
Premiums have been determined by the regression function so
that P(x) = m(x).
Scoring adds no information: FP(s) = FL(s) for all s, resulting in
the line of equality.
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Ordered Lorenz Curve Characteristics

3 A Regression Function is a Desirable Score.
Suppose that S(x) = m(x),
In this case, we show that both FP and FL can be expressed as
weighted distribution functions (cf., Furman and Zitikis, 2009)
Moreover, we have

Theorem 1. Suppose that S(x) = m(x). Then, the ordered
Lorenz curve may be written as a Lorenz curve. Specifically,

OL(u) =
µP

µy

∫ u

0
F−1

P (z)dz = L(FP;u).

Then, the ordered Lorenz curve is convex (concave up).
This means that it has a positive (non-negative) Gini index.
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Ordered Lorenz Curve Characteristics

3 A Regression Function is a Desirable Score.
Suppose that S(x) = m(x),
The ordered Lorenz curve is convex (concave up).
This means that it has a positive (non-negative) Gini index.
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Figure: Bounds on Insurance Scores.
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Ordered Lorenz Curve Characteristics

4 Additional Explanatory Variables Provide More Separation
Suppose that SA(x) = m(x) is a score based on explanatory
variables x.
Consider additional explanatory z with score SB(x) = m(x,z).
Then, the ordered Lorenz Curve from Score SB is “more
convex” than that from Score SA

For a given share of market premiums, the market share of losses
for the score SB is at least as small when compared to the share
for SA.
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Interesting Special Case

Special Case: Credit Scoring

Assume that P(x)≡ 1 and y is binary (0,1).
See, for example, Gourieroux and Jasiak (2007).
y represents default or no default on a loan and
R(x) = S(x) is a credit score calculated to determine loan
eligibility by a lending agency

For this special case, we have FP(s) = Pr(S≤ s) and

FL(s) =
Pr(y = 1,R≤ s)]

Pr(y = 1)
= Pr(S≤ s|y = 1).

Gourieroux and Jasiak call the graph (FP(s),FL(s)) the “selection
curve.”

Our framework permits additional potential applications in
credit scoring

One could let y represent the amount of credit default (not just the
event) and allow the amount charged for the loan to depend on
an applicant’s creditworthiness.
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More Theory: Estimating Gini Coefficients

Let {(x1,y1), . . . ,(xn,yn)} be an i.i.d. sample of size n.

Let Ĝini be the empirical Gini coefficient based on this
sample. We have the following results

The statistic Ĝini is a (strongly) consistent estimator of the
population summary parameter, Gini
It is also asymptotically normal, with asymptotic variance
denoted as ΣGini
We can calculate a (strongly) consistent estimator of ΣGini

For these results, we assume a few mild regularity conditions.
The most onerous is that the relativities R are continuous.
These results (based on the theory of U-statistics) allow us to
calculate standard errors for our empirical Gini coefficients
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Comparing Estimated Gini Coefficients

Consider two Gini coefficients with common losses and
premiums.

Let ĜiniA be the empirical Gini coefficient based on relativity
RA and ĜiniB be the empirical Gini coefficient based on
relativity RB

From the prior section, each statistic is consistent
We show that they are jointly asymptotically normal, allowing us
to prove that the difference is asymptotically normal
We can also calculate standard errors

This theory allows us to compare estimated Gini coefficients
and state whether or not they are statistically significantly
different from one another
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Comparing Estimated Gini Coefficients

Table: Gini Indices and Standard Errors

Alternative Standard Alternative Standard
Score Gini Error Score Gini Error
SP_PurePrem_Basic 4.89 2.74 IV_FreqSevA 12.59 2.50
IND_PurePrem_Basic 4.01 2.77 IV_FreqSevB 10.61 2.54
IV_PurePrem_Basic 4.33 2.75 IV_FreqSevC 12.80 2.49
SP_FreqSev 11.15 2.54 DepRatio1 10.09 2.56
SP_PurePrem 9.97 2.59 DepRatio36 10.06 2.56
IND_FreqSev 10.03 2.56
IND_PurePrem 10.96 2.57
IV_PurePrem 11.29 2.55
Note: Base Premium is SP_FreqSev_Basic.
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Gini Indices for Ten Scores

Single Peril IND_ IV_
Base Freq Pure Freq Pure Pure IV_FreqSev DepRatio Maxi-
Premium Sev Prem Sev Prem Prem A B C 1 36 mum
ConsPrem 28.8 28.1 28.0 28.5 28.4 29.4 28.2 29.4 28.0 28.0 29.4
SP_FreqSev 0.0 4.4 7.2 9.3 9.5 9.2 7.3 9.1 7.2 7.2 9.5
SP_PurePrem 9.1 0.0 8.6 9.7 9.5 10.3 8.8 10.5 8.6 8.6 10.5
IND_FreqSev 11.3 9.0 0.0 9.6 11.1 10.5 4.4 10.3 2.5 2.3 11.3
IND_PurePrem 8.6 6.8 4.2 0.0 3.7 7.4 4.2 7.3 4.3 4.2 8.6
IV_PurePrem 8.4 6.6 5.4 4.1 0.0 7.2 5.5 7.5 5.4 5.4 8.4
IV_FreqSevA 7.2 4.0 -2.3 4.5 5.1 0.0 -2.2 1.9 -2.2 -2.2 7.2
IV_FreqSevB 11.0 8.5 -1.6 8.9 10.3 10.1 0.0 9.9 -1.6 -1.3 11.0
IV_FreqSevC 7.4 3.9 -0.9 4.5 4.5 0.8 -1.7 0.0 -0.9 -0.9 7.4
DepRatio1 11.3 9.0 -2.3 9.5 11.0 10.4 4.4 10.2 0.0 -0.5 11.3
DepRatio36 11.2 8.9 -2.0 9.5 11.0 10.4 4.0 10.2 0.9 0.0 11.2

