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Abstract: A solvency measure is needed to consistently and fairly determine the level of an insurer’s 
capital, which is needed for protection against defaulting on policyholder claims. There are several 
competing measures in current use, including VaR and the expected policyholder deficit. However, there 
is no published analytical method for selecting or calibrating any of these measures to produce a level of 
capital consistent with economic principles. 
  This paper develops an economic basis for selecting the solvency measure, and additionally determines 
how the measure can be calibrated to produce optimum capital. By maximizing policyholder welfare, a 
reasonable goal for regulation and corporate governance, I show that the optimal capital amount can be 
established by assessing the policyholders’ perceived value of the expected default relative to the insurer’s 
cost of holding capital. This optimality is achieved while allowing insurers a competitive rate of return. 
  The result is that the proper solvency measure is adjusted ruin probability, where the probability 
distribution of losses or assets is modified to reflect policyholders’ risk preferences. The optimal level of 
the adjusted ruin probability is uniquely determined by the frictional cost of holding capital. With this 
foundation, I also show that the subadditivity property of a coherent risk measure is an unnecessary 
criterion for evaluating insurance solvency.   
  Under the policyholder welfare framework, the level of the adjusted ruin probability standard will vary 
by degree of policyholder risk aversion, interest rates, insurer income tax rates, amount of guaranty fund 
protection and other factors not considered in applying the above conventional solvency measures. I Also 
discuss the relationship between the minimum regulatory level of capital and the insurer’s optimal level. 
 
Keywords: Solvency risk measures; policyholder welfare; optimal capital; adjusted probability distribution; 
certainty-equivalent losses; frictional capital costs; exponential utility; stochastic mean; subadditivity. 
             

1. INTRODUCTION AND SUMMARY  

The primary purpose of capital in an insurance organization is to protect 
policyholders, who in the event of insolvency, would not receive the full claim payment 
to which they are contractually entitled. Since there is an inverse relationship between 
the amount of an insurer’s capital and the impact of insolvency on its policyholders, it is 
important to know (1) what kind of protection is desired, (2) how much protection is 
needed and (3) how much capital will provide the desired protection.  

The first issue is addressed by selecting a solvency measure.  The commonly used 
solvency measures are ruin probability, value-at-risk (VaR), expected policyholder 
deficit (EPD) and tail value-at-risk (TVaR). These solvency measures, which are 
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discussed more thoroughly in section 5.4, use the probability distribution of losses and 
assets to characterize the harm to policyholders in an insolvency. The first two measures 
assess policyholder harm simply by whether or not an insolvency occurs. The latter two 
measures incorporate both the likelihood of insolvency and its average value provided 
that it occurs. Given a particular solvency measure, the amount of protection is 
addressed by choosing the level of the solvency measure (for example, with VaR a 
specific confidence level must be assumed). Selecting the solvency level is called 
calibrating the solvency measure. After calibration, the required capital follows directly 
using actuarial and statistical techniques applied to the probability distributions for the 
relevant balance sheet items.  

There is much debate over the proper choice of risk measure: some adherents tout 
technical features, such as sub-additivity (e.g., Artzner [1999]) or practical ones, such as 
ease of explanation or common use in other financial service industries. However, to my 
knowledge, there is no literature that establishes a particular solvency measure based 
upon economic principles. Furthermore, despite the widespread use of solvency 
measures, there has been no analytic basis for setting the level of the risk measure — 
calibration has been arbitrary, using judgment. Although there is a vast literature on 
implementing risk measures, especially VaR, each author inevitably assumes that the 
calibration level (say, 99% VaR over one year) is given. There is no discussion regarding 
how to determine the specific level.1  This is surprising, since it is well known that there 
is a trade-off between the cost of having too much capital and the downside of not 
having enough capital. For example, few would believe that a 99.999% annual VaR 
standard is appropriate, since this level implies too much capital, which would be 
extremely costly to carry. Conversely, a 60% VaR standard would indicate an 
intolerable risk of insurer insolvency. Therefore, some intermediate value of the VaR 
standard must be best.  

In this paper, I have addressed both the solvency measure and the calibration 
concerns by establishing an analytical framework that directly applies the above cost-
benefit relationship for capital. Given that the economic objective in setting capital 

                                            
1 The 99.5% VaR standard of Solvency II is based on mimicking the annual default probability underlying 
a Standard & Poors BBB rating. However, this approach dodges the question, since there is no objective 
reason why this particular default rate (0.5%) is superior to that of any other rating (e.g., AA). 
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standards is to maximize policyholder welfare while allowing a fair return to the 
insurer’s owners, I show that this goal implies that there is an optimal capital amount 
for each insurer. That amount depends on three key inputs: the probability distribution 
of losses and assets, the insurer’s cost of holding capital and the risk preferences of the 
policyholders. If the values of these underlying variables are known, then the optimal 
capital is uniquely determined. The theoretical optimal capital amount then forms the 
basis for regulatory capital standards, internal insurer risk management and pricing 
applications.  

The key result of this paper is that the appropriate solvency risk measure is adjusted 
ruin probability (or a simple function of it), using a transformed distribution of 
outcomes for each component risk of the insurer. The adjusted distribution incorporates 
policyholder risk preferences and has a much fatter tail than the original distribution. 
This gives a suitable heavy weight to the extreme outcomes and prevents engineering 
the tail shape to manipulate capital requirements. Therefore, on an economic basis, the 
best solvency measure is none of the conventional measures. I show that using a 
conventional risk measure, such as VaR or expected policyholder deficit, will overstate 
the capital for low-risk losses (and assets) while understating the amount of capital for 
high-risk components. The latter effect is more serious. 

The level of the adjusted ruin probability standard is unique and is a function of the 
frictional cost of capital. Thus, the calibration is not arbitrary. However, the adjusted 
ruin probability is equivalent to a conventional ruin probability standard that varies by 
the volatility of the insurers’ component risks and by its policyholder risk preferences. 
So, even though the adjusted ruin probability standard may be fixed for all insurers, the 
corresponding unadjusted ruin probability will vary by line of business and by insurer. 

