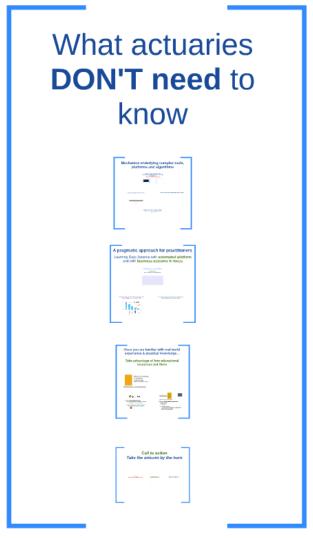


Data Science: What Actuaries (DON'T) Need to Know

Jeremy Achin CEO & Co-founder, DataRobot Inc.

Data Science: What Actuaries (DON'T) Need to Know



Jeremy Achin
CEO & Co-founder, DataRobot Inc.

10 Years Ago

What is Predictive Modeling?

Casualty Actuaries of the Northeast Spring 2005 Sturbridge, MA March 23, 2005

Presented by Christopher Monsour, FCAS, MAAA

https://www.casact.org/community/affiliates/cane/0305/monsour.pdf

What actuaries **need** to know

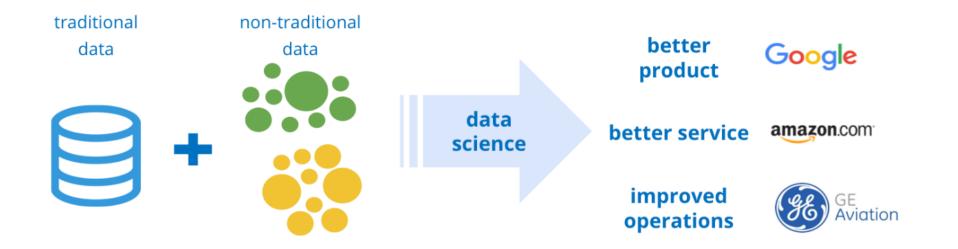
Data Science in Insurance

Why it's more important now than ever before

Data is everywhere and Data Science generates value from data

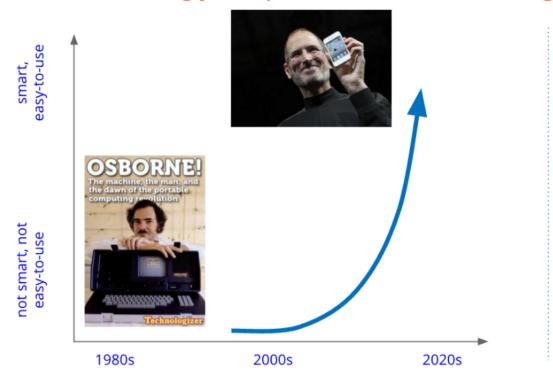
"Data is an emerging asset class" – World Economic Forum

"90% of the data in the world today has been created in the last two years alone"



Absolutely insane amount of computation power

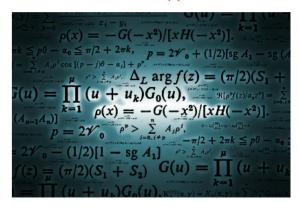
Increasingly inexpensive and smart storage & computational environment



1982 Osborne PC weighs 100 times as much, has 500 times the volume, costs 10 times as much – with 1/100 of processing speed, 1/100000 memory of a typical 2010 smart phone.

Next generation tools, platforms, and approaches to data science

Traditional Approach



- Ivy league approach only for the chosen ones
- Focused on activities detached from outcomes
- Assumption based: model selection is based on modeler's understanding of the world?
- Development is costly and limited
- Heavy dependence on programming

Modern Approach

open source programming

social network of coders

automated solutions

- Common man approach for everyone
- Focused on business outcome
- Validation based: model selected if it predicts well in real world
- Development is crowd sourced, peer reviewed
- Automated solutions

Modern Approach

open source programming

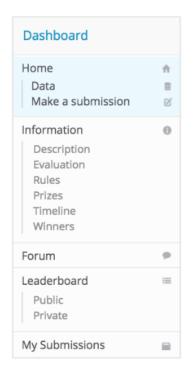
social network of coders

automated solutions

- Common man approach for everyone
- Focused on business outcome
- Validation based: model selected if it predicts well in real world
- Development is crowd sourced, peer reviewed
- Automated solutions

Liberty Mutual Group - Fire Peril Loss Cost

Tue 8 Jul 2014 - Tue 2 Sep 2014 (14 months ago)



Leaderboard 1. DataRobot 2. Ivanhoe 3. barisumog 4. datalab.se 5. paulperry 6. Mark & Dmitriy 7. tryhard 8. Leustagos and Titericz

Competition Details » Get the Data » Make a submission

Predict expected fire losses for insurance policies

A Fortune 100 company, Liberty Mutual Insurance has provided a wide range of insurance products and services designed to meet our customers' ever-changing needs for over 100 years.

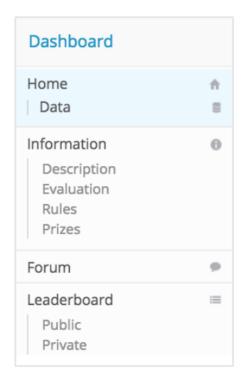
Within the business insurance industry, fire losses account for a significant portion of total property losses. High severity and low frequency, fire losses are inherently volatile, which makes modeling them difficult. In this challenge, your task is to predict the target, a transformed ratio of loss to total insured value, using the provided information. This will enable more accurate identification of each policyholder's risk exposure and the ability to tailor the insurance coverage for their specific operation.

Because we seek to tap innovation both inside and outside the company, certain eligible Liberty Mutual employees are encouraged to participate in this challenge for development purposes. Refer to the competition rules for the full details.

Completed • \$10,000

Allstate Claim Prediction Challenge

Wed 13 Jul 2011 - Wed 12 Oct 2011 (4 years ago)



1. Matt C 2. Owen

A key part of insurance is charging each customer the appropriate price for the risk they represent.

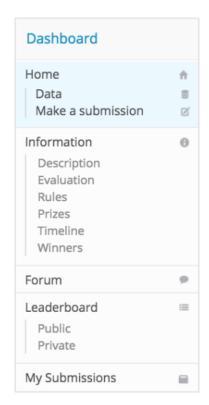
Risk varies widely from customer to customer, and a deep understanding of different risk factors helps predict the likelihood and cost of insurance claims. The goal of this competition is to better predict Bodily Injury Liability Insurance claim payments based on the characteristics of the insured customer's vehicle.

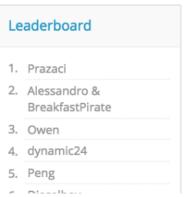
Many factors contribute to the frequency and severity of car accidents including how, where and under what conditions people drive, as well as what they are driving.

Bodily Injury Liability Insurance covers other people's bodily injury or death for which the insured is responsible. The goal of this competition is to predict Bodily Injury Liability Insurance claim payments based on the characteristics of the insured's vehicle.

Allstate Purchase Prediction Challenge

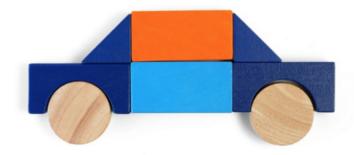
Tue 18 Feb 2014 - Mon 19 May 2014 (18 months ago)





Competition Details » Get the Data » Make a submission

Predict a purchased policy based on transaction history



As a customer shops an insurance policy, he/she will receive a number of quotes with different coverage options before purchasing a plan. This is represented in this challenge as a series of rows that include a customer ID, information about the customer, information about the quoted policy, and the cost. Your task is to predict the purchased coverage options using a limited subset of the total interaction history. If the eventual purchase can be predicted sooner in the shopping window, the quoting process is shortened and the issuer is less likely to lose the customer's business.