All with Extended Explanatory Variables
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Gini Results from the Homeowners
Example

Standard errors are about 2.5 to 2.7 for each Gini coefficient
When constant exposure is the base, all of the comparison
scores do so well it is difficult to distinguish among them

The relativities are based on ratios of scores
The two-sample test shows that relativities based on
differences of scores are statistically indistinguishable - we
need not consider both

The two-sample test shows that the IVFreqSevB performs
more poorly than "A" and "C" on a number of tests - not a
viable candidate
A “mini-max” strategy for selecting a score suggests that
IVFreqSevA is our top performer.
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Thinking About the New Gini Index

Shlomo Yitzhaki, 1988, “More than a dozen ways of spelling
Gini,” Research on Economic Inequality, summarized several
interpretations of the traditional Gini index.

Useful to have alternative ways to think about our new Gini
index.

Definition - The Gini as an area

Gini = 2
∫

∞

0
{FP(s)−FL(s)}dFP(s).

From this, interpret the Gini index as a measure of profit

1
n

n

∑
i=1

(
F̂P(Ri)− F̂L(Ri)

)
≈ Ĝini

2
,

It is an “average profit” in the sense that we are taking a mean
over all decision-making strategies, that is, each strategy
retaining the policies with relativities less than or equal to Ri.
Insurers that adopt a rating structure with a large Gini index are
more likely to enjoy a profitable portfolio.
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Covariances

After some pleasant algebra, we have

Ĝini = 2Ĉov(y, F̂P(R))−2Ĉov(P, F̂R)−
1
n

Ĉov(y,P),

F̂R = rank(R)/n is the distribution function of the rank of
relativities.
For large sample sizes n, the third term on the right-hand side is
small and can be ignored.

Other things being equal:
1 We interpret a low relativity means that a policy is highly

profitable and a good candidate to retain.
2 Under the relativity ordering, a large covariance between losses

(y) and the proportion of premiums retained (F̂P(R)) implies a
high Gini index.

3 A large negative covariance between premiums (P) and
relativities (F̂R) implies a high Gini index. Stated differently, low
relativities associated with high premiums implies a high Gini
index.
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Interesting Special Case

Suppose that premiums (exposure) is constant over policies.
Because of our rescaling, this means Pi ≡ 1.
The Gini index reduces to

Ĝini =
2
n

Ĉov(y,Rank(S)).

It is proportional to the covariance between losses and the rank
of scores.
It is not a Pearson correlation between losses and scores, nor
is it a Spearman correlation (the correlation between ranks of
losses and ranks of scores).

This statistic seems to have been first proposed by Durbin
(1954) who proposed it as an instrumental variable estimator
in an errors-in-variables regression problem.

Durbin argued that using the rank of an explanatory variable
may be helpful in explaining the behavior of y when values of
the explanatory variable are mis-measured.
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An Approximate Gini

Approximate the weighted premium distribution F̂P(R) with the
unweighted distribution of relativities F̂R. With this, define

ĜiniApprox =
2
n

Ĉov((y−P),rank(R)) .

Think about P− y as the “profit” associated with a policy.
This approximate Gini index is proportional to the negative
covariance between profits and the rank of relativities.

If policies with low profits∼high relativities and high profits∼low
relativities, then the Gini index is positive and large.

Gini Indices and an Approximation.
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Additional Findings

In a paper, we have included simulation studies that show
how the Gini works under different situations
We have also documented the effect of sample size, to give
insurers a sense of how large a data set that they need to
analyze in order to hope to come up with meaningful results

A sample size of n = 30 is not useful although n = 50,000 seems
to be a good threshold number

Effect of Sample Size on Gini Approximate Standard Errors
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Summary

The ordered Lorenz curve allows us to capture the separation
between losses and premiums in an order that is most relevant
to potential vulnerabilities of an insurer’s portfolio

The corresponding Gini index captures this potential vulnerability
When regression functions are used for scoring, the Gini index
can be view as goodness-of-fit measure

Premiums specified by a regression function yield Gini = 0.
Scores specified by a regression function yield desirable Gini
coefficients
More explanatory variables in a regression function yield a higher
Gini

We have introduced measures to quantify the statistical
significance of empirical Gini coefficients

The theory allows us to compare different Ginis
It is also useful in determining sample sizes
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Summary

When regression functions are used for scoring
These curves enjoy a partial ordering on the space of
distribution functions known as a “Lorenz ordering.” (cf., Denuit
and Vermandele, 1999)
The ordered Lorenz curves in terms of weighted distribution
functions.
These connections may provide other researchers with
motivation to enhance our understanding of characteristics of
ordered Lorenz curves.

We have provided a few alternative ways to think about our
new Gini index, e.g., as an area, profit measure, .
In particular, interpret this index as proportional to the
correlation between a policy’s “profit” (P− y) and the rank of
the relative premium (rank(S/P)). Very nice intuition.
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Concluding Remarks

The Gini index is a little like a hypothesis test in that one
identifies a “null hypothesis” - this is the base score in the
relativity

There is an asymmetry in the treatment of scores

It gives an economically meaningful way to assess
out-of-sample fit
It provides a tool for “portfolio management” - identification of
good and bad risks in a portfolio (this is a little different than
pricing at contract initiation or renewal)
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