Under the policyholder welfare framework, the level of the adjusted ruin probability 
standard will differ by degree of policyholder risk aversion, interest rates, insurer income 
tax rates and other factors not considered when applying the above conventional 
solvency measures. Thus, the adjusted ruin probability standard is not static and will 
vary over time. Another consequence of the policyholder welfare basis is that the 
amount of guaranty fund protection will also influence insurer capital. This result is 
important and (to my knowledge) has been ignored in the previous insurance literature. 

Although the optimal level of capital may be appropriate as a standard for internal 
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insurer governance, and for pricing applications, I discuss how the regulatory level of 
capital should be lower than the insurer’s optimal level. 

1.1 Outline 
The remainder of the paper summarized below: 

Section 2 provides some historical background for the development of solvency risk 
measures as applied to insurance and other financial firms.  

Section 3 develops the notion of consumer surplus (relabeled as consumer value) and 
the certainty-equivalent value for insurance losses. The basic idea here is that consumers 
are risk-averse and will pay more for insurance than the expected value of their losses. I 
have used these concepts, which are the economic foundation for insurance, to value 
insurer default from the policyholder’s perspective. This section also relates the 
certainty-equivalent loss concept to utility theory. 

Section 4 develops a simple one-period model of an insurer with risky losses and 
riskless assets and specifies the cost of holding capital. This section also formulates the 
premium charged to policyholders, which includes the frictional capital cost. 

Section 5 shows how the consumer value of the insurance transaction is maximized by 
minimizing the cost of holding capital plus the value to the policyholder of the insurer’s 
default. This section shows that the optimum amount of capital is determined from the 
adjusted (for policyholder risk preferences) ruin probability. It compares results from the 
adjusted ruin probability to those from conventional solvency measures and shows that 
the coherent risk measure property of subadditivity is not necessary for an economically 
valid insurance solvency risk measure. 

Section 6 discusses how the results of section 5 can be extended to include asset risk, 
guaranty funds and multiple-period assets and liabilities. 

Section 7 examines implementation issues in applying the above capital-setting  
methodology, including its use in regulatory risk-based capital. 

Section 8 provides a brief conclusion. 
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2. HISTORY OF SOLVENCY RISK MEASURES 

European actuaries have applied risk measures for decades. Ruin theory, also called 
collective risk theory, is a branch of actuarial science that studies an insurer's 
vulnerability to insolvency based on mathematical modeling of the insurer's surplus 
(capital). The theoretical foundation of ruin theory, known as the classical compound-
Poisson risk model in the literature, was introduced in 1903 by the Swedish actuary 
Filip Lundberg.2 Usually, the main objective of the classical model and its extensions 
was to calculate the probability of an insurer’s ultimate ruin. 

The ruin probability measure has seen some use for internal insurer risk management, 
but has not yet been directly used for solvency regulation (although the closely related 
VaR has). 

The VaR measure was introduced in 1945, as a means of measuring bond portfolio 
risk.3 In the 1970’s, as leverage became widespread, securities firms sought more 
effective ways to manage portfolio risk. They wanted a single risk metric that could be 
applied consistently across asset categories, including derivatives, which were becoming 
increasingly complex. Concurrently, computing power became cheap enough to analyze 
large portfolios. However, VaR was still viewed as a theoretical tool. 

During the early 1990’s, concerns about the proliferation of derivative instruments, 
some well-publicized massive trading losses and the 1987 stock market crash spurred the 
field of financial risk management. Through its RiskMetrics service, JP Morgan 
introduced VaR to professionals at many financial institutions. Ultimately, the value of 
proprietary VaR measures was recognized by the Basle Committee, which authorized 
their use by banks for performing regulatory capital calculations. 

VaR became common in the banking and finance industry in the 1990’s onward. It is 
used to control the risk of the positions in investment portfolios or bank divisions for 
managers of these units. Supporters of VaR-based risk management claim that a major 
benefit of VaR is the improvement in systems and modeling it forces on an institution 
(see Jorion [2006]). For insurance, it is the measure used in Europe for the capital 

                                            
2 See Lundberg [1903]. 
3 For a more detailed discussion on the history of VaR, see Holton [2003]. 
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standards of the Solvency II regime.  

After the 2008 financial crisis, VaR came under severe criticism (see Nocero [2009] 
and Einhorn [2008]), primarily because of abuses in its implementation. It has been 
argued that the 2008 financial crisis was exacerbated by bankers misusing VaR. In order 
to reduce apparent risk levels (and thereby regulatory capital) for mortgage-backed 
derivatives, the banks engaged in “tail-stuffing,” wherein the securities were purposely 
designed to increase the amount of risk in the tail, while keeping VaR at a low level. 
These abuses highlighted a technical weakness of VaR, in which very large extreme 
events are treated equally with events just large enough to breach the VaR confidence 
level. 

The expected policyholder deficit (EPD) measure first appeared in the insurance 
financial literature in Butsic [1994]. This work arose from participation in the American 
Academy of Actuaries Property-Casualty Risk-Based Capital group, which advised the 
NAIC in its development of the current RBC method in the early 1990’s. The concept 
developed as a response to a perceived deficiency in using ruin probability (or its VaR 
equivalent) as a solvency standard in that it did not incorporate the depth of an 
insurer’s insolvency. 

TVaR had a similar genesis in banking and investment management as the EPD in 
insurance. It was also a response to the same deficiencies in applying VaR. The above 
tail-stuffing abuses would have been severely mitigated under a TVaR metric. The 
TVaR concept saw implementation and became common in the 2000’s. It is presently 
used as the solvency measure in Swiss insurance capital regulation.  

Within the last decade or so, a new class of risk measures called spectral measures 
have been developed (see Acerbi [2002]). They are based on TVaR and include a risk-
aversion component; i.e., extreme tail events are given weights that correspond to the 
investors’ desire to avoid them. If the weights are large, more capital is required. I have 
used the concept of risk-aversion in this paper, although under a different context (i.e., 
optimization). 
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3. CONSUMER VALUE AND CERTAINTY EQUIVALENT                                   
LOSSES 

The important concept of this section is that individuals (and organizations as well) 
will pay more than expected value to insure losses. The implied value placed on losses 
by the policyholder is called the certainty equivalent value. The economic gain from 
buying insurance is called the consumer surplus, which I have renamed as consumer 
value. We can measure the consumer value by using a modified version of the 
underlying probability distribution of losses. The adjusted distribution provides the 
means for determining the expected loss of consumer value due to the possibility that 
the insurer becomes insolvent. The adjusted distribution can be determined directly 
from a policyholder’s utility function. 