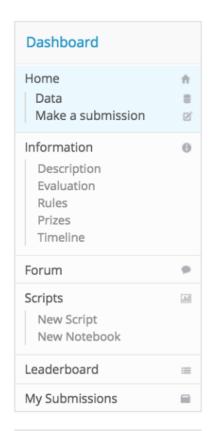
Using a customer's shopping history, can you predict what policy they will end up choosing?

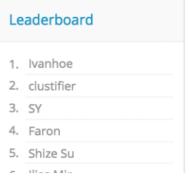
Homesite Quote Conversion

Merger and 1st Submission Deadline

Mon 9 Nov 2015

Mon 8 Feb 2016 (2 months to go)





Competition Details » Get the Data » Make a submission

Which customers will purchase a quoted insurance plan?

Before asking someone on a date or skydiving, it's important to know your likelihood of success. The same goes for quoting home insurance prices to a potential customer. Homesite, a leading provider of homeowners insurance, does not currently have a dynamic conversion rate model that can give them confidence a quoted price will lead to a purchase.

Using an anonymized database of information on customer and sales activity, including property and coverage information, Homesite is challenging you to predict which customers will purchase a given quote. Accurately predicting conversion would help Homesite better understand the impact of proposed pricing changes and maintain an ideal portfolio of customer segments.

Started: 7:29 pm, Monday 9 November 2015 UTC

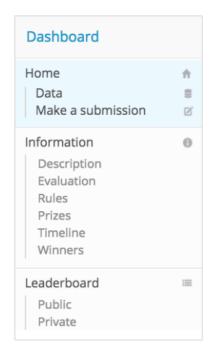
Ends: 11:59 pm, Monday 8 February 2016 UTC (91 total days)

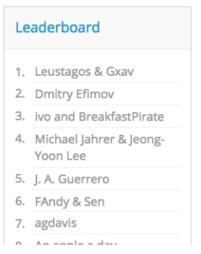
Points: this competition awards standard ranking points

Tiers: this competition counts towards tiers

As the World Churns

Tue 22 Oct 2013 - Sat 21 Dec 2013 (23 months ago)





Competition Details » Get the Data » Make a submission

This competition is private-entry. You can view but not participate.

Predict which customers will leave an insurance company in the next 12 months.

Understanding customer loyalty is an important part of any business. The ability to predict ahead of time when a customer is likely to churn can enable early intervention processes to be put in place, and ultimately a reduction in customer churn. This competition seeks a solution for predicting which current customers of an insurance company will leave in 12 months time, and when.

This competition is now closed to new entrants.

Started: 7:59 pm, Tuesday 22 October 2013 UTC

Ended: 11:59 pm, Saturday 21 December 2013 UTC (60 total days)

Points: this competition awarded standard ranking points

Tiers: this competition counted towards tiers

- More data
- More computation power
- Better and more accesible tools

Your competitors are doing it! Your customers expect it!

HEGU LU KIIUVV

Data Science in Insurance

Why it's more important now than ever before

· More data

More computation power
 Better and more accesible tools

Your competitors are doing it! Your customers expect it!

Predictions

What is Data Science?

What is Data Science?

"Statistics on a Mac"

"The generalized extraction of knowledge from data"

Data —> Predictions & & Insights

Been doing this for a while now

What's different?

"Statistics on a Mac"

The generalized extraction of knowledge from data"

Been doing this for a while now

What's different?

Traditional Analytics

Data Science

Structured Data

Structured & Unstructured Data

Use what data is readily available (or what IT is willing to give you) Go get any data that may be of value

Small/medium size data

Size of data not an obstacle

Shallow understanding of the data

Deep understanding of the data

IT is heavily involved

IT as little as possible

Projects take a long time/ Limited bandwith Faster turnaround through better tools and more automation

Higher bandwith

More/Better tools

Limited tool set (Regression, GLM)

Traditional Analytics

Data Science

Structured Data

Structured & Unstructured Data

Use what data is readily available (or what IT is willing to give you)

Go get any data that may be of value

Small/medium size data

Size of data not an obstacle

Shallow understanding of the data

Deep understanding of the data

IT is heavily involved

IT as little as possible

Projects take a long time/ Limited bandwith Faster turnaround through better tools and more automation

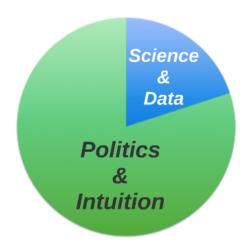
Higher bandwith

Limited tool set (Regression, GLM)

More/Better tools (Modern statistical approaches, machine learning)

End Result: Dramatic increase in quality and quantity of actionable predictions & insights

How decisions are made



Without Data Science



With Data Science

now than ever before

What is Data Science?

End Result: Dramatic increase in quality and

What is a Data Scientist?

"The Sexiest Job of the 21st Century"

"Statistician from San Francisco"

Hacking Skills

Ability to write computer programs to:

- · Get data
- Clean and manipulate data
- · Run models
- · Implement models

- Strong statistical background
 Working knowledge of many modeling techniques
 Know how to validate and compare models

Math & Stats

The Elements of Data Mining, Inference, and Prediction

Deep understanding of:

- The industry
 The business problem
- · The data

 - How it was generated & collected
 Company specific issues and limitations
- · Production data streams

Domain Expertise

Hacking Skills

Ability to write computer programs to:

- · Get data
- · Clean and manipulate data
- · Run models
- Implement models

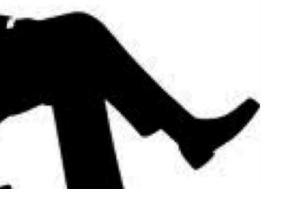
Deep understanding of:

- Working knowledge of many modeling techniques
- Know how to validate and compare models

Math & Stats

Deep understanding of:

- The industry
- The business problem
- · The data
 - How it was generated & collected
 - Company specific issues and limitations
 - Production data streams



Domain Expertise

Hacking Skills

Ability to write computer programs to:

- · Get data
- Clean and manipulate data
- · Run models
- · Implement models

- Strong statistical background
 Working knowledge of many modeling techniques
 Know how to validate and compare models

Math & Stats

The Elements of Data Mining, Inference, and Prediction

Deep understanding of:

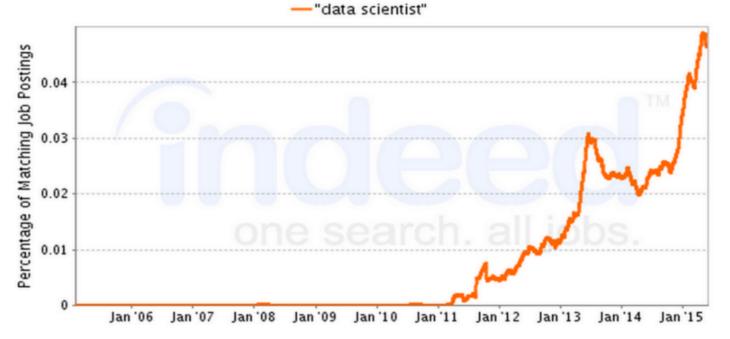
- The industry
 The business problem
- · The data

 - How it was generated & collected
 Company specific issues and limitations
- · Production data streams

Domain Expertise

"Unicorns are Lame" -quote by: nobody ever.

Job Trends from Indeed.com



Hiring Real Unicorns is Expensive! \$\$\$\$\$\$\$\$\$\$ Also, Many People Pretending to be Unicorns.