3.1 The Consumer Surplus Concept 
The fundamental basis for insurance is that individuals are risk-averse: they are 

willing to pay more than the mathematical expected value of their potential loss in 
order to buy insurance. 

As a simple example, suppose an individual is subject to loss on a home worth 
$100,000. There is a 1% chance of a total loss and a 99% probability of no loss. The 
mathematical expected value of the loss is $1,000 = 0.01 x 100,000. However, suppose 
that the homeowner is willing to pay up to $1,500 to an insurer to completely remove 
the risk of loss. Meanwhile, an insurer will charge only $1,100. The insurer is able to 
charge less than the policyholder (PH) is willing to pay because, through the law of 
large numbers, the risk to the insurer is reduced by pooling similar risks from other 
PHs.  

The above three amounts ($1,000, $1,500, and $1,100) are important, and deserve a 
distinct nomenclature. The first is commonly called the expected loss, and in actuarial 
parlance the pure premium. The second is the certainty equivalent expected loss and the 
third the premium. In setting prices, actuaries normally include specific loadings for the 
insurer’s expenses and for its bearing the risk, although the level of those loads is often 
limited by competition. In any event, the premium represents the insurer’s price 
actually charged for bearing the risk.  
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The difference between the premium and the expected loss ($100 in the example 
above) is called the provision for expenses and profit. The difference between the 
certainty equivalent loss and the premium ($400) is called consumer surplus in the 
economics literature.4 It is the difference between the total amount that consumers are 
willing and able to pay for a good or service and the total amount that they actually do 
pay (i.e., the market price for the product). If the consumer surplus is greater than zero, 
then the policyholder will buy insurance; otherwise the policyholder will self-insure. 

The consumer surplus concept was introduced by Alfred Marshall in 1890,5 and was 
designed to measure the welfare effects of economic policy. Standard microeconomics 
textbooks use the consumer surplus concept to equilibrate supply and demand. 
Consumer surplus applications are common in welfare economics and government 
regulation, where cost-benefit analyses are needed.6 

For insurance, consumer surplus represents the monetary benefit to the PH of having 
insurance. Since “surplus” commonly represents a different concept (capital) in 
insurance, for this paper I have renamed consumer surplus as consumer value. 

I assume that in purchasing insurance, the PH will seek to maximize consumer value, 
which equals the difference between the certainty equivalent value of the potential loss, 
and the premium the PH must pay.  

3.2 Mathematical Formulation of Certainty Equivalent Losses 
For an individual PH having an exposure to an insurable risk, let y represent the size 

of a possible loss and p(y) the probability that y occurs. The expected loss L is the 
summation of each possible loss times its probability: 

   
L = yp(y)dy

0

∞

∫ .    

Assume that for each possible loss amount y, there is a unique amount    ̂y = k(y)y  
representing the certainty equivalent (CE) loss. Call the term k(y) the certainty 
equivalent function. Therefore, the CE expected loss (CEL), denoted by 𝐿, will be the 
expectation   

                                            
4 In finance, the equivalent concept is called the risk premium (See Panjer [1998]). I have not used this 
term here, since the term as used in insurance often represents the market price of risk (what the insurer 
charges for risk) and not what the policyholder is willing to pay.  
5 Marshall, Alfred (1947 [1890]): Principles of Economics. London, Macmillan. 
6 For example, see Einav, Finkelstein, and Culleny [2010]. 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures  
 

Draft 6-25-13; For submission to Casualty Actuarial Society Forum 9 

    

 
   
L̂ = ŷp(y)dy =

0

∞

∫ k(y)yp(y)dy
0

∞

∫ .  (3.21) 

  

Since policyholders are risk-averse, we have    L̂ ≥L . The value    k = L̂ /L , or the 
average of the certainty equivalent function, is a useful parameter. Notice that k ≥ 1. 

If the premium equals the expected loss, then the consumer value of the insurance 
equals the difference between the CEL and the expected loss, or    L̂−L . 

The contribution to the CE expectation from loss size y in equation 3.21 can also be 
expressed as    k(y)yp(y) = yp̂(y) , where    p̂(y) = k(y)p(y) . Here,   ̂p(y)  is a transformed 

probability that will give greater weight to large loss values and less weight to small 
values than p(y), thus producing an expected value greater than  L. An alternative 
version of equation 3.21 is then 

   

 
   
L̂ = yp̂(y)dy =

0

∞

∫ k(y)yp(y)dy
0

∞

∫ . (3.22) 

    

Notice that the certainty-equivalent probabilities   ̂p(y)  are conceptually similar to the 

risk-neutral measures that form the cornerstone of modern finance theory.7 Transformed 
probability measures have also been used to value insurance losses in pricing models (see 
Wang [1996] and Butsic [1999]). The CE probabilities can be considered as subjective 
weights attached by the PH to the various loss sizes. Since these weights are equivalent 
to probabilities, they must sum to 1. Thus, an important restriction on the CE function 

k(y) is that
   

k(y)p(y)dy = 1
0

∞

∫ . Appendix A3 discusses this restriction further. It also 

explains why k(y) depends not only on the particular loss size y, but on all the other 
possible loss sizes as well. 

3.3 A Numerical Example 
A numerical example will help to illustrate these concepts: suppose a PH faces a loss 

which can have three values {100, 400, 1200} with respective probabilities  

                                            
7 The risk-neutral concept was first introduced by Arrow and Debreu [1954]. The Black-Scholes option 
pricing model can be derived using risk-neutral valuation, as shown in Hull [2008] (pages 307-309). 
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{0.60, 0.30, 0.10}. The corresponding CE function values are {0.80, 1.10, 1.90}, showing 
an increasing risk aversion with loss size. Table 3.3 below shows details of the CE 
expected loss calculation. 