What is a **Data Scientist?**

"The Sexiest Job of the 21st Century"

"Statistician from San Francisco"

Recruit and Hire **Existing Data Scientists**

Challenges

- Many imposters posing as Data Scientists
 Takes time to learn industry & business knowledge
 Takes even more time to aquire company data knowledge
- Data Scientists are prohibitively expensive (\$ > hiring manages salary)

Where to Find Data Scientists for Your Insurance Company

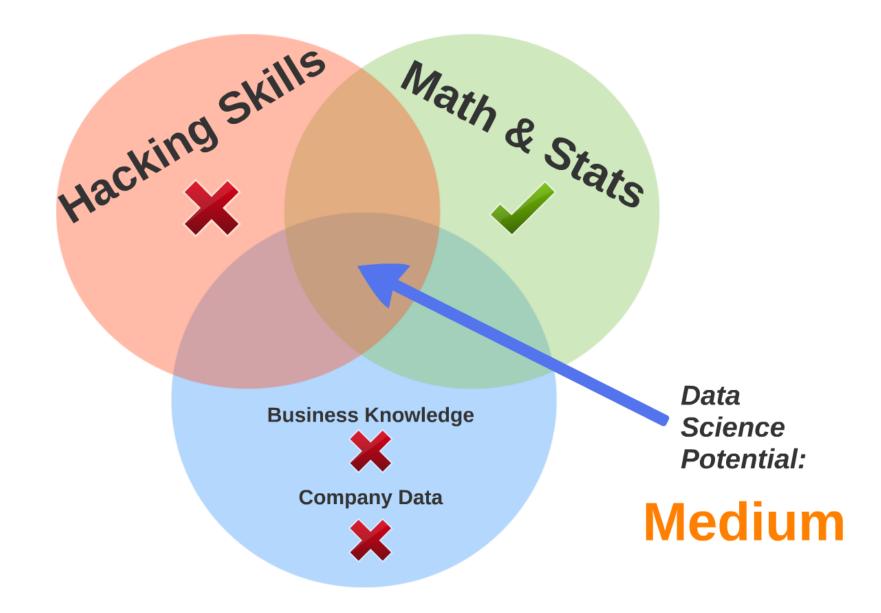
Recruit and Hire Existing Data Scientists

Challenges

- Many imposters posing as Data Scientists
- Takes time to learn industry
 & business knowledge
- Takes even more time to aquire company data knowledge
- Data Scientists are prohibitively expensive (\$ > hiring manages salary)

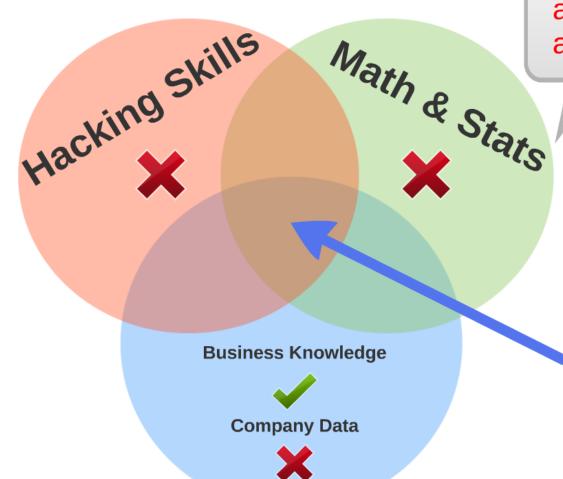
Other Data Scientist Candidates

Candidate #1: Statistician



Candidate #2: MBA

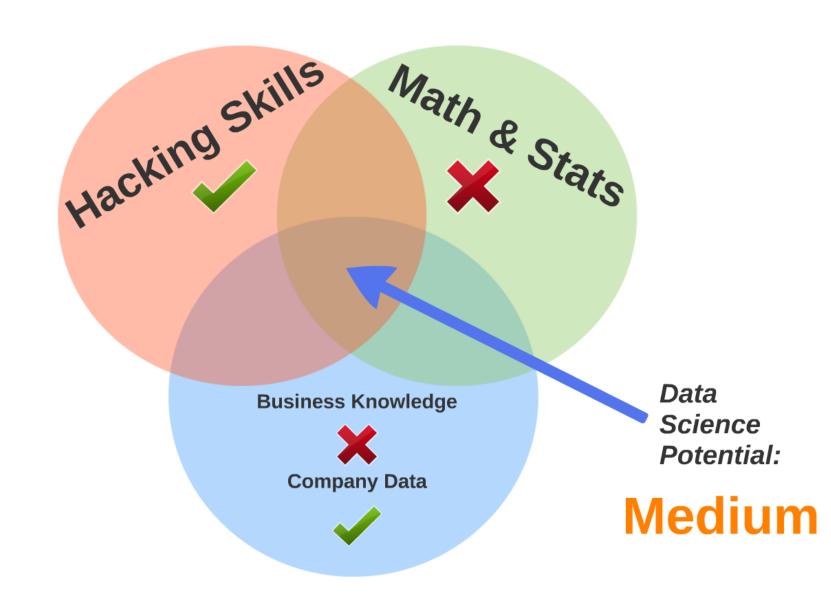
90% of MBA's think their math skills are above average for an MBA.



Data Science Potential:

Medium

Candidate #3: The IT Data Specialist



- Takes time to learn industry & business knowledge
- Takes even more time to aquire company data knowledge
- Data Scientists are prohibitively expensive (\$ > hiring manages salary)

What about a team?

Candidate #4: Statistician, MBA, IT

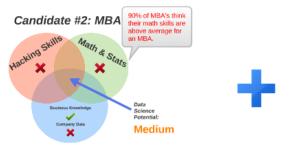
Candidate #1: Statistician

Hacking Skills

Math & Stats

Data
Science
Potential:

Medium



Candidate #4: Team

- Takes time to learn industry & business knowledge
- Takes even more time to aquire company data knowledge
- Data Scientists are prohibitively expensive (\$ > hiring manages salary)

What about a team?

Candidate #4: Statistician, MBA, IT

Candidate #1: Statistician

Candidate #3: The IT Data Specialist

Candidate #4: Team

Candidate #4: Team



- Takes time to learn industry & business knowledge
- Takes even more time to aquire company data knowledge
- Data Scientists are prohibitively expensive (\$ > hiring manages salary)

What about a team?

Candidate #4: Statistician, MBA, IT

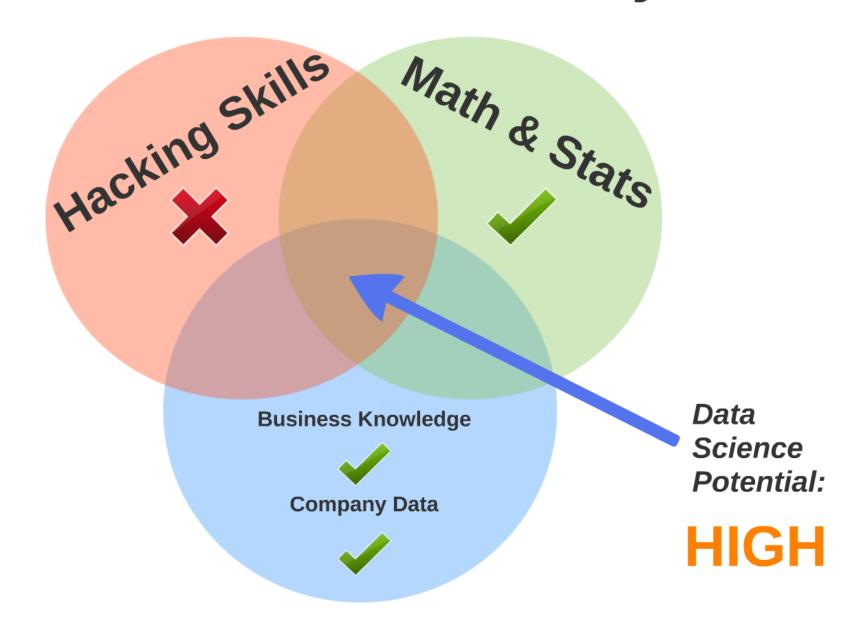
Candidate #1: Statistician

Candidate #3: The IT Data Specialist

Candidate #4: Team

Can you think of any other insurance company employee that would make a good candidate for a Data Scientist?

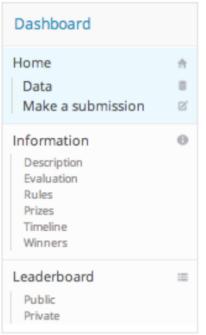
Candidate #5: Actuary



Deloitte.

As the World Churns

Tuesday, October 22, 2013 \$70,000 • 37 teams Saturday, December 21, 2013



Leaderboard

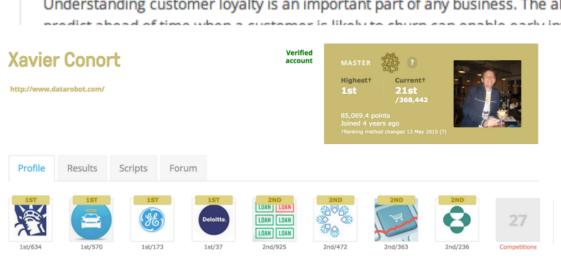
Leustagos & Gxav
 Dmitry Efimov

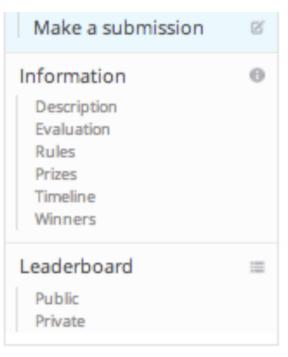


Shea Parkes

All models are wrong, but some are useful

Results





This competition is private-entry. You can view but not participate

Predict which customers will leave an insurance in the next 12 months.

Understanding customer loyalty is an important part of any business. The aradist abaad of time whom a sustamor is likely to shore san anable carby i

Xavier Conort

http://www.datarobot.com/

Leaderboard Leustagos & Gxav

2. Dmitry Efimov

Scripts

Forum

Contact

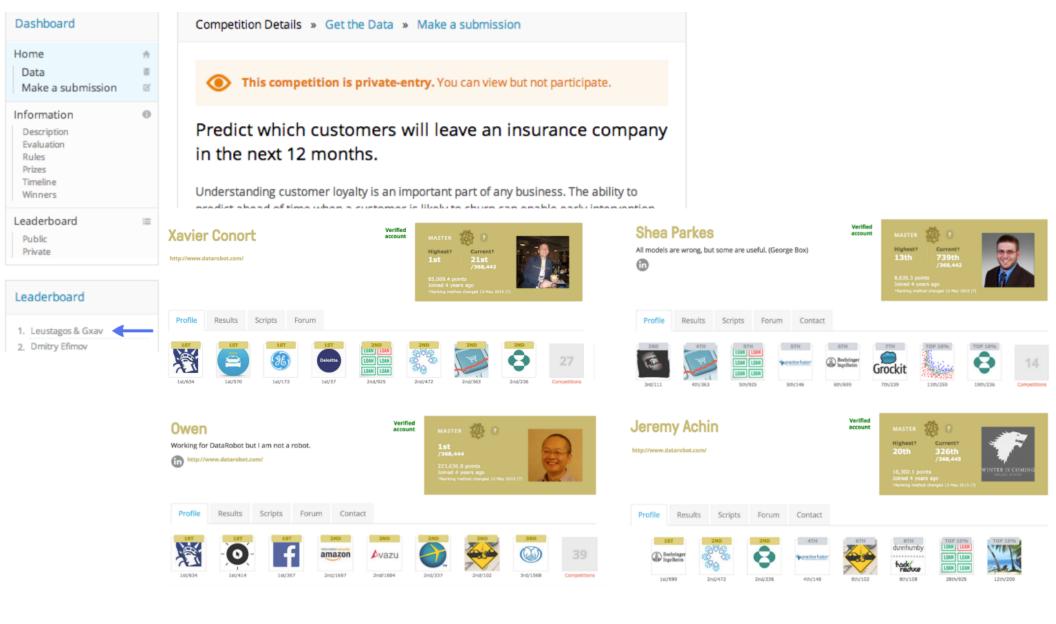
Owen

Profile

Working for DataRobot but I am not a robot.

Results

Verified account



Summary

Candidate

Data Science

Potential

Statistician

Medium

MBA

Low

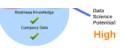
IT

Medium

Team

Actuary

HIGH



Insurance companies will need Data Scientists to stay competitive and Actuaries are their best (maybe only viable) hope



Where to Find Data Scientists for Your Insurance Company

Recruit and Hire Existing Data Scientists

Other Data Scientist Candidates Charlenges

- Many imposters posing as
Data Solvetilets

- Takes there to item inclusivy
a business knowledge

- Takes were more time to agr
company data knowledge

- Data Solvetilets are
prohibitively circumsive
till to history managems salary)

insurance company employee that would make a good candidate for a Data Scientist?

What about a team?

Candidate #4: Statistician, MBA, IT

Insurance companies will need Data Scientists to stay competitive and Actuaries are their best (maybe only viable) hope

What actuaries **need** to know

What actuaries **DON'T need** to know

Mechanics underlying complex tools, platforms and algorithms

We use complex, automated tools successfully everyday to make our life simple and productive

... without knowing the mechanics.

Complex mechanics of Data Science ...

No need to learn programming to get started

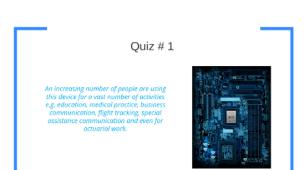
```
APPLICATE STREET THE PROPERTY OF THE PROPERTY
```

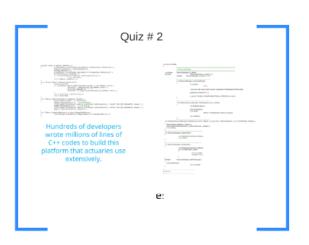
Problem solving with automated platform

Quick learning & smart application of advanced algorithms

Activity	Tool/ Platform/ Source	Learning Focus
Data manipulation & General programming	tamr Paxata.	 data manipulation key statistical packages key visualization packages
Visualizations	Qlik @ 🔆 +ableau	visualize data by drag & drop productize your solution
Automated Modeling, Machine Learning	gasas.	defining the right question interpreting results running experiments using the automated platform

We use complex, automated tools successfully everyday to make our life simple and productive ... without knowing the mechanics.