 
Table 3.3 

Certainty-Equivalent Loss Calculation for Numerical Example 
 

     Total 

Loss Amount      y 100 400 1200  

Probability      p(y) 0.60 0.30 0.10 1.00 

Expected Value Component     y·p(y) 60 12 120 300 

CE Function      k(y) 0.80 1.10 1.90 1.36 

Certainty Equivalent Loss      y·k(y) 80 440 2280  

CE Exp. Loss Component       y·k(y)·p(y) 48 132 228 408 

CE Probability        k(y)·p(y) 0.48 0.33 0.19 1.00 

 
The expected loss L is 300 and the CE expected loss is 408, giving an average CE 

function value of k = 1.36 = 408/300. The CE probabilities have shifted from their 
unadjusted counterparts: the subjective chance of the small (100) loss drops from 60% 
to 48% and the subjective likelihood of the larger losses increases, from 30% and 10% to 
33% and 19%. 

3.4 Utility Theory and Certainty Equivalent Losses 
By using basic principles from utility theory, we can derive some general properties 

for the CE function. There is a direct connection between utility theory and the 
certainty equivalent. As shown in Appendix A1, the CE function can be determined 
from the utility function and the loss distribution. The certainty equivalent and the 
expected utility formulations are dual processes; each can be determined using the 
inverse of the other.8 

The first property is that the CE value function k(y) increases with loss size y. This 
occurs because utility increases with wealth, as Appendix A2 shows. 

                                            
8 This duality is established by Yaari [1987], who determines that the CE value of a risky prospect can be 
found using an adjusted probability distribution. 
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Second, because of risk aversion, k(y) increases at a growing rate: its second 
derivative with respect to loss size is positive. Appendix A2 discusses this property in 
more detail. 

Third, as discussed below, the certainty-equivalent expected loss (and thus each k(y) 
value) depends on the variance of the loss distribution.  

If the variance is non-zero, then we apply the basic utility theory assumption that 
PHs are risk-averse. For U(x) representing the utility of (wealth given) a loss x, this 
implies an downward-sloping utility function, (i.e., U'(x) < 0) and that the function is 
concave  (i.e., U''(x) ≤ 0). The absolute risk aversion function9 is defined as  

  

    RA
(x) = ′′U (x)/ ′U (x) .  (3.41) 

 

Denoting the variance by σ2, it is straightforward to show10 that the certainty-
equivalent loss is approximated by 

    

     L̂ ≅ L + 1
2
σ2R

A
(W

0
−L) . (3.42) 

 

Here, W0  is the initial wealth of the PH. This important result shows that    L̂−L  is 
(approximately) directly proportional to the variance of the loss distribution and also 
proportional to a measure of risk aversion. If the loss distribution is normal and the 
utility function is exponential with risk aversion parameter a, then equation 3.42 is 
exact,11 and as shown in Appendix A4, the CEL becomes  

    

     L̂ = L + 1
2
aσ2 .  (3.43) 

 

                                            
9 See Pratt [1964]. As shown in Appendix A1, the sign of the absolute risk aversion function is negative 
when utility is a function of wealth, but positive when a function of loss size. 
10 See Panjer et al [1998], page 137. 
11 The exponential utility function can be expressed as U(x) = – exp[–a(W0 – x)], where a is the risk-
aversion parameter, W0  is initial wealth and x is the loss value. Since exp(aW0) is a constant and utility 
functions are invariant to scale transformations, the utility reduces simply to U(x) = – exp(ax). Thus the 
utility at any loss size x is independent of initial wealth. 
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To summarize the above results, we see that the CEL is a function of both consumer 
risk preferences and the variance of the loss distribution. Additionally, the certainty 
equivalent value function increases with loss size at an increasing rate. These properties 
are essential to determining the optimal capital for an insurer, as I develop in section 5. 

Although the optimal capital results can be developed directly from the underlying 
utility function, I prefer the certainty equivalent approach to valuing risk aversion, since 
it is more direct than the utility method and provides a tangible, monetized conversion 
of the expected loss. Also, there is a unique CE value for each possible loss size, while 
under expected utility, any linear transformation of the utility function will give valid 
results. Thus, the expected utility of a particular loss size has no meaning by itself.  

3.5 The Certainty Equivalent Expected Default Value 
In order to determine the optimal capital amount for an insurer (in section 5) it is 

necessary to find the consumer value of the insurance contract. This entails knowing the 
certainty equivalent value of the expected default. Here, for simplicity, I assume an 
insurer with a single policyholder. The expected default, also known in the actuarial 
literature as the expected policyholder deficit, is  

 

 
   
D = (y−A)p(y)dy

A

∞

∫ . (3.51) 

 

Here, A represents the insurer’s assets, which are assumed to be fixed (non-
stochastic) for this application, and y is the individual policyholder loss size. The CE 
value of the expected default, denoted by   D̂ , and abbreviated to CED, can be 
determined by finding the CE value of the loss actually paid by the insurer (allowing 
the possibility of default) and subtracting it from the CE of the loss   ̂L  without 
possibility of default. The CE value for losses limited to the amount A is 

   
L̂(A) = yp̂(y)

0

A

∫ dy + A p̂(y)dy
A

∞

∫ . Notice that, for losses larger than A, the amount of 

loss paid by the insurer is simply A. Here, to be consistent with the valuation of losses 
below the amount A, we must also use the subjective CE probability   ̂p(y) of the loss 
being greater than A. We cannot use the unadjusted probability p(y). To get the CED, 
we have    D̂ = L̂− L̂(A) , or  
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D̂ = yp̂(y)dy−

0

∞

∫ yp̂(y)dy−
0

A

∫ A p̂(y)dy
A

∞

∫ = (y−A)p̂(y)dy
A

∞

∫ . (3.52) 

 

Here, the only difference from the equation 3.51 expected default calculation is the 
substitution of the CE probability   ̂p(y)  or its equivalent k(y)p(y) for the unadjusted 
probability p(y). Notice that if A = 0, the CE default value equals the CE expected loss.  