Quiz # 1

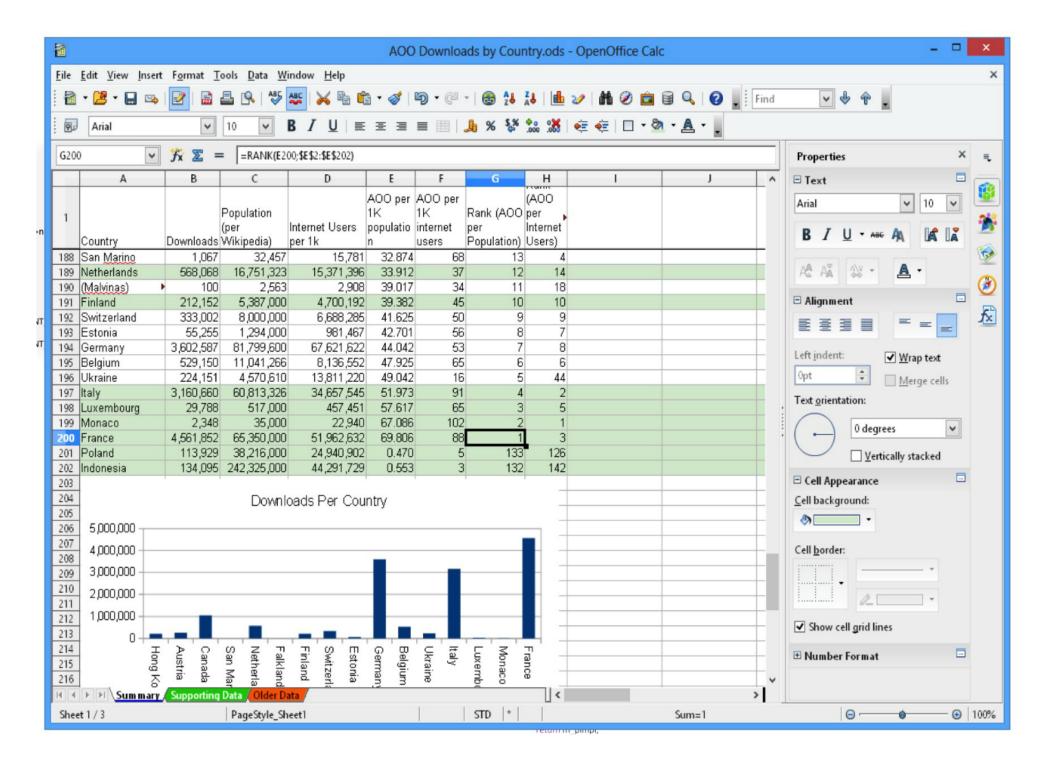
An increasing number of people are using this device for a vast number of activities e.g. education, medical practice, business communication, flight tracking, special assistance communication and even for actuarial work.

Quiz # 2

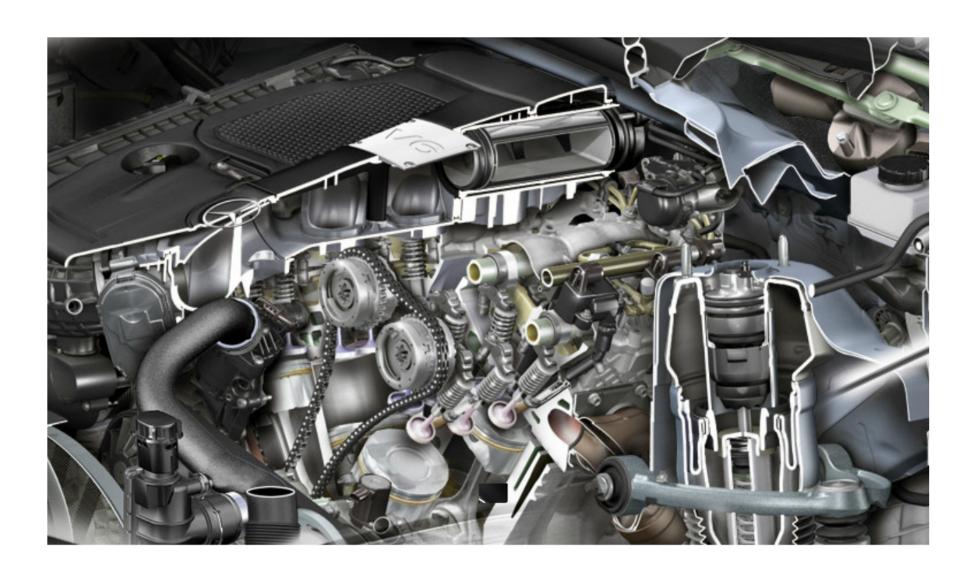
Hundreds of developers wrote millions of lines of C++ codes to build this platform that actuaries use extensively.

```
//= ResourceManager
                   ResourceManager::s_aMutex;
ResourceManager::s_nClients = 0;
                                 ResourceManager::m_plmpl = NULL;
                    void ResourceManager::ensureImplExists()
                                       if (m_pimpl)
                                       ::com::sun::star::lang::Locale aLocale = Application::GetSettings().GetUlLocale();
                                       ByteString sFileName("for"):
                                       m_plmpl = ResMgr::CreateResMgr(sFileName.GetBuffer(), aLocale);
                    ::rtl::OUString ResourceManager::loadString(sal_uInt16_nResId)
                                       ::rtl::OUString sReturn;
                                       ensureImplExists():
                                                           sReturn = String(ResId(_nResId,*m_pImpl));
                                       return sReturn;
   criti::OUString ResourceManager::loadString( sal_uInt16 _nResid, const sal_Char* _pPlaceholderAscii, const ::rtt::OUString& _rReplace )
    String sString( loadString( _nResld ) );
    sString.SearchAndReplaceAscii(_pPlaceholderAscii,_rReplace)
    oid ResourceManager::registerClient()
                      ::osl::MutexGuard aGuard(s_aMutex);
                      ++s nClients;
   void ResourceManager::revokeClient()
                      ::osl::MutexGuard aGuard(s_aMutex):
                      if (!--s_nClients && m_plmpl)
                                         delete m_plmpl;
m_plmpl = NULL;
                   ResourceManager::getResManager()
  ResMar'
                                       return m. plmpl:
3.// formula
```

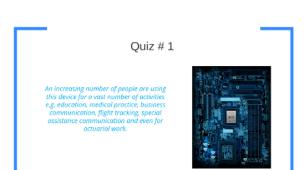
INoEr

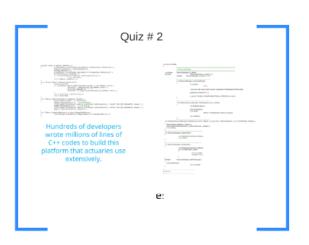


Quiz #3



We use complex, automated tools successfully everyday to make our life simple and productive ... without knowing the mechanics.





Complex mechanics of Data Science ...

Additive Training

- . How do we decide which f to add?
 - · Optimize the objective!!
- The prediction at round t is $\ \hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$

$$\begin{array}{ll} Obj^{(t)} &= \sum_{i=1}^n l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^t \Omega(f_i) \\ &= \sum_{i=1}^n l\left(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)\right) + \Omega(f_i) + constant \end{array}$$

Goal: find f_t to minimize this

$$\begin{array}{ll} Obj^{(t)} &= \sum_{i=1}^{n} \left(y_{i} - (\dot{y}_{i}^{(t-1)} + f_{t}(x_{i})) \right)^{2} + \Omega(f_{t}) + const \\ &= \sum_{i=1}^{n} \left[2(\dot{y}_{i}^{(t-1)} - y_{i})f_{t}(x_{i}) + f_{t}(x_{i})^{2} \right] + \Omega(f_{t}) + const \end{array}$$

This is usually called residual from previous round

Algorithm 1 Gradiest Boosting for CRF $S_{a\to c} \triangleq \alpha_{0,a} \sum_{S_0(S_1,s,s)} \prod_{(a,b) \in S_1(a),a,s} (\alpha_{0,a} + 1)$ (16) $\gamma_i^{(n)}(\mathbf{y},\mathbf{x}) = 2\bigg(1 + \sum_{i \in i, i \in \mathcal{A}} \beta_{i-i}\bigg).$

Ready to use, off-the-self open source implementation ...

nplex mechanics of Data Scienc

Additive Training

- How do we decide which f to add?
 - · Optimize the objective!!
- The prediction at round t is $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$

This is what we need to decide in round t

$$Obj^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^{t} \Omega(f_i)$$

= $\sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)}) + f_t(x_i) + \Omega(f_t) + constant$

Goal: find f_t to minimize this

· Consider square loss

$$Obj^{(t)} = \sum_{i=1}^{n} \left(y_i - (\hat{y}_i^{(t-1)} + f_t(x_i)) \right)^2 + \Omega(f_t) + const$$

= $\sum_{i=1}^{n} \left[2(\hat{y}_i^{(t-1)} - y_i) f_t(x_i) + f_t(x_i)^2 \right] + \Omega(f_t) + const$

This is usually called residual from previous round

Chen, Singh, Taskar, Guestrin

Lemma 3.1,

$$2p_i \sum_s \|P(y_s|\mathbf{x}, y_s = k) - P(y_s|\mathbf{x})\|_{tv}$$

 $= 2p_i[d(t, t, k) + \sum_{s \neq t} d(s, t, k)]$
 $\leq 2p_i[d(t, t, k) + \sum_{s \neq t} d(t, t, k) \prod_{(a,b) \in Q(s,t)} \alpha_{b,a}]$
 $= 2p_i(1 - p_i)[1 + \sum_{s \neq t} \prod_{(a,b) \in Q(s,t)} \alpha_{b,a}]$

 $\begin{array}{llll} \text{Here & the inequality & is & given & by & Corollary & 3.1 & (d(s,t,k)) \leq d(t,t,k) \prod_{(a,b) \in \mathcal{Q}(s,t)} \alpha_{b,a}),\\ \text{and & the last equality is given by Lemma 3.3 } (d(t,t,k)) = 1-p_i). & \text{Recall that } \mathbf{H}_{it} = p_i(1-p_i),\\ \text{we have proved Theorem 4.1.} \end{array}$

The calculation of γ can be performed using dynamic programming. To explain the algorithm clearly, let us define an auxiliary message variable

$$\beta_{s \to t} \triangleq \alpha_{t,s} \sum_{h \in V((s,t);s)} \prod_{(a,b) \in Q(h,s)} (\alpha_{b,a} + 1)$$
 (16)

We can rearrange $\gamma_i^{(n)}$ in Theorem 4.1 in terms of β , where the index i satisfies $\mu_i = \mathbb{1}(y_t = k)$, as

$$\gamma_i^{(n)}(\mathbf{y}, \mathbf{x}) = 2\left(1 + \sum_{s:(s,t) \in \mathcal{E}} \beta_{s \to t}\right).$$

Similarly for $\gamma_i^{(e)}$ in Theorem 4.2, where the index i satisfies $\mu_i = \mathbb{1}(y_t = k_1, y_{t'} = k_2)$, we have

$$\gamma_i^-(\mathbf{y}, \mathbf{x}) = 2\left(3 + \sum_{s:(s,t) \in \mathcal{E}, s \neq t'} \beta_{s \to t} + \sum_{s:(s,t') \in \mathcal{E}, s \neq t} \beta_{s \to t'}\right)$$

The calculation of β can be done efficiently using a message passing algorithm with the following update.

$$\beta_{s \to t} \leftarrow \alpha_{t,s} \left(1 + \sum_{h,(h,s) \in \mathcal{E}, h \neq t} \beta_{h \to s}\right)$$
 (17)

In the case of linear chain CRF, our problem is reduced to the calculation of $\beta_{t+1-t} \triangleq \sum_{i=1}^n \prod_{i=t}^{s-1} \alpha_{i,i+1}$ and $\beta_{t-1-i+t} \triangleq \sum_{i=1}^n \prod_{i=t}^{t-1} \alpha_{i,i+1}$, and the message updates in Eq. 17 correspond to a forward-backward algorithm using the following recursion formula:

$$\beta_{t+1\rightarrow t} = \alpha_{t,t+1} \left(1 + \beta_{t+2\rightarrow t+1}\right)$$

Algorithm 1 Gradient Boosting for CRF repeat for $U \in \{N, \mathcal{E}\}$ do for $y, \mathbf{x} \in \mathcal{D}$ in parallel do {inference of p_i, γ_i are done using dynamic programming} Infer $G_i(\mathbf{y}, \mathbf{x}) \leftarrow \mu_i(\mathbf{y}) - p_i$, $H_{ii}(\mathbf{y}, \mathbf{x}) \leftarrow \mu_i(\mathbf{y}) - p_i$ for each $i \in U$ Infer $\gamma_i(\mathbf{y}, \mathbf{x})$ using dynamic programming for each $i \in U$ end for for $[c] \subset U$ in parallel do {We use [c] to enumerate over set of equivalent index defined by C in U} $\delta_c \leftarrow \operatorname{argmin}_{\delta \in \mathcal{F}_N} \Omega(\phi, +\delta)$ $+ \gamma_i(\mathbf{y}, \mathbf{x}) H_{ii}(\mathbf{y}, \mathbf{x}) \delta^j(\mathbf{y}, \mathbf{x})$ $\phi_c \leftarrow \phi_c + \phi_c$ end for end for end for

Corollary 4.1. When U is the index set of node potentials, $\gamma_i = 2n$ satisfies Eq. (6), where n is the number of nodes in the CRF.

Based on Theorem 4.1 and 4.2, we can get an efficient gradient boosting algorithm for CRF (GBCRF), which is presented in Algorithm 1. Here ϵ is a shrinkage term used to avoid overfitting. Our algorithm adaptively estimates γ via the mixing rate calculation at each iteration. At the beginning, when each variable is nearly independent from each other, we will have a γ that is close to 2 (and thus the updates are aggressive). γ increases as the variables become dependent on each other (resulting in more conservative updates).

Relation to LogitBoost: Our algorithm can be viewed as a generalization of multi-class classification using LogitBoost [Friedman et al., 1998]. When $\mathcal{E}=\emptyset$ in Eq. (2), our model degenerates to the LogitBoost model. In this case, the variables in each position are independent, the estimation of γ is 2, and Algorithm 1 is exactly equivalent to LogitBoost. When the variables are dependent on each other, which is common in structured prediction, our model estimates the dependency level via the Markov Chain mixing rate to guide the booating objective in each iteration.

Ready to use, off-the-self open source implementation ...

Free Python and R Implementation: https://github.com/dmlc/xgboost

And with documentation

Ready to use, off-the-self open source implementation ...

Free Python and R Implementation:

https://github.com/dmlc/xgboost

And with documentation:

https://github.com/dmlc/xgboost/blob/master/doc/python/python_intro.md

https://github.com/dmlc/xgboost/blob/master/R-package/vignettes/xgboostPresentation.Rmd

How to use: complete Step-by-step real life illustration:

https://github.com/dmlc/xgboost/blob/master/demo/kaggle-otto/understandingXGBoostModel.Rmd

No need to learn programming to get started

```
PACK_LEN1 = Struct('!BB').pack
    PACK LEN2 = Struct('!BBH').pack
    PACK_LEN3 = Struct('!BBQ').pack
    PACK CLOSE CODE = Struct('!H').pack
    MSG\_SIZE = 2 ** 14
65
66
     class WebSocketError(Exception):
67
         """WebSocket protocol parser error."""
68
69
70
         def __init__(self, code, message):
71
             self.code = code
             super().__init__(message)
72
73
74
     def WebSocketParser(out, buf):
         while True:
76
             fin, opcode, payload = yield from parse_frame(buf)
77
78
79
             if opcode == OPCODE CLOSE:
80
                 if len(payload) >= 2:
                     close_code = UNPACK_CLOSE_CODE(payload[:2])[0]
81
                     if close_code not in ALLOWED_CLOSE_CODES and close_code < 3000:
82
83
                         raise WebSocketError(
                             CLOSE_PROTOCOL_ERROR,
84
```

```
30 #' p <- progress estimated(3, min time = 3)
    #' for (i in 1:3) p$pause(0.1)$tick()$print()
33 | #' \dontrun{
     #' p <- progress estimated(10, min time = 3)</pre>
35 #' for (i in 1:10) p$pause(0.5)$tick()$print()
     progress_estimated <- function(n, min_time = 0) {</pre>
       Progress$new(n, min_time = min_time)
39 }
40
     #' @importFrom R6 R6Class
     Progress <- R6::R6Class("Progress",</pre>
       public = list(
        n = NULL
44
45
        i = 0,
46
         init_time = NULL,
         stopped = FALSE,
         stop_time = NULL,
48
49
         min_time = NULL,
50
         initialize = function(n, min_time = 0, ...) {
51
           self$n <- n
52
           self$min_time <- min_time</pre>
53
54
           self$begin()
```