To illustrate the certainty equivalent default concept, assume a simple case where 
there is a 98% chance of a $0 loss and a 2% chance of a $1000 loss. The expected value 
of the loss is $20 = 0.02(1000). Also assume that the PH has risk aversion governed by 
exponential utility:    U(x) =−eax , where x is the loss size. The risk aversion parameter is 
a = 0.002. The utility of the 0 loss is –1 and the utility of the $1000 loss is 
 –7.389 = –exp[0.002(1000)]. The expected utility is –1.128 = 0.98(–1) + 0.02(–7.389). 
The certainty-equivalent loss is the loss size for which the actual utility equals the 
expected utility; thus the CEL is $60.13:   –exp[0.002(60.13)] = –1.128.  

Now suppose that the loss to the PH is limited to $900. The utility of this amount is 
 –6.050 = –exp[0.002(900)]. The expected utility of the PH’s retained loss is therefore  
–1.101 = 0.98(–1) + 0.02(–6.050). The certainty equivalent value for the retained loss is 
$48.11. Therefore the CE value of the uppermost $100 of protection is the difference 
between the CE of the entire loss and the CE of the retained loss:  
$12.02 = 60.13 – 48.11. Note that the expected value of the $100 coverage is only $2.00. 

The $12.02 also represents the CE value of default when only the first $900 of loss is 
actually covered by the insurer. It is the difference between the CE expected value of 
the entire loss, minus the CE value of the coverage actually provided. 

It is interesting to compare the result of covering the last $100 of the loss (as above) 
with covering the first $100 of loss.12 If the insurer covers the amount above $100 (i.e., 
the deductible), the utility of the retained loss is –1.221, with an expected utility of  

                                            
12 Notice that, given that the loss has already occurred, it doesn’t matter whether the $100 amount comes 
from retaining a $100 deductible or sustaining a net $100 loss on a $1000 loss where the insurer pays the 
first $900. The losses are completely equivalent to the PH. In fact, the certainty-equivalent concept makes 
no sense here, because ex post, the losses are certain. However, ex ante, the CE and expected utility 
concepts transform risky outcomes to fixed values that differ from the actual values that may occur. 
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–1.004 and a CE of $2.21. If the deductible is $200, then the CE of the retained loss is 
4.89, giving a $2.69 = 4.89 – 2.21 CE value for the layer from $100 to $200. The CE 
value of each layer progressively increases as we move up to higher layers. 

In this example, the ratio of   D̂  to D is 6.01 for assets of $900, which is greater than 
3.01, the ratio of the $60.13 CEL to the $20 expected loss. In general, the ratio of  to 
D will increase with the asset (and thus capital) amount.  

This tail leverage is a consequence of PH risk aversion (which creates a fatter tail 
than for an unadjusted distribution), combined with the volatility of the loss 
distribution. To analyze the tail leverage in more detail, consider a normal distribution 
of losses for a PH with an exponential utility function. Appendix A4 provides a general 
method for determining the CE default value for a given loss distribution paired with a 
specific utility function. It also derives explicit results for the normal-exponential model.  

Even with a small variance, the ratio of  to D can be large: assume a normal 
distribution with mean loss of 1000 and a 100 standard deviation. Suppose we have 
assets of 1100, which is 1 standard deviation above the mean, and that the risk aversion 
parameter is a = 0.02. From equation 3.43, the overall CEL is 1100 = 1000 + 
(.01)(200)2, giving k (the average CE function across all loss sizes) of 1.10.  The straight 
expected default D is 8.33, but its certainty equivalent   D̂  is 57.39, a ratio of 6.89 to 1. 
For 2 standard deviations above the mean (A = 1200), we have D = 0.85 and   D̂  = 
20.17, for a ratio of 23.75. Table 3.5a shows results for these and other asset values:  

 
Table 3.5a 

Tail Leverage for Numerical Example;  
Normal Loss Distribution, Exponential Utility (a = 0.02) 

 
Assets D CED Ratio 

CED/D 

Ruin Probability 

(RP) 

Adjusted Ruin Prob. 

(ARP) 

Ratio 

ARP/RP 

1100 8.33 57.39 6.9 15.866% 50.000% 3.2 

1200 0.85 20.17 23.7 2.275% 25.161% 11.1 

1300 0.04 4.44 116.2 0.135% 8.054% 59.7 

1400 0.001 0.50 701.4 0.003% 1.291% 407.5 

 

  D̂

  D̂
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The adjusted ruin probability is the probability of default with the CE probability 
distribution used instead of its unadjusted counterpart. Figure A4 in Appendix A4 
shows the probability densities for the normal distribution and its CE transformation. 
Here, it is clear that the tail of the adjusted distribution is much fatter than that of the 
parent normal distribution. 

Table 3.5b gives results for a higher risk aversion (a = 0.04): 

Table 3.5b 
Tail Leverage for Numerical Example;  

Normal Loss Distribution, Exponential Utility (a = 0.04) 
 

Assets D CED Ratio 

CED/D 

Ruin Probability 

(RP) 

Adjusted Ruin Prob. 

(ARP) 

Ratio 

ARP/RP 

1100 8.33 136.49 16.4 15.866% 68.281% 4.3 

1200 0.85 77.25 91.0 2.275% 50.000% 22.0 

1300 0.04 36.49 954.8 0.135% 31.719% 235.0 

1400 0.001 13.01 18200.4 0.003% 15.883% 5015.0 

 

Notice that even though the unadjusted probability and default values at the extreme 
tail are rather small, their CE equivalents may be meaningful. However, it is important 
to recognize that for a practical loss distribution and CE function (with extremely large 
losses truncated by policy limits and with CE factors restricted by wealth effects13) the 
CED values would not be as large as shown in this illustrative example. 

3.6 Default Values with Multiple Policies 

The previous sections have analyzed results for a single policyholder under the 
assumption that an insurer covers only that PH. Here, I extend the analysis to an 
insurer with multiple PHs. However, the analytical perspective remains that of the 
individual PH. But now if a default occurs, the default amount is shared among the 
individual policyholders in proportion to their respective loss amounts. Assume that the 

                                            
13 For example, bankruptcy laws limit the harm of an uninsured large third-party loss to an individual. 
An individual with $100,000 of net worth is likely to value a $1 million loss about the same as a $2 
million loss. 
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PHs are homogeneous, with the same loss distribution and risk preferences.  