Problem solving with automated platform

Quick learning & smart application of advanced algorithms

Activity	Tool/ Platform/ Source	Learning Focus
Data manipulation & General programming	python tamr Paxata.	 data manipulation key statistical packages key visualization packages
Visualizations	Qlik (Q) ‡‡ + a b e a u	visualize data by drag & dropproductize your solution
Automated Modeling, Machine Learning	Sas. DataRobot	 defining the right question interpreting results running experiments using the automated platform

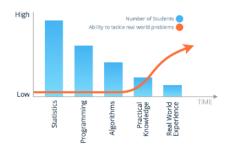
A pragmatic approach for practitioners

Learning Data Science with automated platform and with business outcome in focus

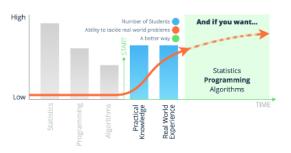
Revisting data science venn-diagram

Augmentation Man & machine working together

Traditional Data Science Education Approach Long learning cycle, higher drop outs



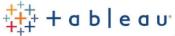
Pragmatic education with modern automation Fast learning cycle, less dropouts



Revisting data science venn-diagram

Augmentation Man & machine working together

programming & data manipulation



Actuaries are already serving as the

product & domain experts

Right question to solve Right data to answer the question Experimentation and socialization

let machines do the coding...

hacking skills

data

maths & stats

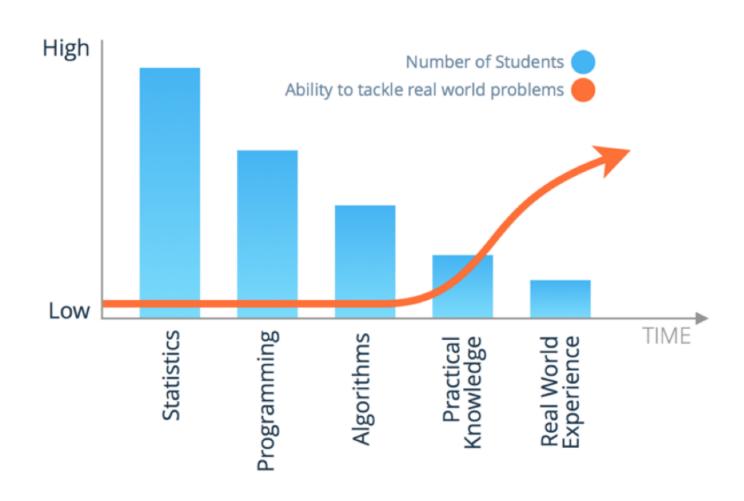
domain knowledge

business knowledge company data

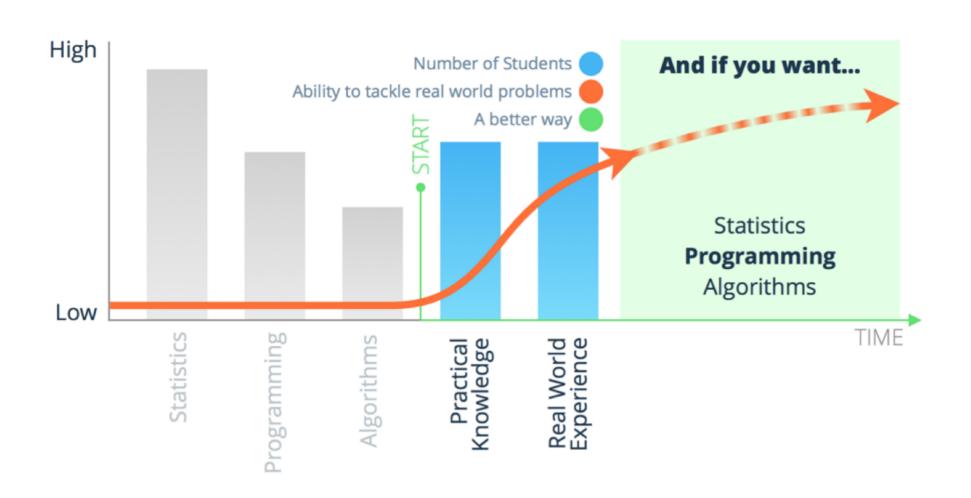
understanding of algorithms & validation framework

- off-the-shelf algorithms from open source.
- working knowledge is sufficient.
- Actuaries are in the best position to learn the philosophical understanding

Traditional Data Science Education Approach Long learning cycle, higher drop outs



Pragmatic education with modern automation Fast learning cycle, less dropouts



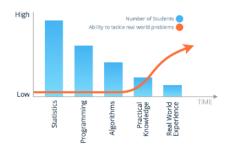
A pragmatic approach for practitioners

Learning Data Science with automated platform and with business outcome in focus

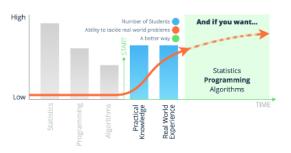
Revisting data science venn-diagram

Augmentation Man & machine working together

Traditional Data Science Education Approach Long learning cycle, higher drop outs



Pragmatic education with modern automation Fast learning cycle, less dropouts



Once you are familiar with real world experience & practical knowledge...

Take advantage of free educational resources out there

Machine Learning (Coursera) Andrew Ng https://www.coursera.org/course/ml

http://statweb.stanford.edu/~tibs/ElemStatLearn/

Udacity (http://www.udacity.com)
CS 101: Introduction to Computer Science
Dave Evans (Beginner Python)

CS 212: Design Of Computer Programs Peter Norvig (Intermediate Python)

http://www-bcf.usc.edu/~gareth/ISL/

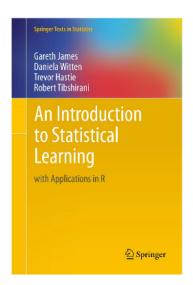
Coursera (http://www.coursera.com)
Roger Peng
Jeff Leek

The swirl package
A Guided Introduction to Learning R
http://swirlstats.com/

Udacity (http://www.udacity.com)
 CS 101: Introduction to Computer Science
 Dave Evans (Beginner Python)

CS 212: Design Of Computer Programs Peter Norvig (Intermediate Python)

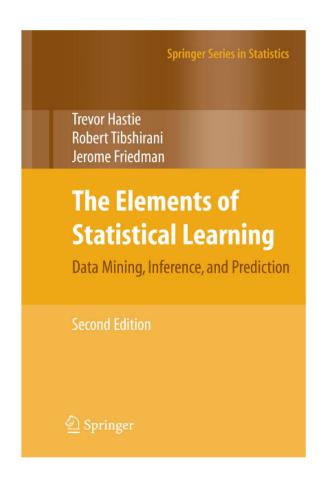
An Introduction To Statistical Learning



http://www-bcf.usc.edu/~gareth/ISL/

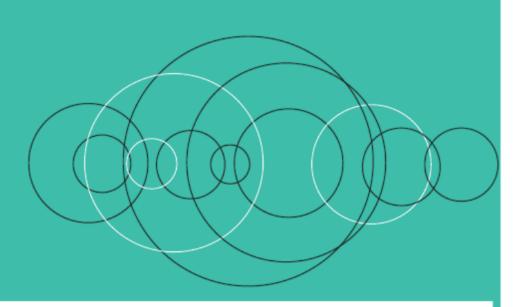
Coursera (http://www.coursera.com) Roger Peng Jeff Leek

The swirl package
A Guided Introduction to Learning R
http://swirlstats.com/



Machine Learning (Coursera) Andrew Ng https://www.coursera.org/course/ml

http://statweb.stanford.edu/~tibs/ElemStatLearn/



A Practitioner's Guide to Generalized Linear Models

A foundation for theory, interpretation and application

Third edition - February 2007

Paper authored by:

Duncan Anderson, FIA Sholom Feldblum, FCAS Claudine Modlin, FCAS Doris Schirmacher, FCAS Ernesto Schirmacher, ASA Neeza Thandi, FCAS

Once you are familiar with real world experience & practical knowledge...