To illustrate CE valuation of multiple-policy default, I use the binary loss14 example 
with exponential utility introduced in section 3.5. Appendix A5 develops the CE values 
for the binary loss model, including the CED and the adjusted ruin probability. Assume 
that we have two PHs with independent losses defined by the section 3.5 example: a loss 
of $1,000 with a 2% probability and zero otherwise. The CE values are determined from 
exponential utility with a risk aversion parameter a = 0.002. 

To illustrate the expected default calculation, suppose that an insurer covers these 
two PHs with an amount of assets equal to $200 per PH, or $400 in total. The default 
amount for a single PH (say, PH 1) depends on whether a loss occurs for PH 1 and 
whether a loss occurs for PH 2. If PH 1 doesn’t have a loss, then there cannot be a 
default amount for PH 1 no matter what happens to PH 2. If PH 1 has a loss and PH 2 
does not have a loss (with 0.0196 = 0.02 x 0.98 probability) then the default amount for 
PH 1 is $600 = 1000 – 400: all $400 of the insurer’s assets cover the loss. If both PHs 
have a loss (with probability 0.0004 = 0.02 x 0.02) the total default amount is $1,600 = 
2000 – 400, but it is shared equally, so PH 1 has a default amount of $800. Therefore, 
the expected default for PH 1 is $12.08 = 0.0196(600) + 0.0004(800). Notice that in the 
case where the insurer has only one PH (with $200 of assets), the expected default is 
larger: $16.00 = 0.02(1000 – 200). 

To calculate the CE expected default value for PH 1, we use equation A5.5 from 
Appendix A5, getting $22.99. This compares to $38.05 for the single-risk insurer. Figure 
3.6 compares, by asset value per PH, the CED per PH for the single-risk insurer to that 
of a two-risk insurer.  

 

                                            
14 This simple loss model with a general utility function is used in the influential paper on insurance 
market equilibrium by Rothschild and Stiglitz [1976]. Note that a one-year term life insurance contract 
has a binary loss distribution. 
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Figure 3.6 
CE Default Values per PH by Asset Amount for a Single Risk and Two Risks 

Binary Loss with Exponential Utility 
 

 

 

Here, the CE expected default value per PH is lower when the risks are combined. 
This effect is a consequence of diversification, where the variance of losses per policy is 
reduced by adding risks to the insurer’s portfolio.  

In general, we can determine the per-PH CED for multiple risks by finding (or 
approximating) their joint CE probability distribution. This process is analogous to that 
of finding the unadjusted expected default for a portfolio of losses. In the case where the 
sum of the CE losses has the same distribution as a component CE loss (as in the 
normal distribution), the expected default calculation is straightforward. Otherwise, we 
must resort to approximation methods.15 

The assumption of statistical independence will drive the expected default value to an 
extremely low level if the number of policies is large. However, in reality, insurance 
losses are correlated. They are subject to common factors such as inflation, regulation, 
the legal system and multi-loss events like catastrophes. Further, the mean of losses for 
a given line of business (or other subdivision of an insurer’s risk portfolio) is not known; 

                                            
15 One method is to assume that the distribution for the sum of the CE losses has the same distribution as 
the unadjusted losses, but with a different mean and/or variance. Manipulating these two parameters will 
generate a range of corresponding utility functions. 
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it must be determined empirically. This effect is an important case of parameter risk,16 
which adds to the uncertainty of standard insurance risk models. 

Appendix B develops a model of losses based upon a stochastic mean, where the 
expected value of the loss per policy is itself a random variable. For example, suppose 
the unconditional mean loss per policy is 1000, with a standard deviation of 300. This 
mean is considered a random variable: the 1000 amount is multiplied by a separate 
random variable with a mean of 1 and a 0.10 standard deviation. As the number of 
policies becomes large, the average policy will still have an expected loss of 1000, but 
will take on the risk of the stochastic mean variable, so it will have a standard deviation 
of 100 = (0.10)(1000). The influence of the original per-policy standard deviation of 300 
vanishes. Thus, beyond a certain point the size of an insurer has little influence on the 
risk characteristics that determine the value of default. 

4. A ONE-PERIOD PREMIUM MODEL 

This section develops a basic insurer model and determines the premium, which 
includes the cost of holding capital. Extensions to the model are discussed in sections 6 
and 7. 

4.1 A Basic Insurer Model 
To understand how optimal capital values can be determined, in this section I 

establish a simple, bare-bones model of an insurance company containing only a few 
necessary components.  

I have assumed that the insurer’s policyholders have the same individual loss 
distributions and the same risk aversion. Using the section 3.6 framework for multiple 
policies, this homogeneity implies that we can analyze portfolios of risks (even entire 
insurance companies) as if they were insurers having only a single policyholder. 

In this model, I eliminate extraneous variables such as expenses, income taxes and 
investment returns by assuming that they are zero. In section 5, I include these 
components. 

                                            
16 For an example, see Meyers and Schenker [1983]. 
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With no investment return, all assets are cash. I assume that the insurer is operating 
efficiently and thus the insurer’s costs of holding capital can be passed on to 
policyholders as long as it improves their welfare. In fact, the policyholders determine 
the amount of capital and then pay for its associated costs through their premium, 
denoted by π. Thus, the owners of the insurer are indifferent to the amount of capital 
actually held by the insurer, since they are fairly compensated for its use. 

The model is one-period: the premium and capital are determined at the beginning of 
the period and the actual17 loss is determined at the end of the period. Further assume 
that there is no secondary insurer default protection for policyholders, such as a 
guaranty fund. 

Its owners capitalize the company with an initial capital C. The initial assets of the 
insurer equal the premium from the policyholders plus the capital. Prior to the end of 
the period, the insurer’s cost of holding its capital is expended, so that amount is not 
available to pay the PH’s claims. The ending asset amount, denoted by A, thus equals 
the initial capital plus the premium, minus the capital cost. The loss amount is 
recognized at the end of the period and the default amount (if any) is determined 
accordingly.  