Take advantage of free educational resources out there

Machine Learning (Coursera) Andrew Ng https://www.coursera.org/course/ml

http://statweb.stanford.edu/~tibs/ElemStatLearn/

Udacity (http://www.udacity.com)
CS 101: Introduction to Computer Science
Dave Evans (Beginner Python)

CS 212: Design Of Computer Programs Peter Norvig (Intermediate Python)

http://www-bcf.usc.edu/~gareth/ISL/

Coursera (http://www.coursera.com)
Roger Peng
Jeff Leek

The swirl package
A Guided Introduction to Learning R
http://swirlstats.com/

Call to action Take the unicorn by the horn

Call to action (from my CAS presentation in 2014)

Who	Takeaways
Cosualty Actuarial Society (CAS)	Make data science skills a priority
Actuarial Students	Learn Data Science Skill
Managing Actuaries	Learn enough data science to manage actuarial data scientists Emourage actuarial students to learn and apply data science

Strategic Investment in Actuarial Data Scientist

CAS EXPANDS INTO SPECIALTY CREDENTIALS; NEW CAS INSTITUTE TO LAUNCH CREDENTIAL IN PREDICTIVE ANALYTICS AND DATA SCIENCE

4162015 —

Amagine, VV, Revenue 11, 2019 — The Calead of Amagine among 5000 promision and conduct of the Amagine among 5000 promision strong view and failure and specified only or those and an administration as the and specified only or through a more and an administration of the Cale among the context of an administration of an administration for the Cale among the context of a more and and a more among the context of a more and point and a second market or an administration of point and a second market and the cale and point and a second market and the cale and point and a second market and the point and a second market and the point and a second market and and a second a second market and a second market and a se

The GAS institute in an obtaining of the CAS certainings the rigorous GAS edisorder at storecards in wider community of quantitudies specialists serving to earn specialists of in-comment conductable are quality professional edisoration to accless taken demands, soon today and in the forum. The CAS

Call to action - 2015 revised Take the unicorn by the horn

Who	Takeaways
Casualty Actuarial Boolety (CAS)	Strategic investment on Data Science for Practitioners Encourage hands-on, progmatic learning in ICAB curriculum
Actuarial Students	Learn by doing and become part of Data Science communities Focus on prognetic learning and real world experience
Managing Actuaries	Learn amough data science to manage actuarial data scientists Encourage actuarial students to learn and apply data science

Call to action (from my CAS presentation in 2014)

Who	Takeaways
Casualty Actuarial Society (CAS)	Make data science skills a priority
Actuarial Students	Learn Data Science Skill
Managing Actuaries	Learn enough data science to manage actuarial data scientists Encourage actuarial students to learn and apply data science

Strategic Investment in Actuarial Data Scientist

CAS EXPANDS INTO SPECIALTY CREDENTIALS; NEW CAS INSTITUTE TO LAUNCH CREDENTIAL IN PREDICTIVE ANALYTICS AND DATA SCIENCE

11/16/2015 —

Arlington, VA, November 16, 2015 – The Casualty Actuarial Society (CAS) announces the creation of The CAS Institute, an organization offering new credentials and specialized professional education for quantitative professionals looking to remain current in their field. The CAS Institute will develop a curriculum for each of its offered specialty areas, initially covering advanced topics such as predictive analytics and data science. CAS President Bob Miccolis, FCAS, formally introduced The CAS Institute today during the CAS Annual Meeting in Philadelphia.

The CAS Institute is a subsidiary of the CAS and brings the rigorous CAS educational standards to a wider community of quantitative specialists seeking to earn specialized, in-demand credentials and quality professional education to address talent demands, both today and in the future. The CAS will continue to offer actuarial credentials, while The CAS Institute will offer specialty credentials.

Call to action - 2015 revised Take the unicorn by the horn

Who	Takeaways
Casualty Actuarial Society (CAS)	Strategic investment on Data Science for Practitioners Encourage hands-on, pragmatic learning in iCAS curriculum
Actuarial Students	Learn by doing and become part of Data Science communities Focus on pragmatic learning and real world experience
Managing Actuaries	Learn enough data science to manage actuarial data scientists Encourage actuarial students to learn and apply data science

Call to action Take the unicorn by the horn

Call to action (from my CAS presentation in 2014)

Who	Takeaways
Cosualty Actuarial Society (CAS)	Make data science skills a priority
Actuarial Students	Learn Data Science Skill
Managing Actuaries	Learn enough data science to manage actuarial data scientists Emourage actuarial students to learn and apply data science

Strategic Investment in Actuarial Data Scientist

CAS EXPANDS INTO SPECIALTY CREDENTIALS; NEW CAS INSTITUTE TO LAUNCH CREDENTIAL IN PREDICTIVE ANALYTICS AND DATA SCIENCE

4162015 —

Amagine, VV, Revenue 11, 2019 — The Calead of Amagine among 5000 promision and conduct of the Amagine among 5000 promision strong view and failure and specified only or those and an administration as the and specified only or through a more and an administration of the Cale among the context of an administration of an administration for the Cale among the context of a more and and a more among the context of a more and point and a second market or an administration of point and a second market and the cale and point and a second market and the cale and point and a second market and the point and a second market and the point and a second market and and a second a second market and a second market and a se

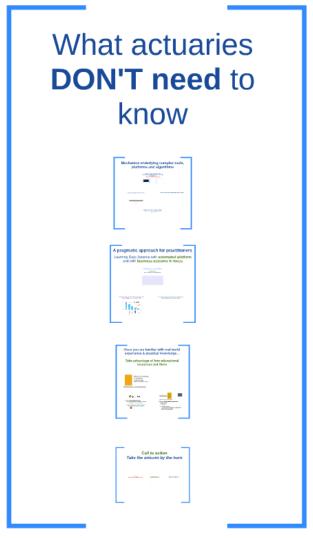
The GAS institute in an obtaining of the CAS certainings the rigorous GAS edisorder at storecards in wider community of quantitudies specialists serving to earn specialists of in-comment conductable are quality professional edisoration to accless taken demands, soon today and in the forum. The CAS

Call to action - 2015 revised Take the unicorn by the horn

Who	Takeaways
Casualty Actuarial Boolety (CAS)	Strategic investment on Data Science for Practitioners Encourage hands-on, progmatic learning in ICAB curriculum
Actuarial Students	Learn by doing and become part of Data Science communities Focus on prognetic learning and real world experience
Managing Actuaries	Learn amough data science to manage actuarial data scientists Encourage actuarial students to learn and apply data science

What actuaries **DON'T need** to know

Data Science: What Actuaries (DON'T) Need to Know



Jeremy Achin
CEO & Co-founder, DataRobot Inc.

Questions?

Additional questions, comments, queries:

jeremy@datarobot.com