If there is no cost to the insurer for holding the capital in the company, then the 
insurer will hold enough capital to exceed the largest possible loss, and thus there is no 
possibility of insurer default. In this case, the insureds simply pay a premium π = L, the 
expected value of the losses. With no default, their consumer value is maximized at an 
amount    L̂−L , the CEL minus the expected loss. 

4.2 The Cost of Holding Capital 
There is a cost to an insurer for holding capital to mitigate default risk. This cost is 

separate and distinctly different than the “cost of capital,” which is the return expected 
by the capital suppliers (e.g., equity holders or bondholders) and is commensurate with 
the risk borne by these investors. To avoid the confusion created by the similar 

                                            
17 For regulatory and other external party uses, a multiple-period model must address the fact that the 
insurer might not use an unbiased estimate of losses. Accordingly, the risk of under-reserving must also be 
assessed, with additional capital required beyond what is needed for the pure loss-variation risk addressed 
in this paper. 
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terminology, a useful name for the cost of holding capital is the frictional cost of capital, 
as defined by Hancock et al [2001]. The frictional capital cost (FCC) is the opportunity 
cost that accrues to the use of capital in an insurance firm, and which the investor 
would not incur if investing directly in financial markets. These costs include double 
taxation, financial distress, agency and regulatory restriction costs. 

The primary component of the FCC for U.S. insurers  is double taxation.18 Of the 
above FCC components, it is also the easiest to determine empirically. To illustrate, 
assume that an investor provides $100 of equity capital to an insurer, whose corporate 
income tax rate is 30%. The insurer invests the $100 in assets A with an expected 
return of 6%. At the end of one year the expected return on the assets, after taxes, is 
$4.20 = 100(0.06)(1 – 0.30). This amount is returned to the investor as a capital 
distribution, giving a net return on the capital of 4.2%. On the other hand, if the 
investor had invested directly in the assets A, rather than through the insurer, he/she 
would have received an expected return of $6.00. 

 The $1.80 difference must be made up by charging policyholders through additional 
premium. But the extra premium itself is taxed at the 30% corporate tax rate, so it 
must be grossed up to $2.57 = 1.80/(1 – 0.30). So, the double taxation component of 
FCC, as it applies to premium, equals [rt/(1 – t)]C, where r is the insurer’s investment  
return,19 t is its income tax rate and C is the capital as defined in section 4.1. Notice 
that if the investment return is zero, then the double-taxation component of the FCC is 
also zero. 

I assume that the FCC is at least equal to the above double taxation cost, and that 
all FCC components are proportional to the capital amount. Let z denote the FCC per 
unit of capital. Since the FCC must be borne by the policyholders in order to provide a 
fair market return20 (the cost of capital) to investors, the premium must include an 

                                            
18 See Harrington [1997]. 
19 In a competitive market, the investment return for the FCC will tend to equal the risk-free interest 
rate, despite the insurer’s own expected return on investments. A higher return corresponds to greater 
risk and therefore requires a greater return to shareholders. Similarly, a high FCC cannot be passed on to 
policyholders if other insurers have lower investment returns and charge a smaller premium amount to 
cover double taxation costs. 
20 The expected return to investors, or the traditional “cost of capital” is built into the profit margin, 
another component of the fair premium. For simplicity, I have ignored it in the premium model. The 
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amount zC in addition to expected losses and other insurance expenses. Therefore, the 
basic premium model is 

 

    π = L + zC . (4.21) 

 

4.3 Fair Premium With Default  
Since the frictional costs of capital must be passed on to PHs, they will not want the 

insurer to carry unlimited capital. Therefore, the insurer will have a non-zero 
probability of becoming insolvent. Then, in order to be actuarially fair, the basic 
premium (L + zC) must be reduced by the expected value of default D:  

  

    π = L−D + zC . (4.31) 

 

So now the premium has three components: the base amount L is increased by the 
FCC and is reduced by D. Although, as discussed in section 5.1, the fair premium is 
approximated in practice by the basic premium, the basic model is not a competitive 
equilibrium21 model, where the premium is a market-clearing price. Since I have assumed 
a zero interest rate and that market risk is captured by the loss value L, the market 
expected return on capital is zero. For equilibrium to occur, the premium must provide 
investors a zero expected return. Under the basic premium model, the expected return is 
D, since the policyholders’ loss is the investors’ gain. In a competitive market, this gain 
is reduced to zero by decreasing the basic premium by D. Thus, the fair premium 
satisfies both policyholders and investors, representing an equilibrium result.  

                                                                                                                    
profit margin can be directly embedded into the loss value by taking its present value at a risk-adjusted 
interest rate. The fair premium (with no default or expenses) will then equal the risk-adjusted PV of the 
expected loss plus the PV of the frictional capital costs. The cost of capital doesn’t directly enter into the 
premium calculation.  
21 See Varian [1992], page 219. 
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5. DETERMINING OPTIMAL CAPITAL 

Sections 3 and 4 have provided the ingredients to determine an insurer’s optimal 
capital: we have a model for the value of policyholders’ default as well as a specification 
for the insurer’s cost of carrying capital. Since the capital amount governs the default 
value, we can balance these two factors to maximize consumer value.  

5.1 General Model 
For simplicity, I initially assume that the insurer does not deduct22 the expected 

default from the premium, so we have the basic model  π = L + zC.  Since I have 
assumed that the interest rate is zero, the frictional capital cost rate z does not contain 
an income tax component (as discussed in section 4.2). 

The value to the policyholders of their insurance is the certainty equivalent of the 
insured losses minus the cost of the insurance (which is a certain amount). Because 
insolvency is possible, the CE value of the actual coverage is the certainty-equivalent 
expected loss minus the certainty equivalent of the expected default. The consumer 
value (denoted by V ) of the insurance transaction23 therefore equals the certainty 
equivalent of the covered losses, minus the premium:  

   

     V = L̂− D̂−π . (5.11) 

 

As we increase the amount of assets (by adding capital), the CE value of expected 
default decreases, while the premium (through the capital holding cost zC ) increases 
with capital. This situation is a classic economics optimization problem, which can be 
solved by taking the derivative of V with respect to assets and setting it to zero. 

Since 𝐿 is constant with respect to a change in assets, taking the derivative of V with 

                                            
22 This is certainly the case in practice for the U.S. with regard to an explicit premium component for 
default. However, it can be argued that weaker insurers (with higher expected default amounts) will 
charge a lower premium to remain competitive. 
23 If the CE loss distribution is derived from some utility functions (such as the square root model), the 
CE value of a constant plus a random variable is not equal to the constant plus the CE of the random 
variable. In this case, equation 5.11 is an approximation. However, it is exact for CE values derived from 
exponential utility.  
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respect to A in 5.11 and setting the result to zero gives     −∂D̂ /∂A = ∂π /∂A . From 

Appendix C, which applies the derivative of an integral, we have 

   
∂D̂ /∂A =−Q̂(A) =− p̂(x)dx

A

∞

∫ , so the general condition for optimum assets is 

    

     Q̂(A) = ∂π /∂A . (5.12) 

 

Here,   Q̂(A)  is the adjusted ruin probability (ARP), or the chance that losses exceed 
assets, under the transformed density   ̂p(x) . The corresponding unadjusted ruin 
probability under p(x) is denoted by Q(A). 

For the basic premium model, where the premium excludes the expected default, we 
have    π = L + zC . Since L is constant with respect to assets, the derivative becomes 

    ∂π /∂A = z(∂C /∂A) . The assets available to pay claims equals the initial capital C 
plus the premium, minus the frictional capital cost, so we have 

   A =C + (L−zC)−zC =C + L .  Thus,    ∂C /∂A = 1, with the result 

 

    Q̂(A) = z . (5.13) 

 

This rather simple result establishes that the optimal level of assets (and thereby 
capital) is determined by a risk measure that is an adjusted ruin probability. The ARP is 
a function of the probability distribution of losses and the policyholder risk aversion, as 
incorporated into the transformed density function. The risk measure is calibrated to 
the frictional capital cost rate z. 

Given the optimal asset level from equation 5.13, the optimal capital is readily found 
by using the above relationship A = L + C.  

For a fair premium, where the insurer deducts the expected default from the 
premium, we have     π = L−D + zC  and A = L + C – D. Taking derivatives of these 
two expressions, and noting that   ∂D /∂A =−Q(A) , we get     ∂π /∂A =Q(A)+ z(∂C /∂A)  

and    ∂C /∂A = 1−Q(A) . Thus,     ∂π /∂A = z[1−Q(A)]+Q(A)  and equation 5.12 gives 
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θ(A) =

Q̂(A)−Q(A)
1−Q(A)

= z   (5.14) 

 

as the condition for optimal capital.  

From section 3.5, tables 3.5a and 3.5b show that the transformed ruin probability 

  Q̂(A)  is much larger than the unadjusted ruin probability Q(A), particularly at lower 
ruin probabilities (which correspond to the high safety levels that would be required in 
practice). Thus, Q(A) can be set to zero and equation 5.13 may be considered as an 
approximation24 to the optimal capital condition for a true fair premium. 

Notice that the level of insurer expenses doesn’t affect the optimal capital, as long as 
the expenses are a function of the expected losses and not capital. Let the premium be 

    π = L−D + zC +e
0

+e
1
L , where e0 and e1 are constants that determine expenses. The 

derivative of V in equation 5.11 will be the same with or without expenses, since the 
derivatives of L, e0  and e1 with respect to capital are all equal to zero. 

Equation 5.12 is general in scope and can be used for alternative premium 
formulations. For example, if the frictional capital cost zC is not consumed prior to 
default, then the optimal capital is determined from    Q̂(A) = z /(1+ z) , which 
approximates equation 5.13. 

If an insurer’s policyholders have heterogeneous risk preferences, (but with the same 
loss distribution) the optimal capital calculation can still be done using equation 5.11. 
However, the premium for each PH will differ. For a given capital amount, each PH will 
have a specific CED value (based on their risk aversion) along with a share of the joint 
capital cost. The share is allocated to each PH via their willingness to pay (determined 
from their respective consumer values). This gives a higher premium for the more risk-
averse PHs: in effect, they pay the low risk-aversion PHs in order to use a high capital 
amount. However, this result is theoretical, since normally an insurer does not charge 
different premiums for policyholders with identical loss characteristics. Accordingly, in 
practice the optimal capital for a group of insureds must be based on an average 

                                            
24 Using z = 2%, and the normal-exponential model from section 3.5 (with risk aversion of 0.02), the 
optimal capital under equation 5.13 is 379.73. Under equation 5.14 it is 379.56, a difference of only 
0.045%. 
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(weighted in some fashion) of their risk preferences. In this case, low and high-risk 
aversion PHs will have consumer values that are less than the theoretical optimum.  

Consequently, they might improve their consumer values by moving to an insurer 
whose other PHs have similar risk preferences to their own; i.e., to the extent that 
insurers incorporate capital costs into their premium, PHs are best served by choosing 
an insurer whose capital strength suits their needs. In finance, this grouping behavior is 
called the clientele effect. For insurance, it has implications for pricing (section 7.1) and 
regulation (section 7.2). However, further analysis of this topic is beyond the scope of 
this paper. 

5.2 The Effect of Income Taxes 
Another variation to the premium model includes the effect of income taxes, which, 

as discussed in section 4.2, can be the major component of the frictional cost of holding 
capital. In order to pursue practical applications, the impact of income taxes on optimal 
capital must be addressed. Appendix D develops the result for optimal capital in this 
case. As in the general model with a constant frictional cost of capital, the optimal asset 
amount is found by setting the CE ruin probability equal to a constant value: 

 

 
   
Q̂(A) =

rt
1+ r − t

. (5.21) 

 

Here, A is the end-of-period assets (before subtracting the loss and income taxes), t is 
the income tax rate and r is the riskless investment rate of return.  

Equation 5.21 is important because it establishes a benchmark for practical 
applications. The effective corporate income tax rate for insurers will be less than the 
current nominal 35% highest marginal rate, due to the ability to defer taxes on capital 
gains, shelter income using municipal bonds and other measures. Assume that the 
effective rate is 30%. As discussed in section 4.2, the appropriate investment benchmark 
is the Treasury rate (which should be matched to the average liability duration: about 3 
years for U.S. property-casualty insurers). The 3-year rate has varied from about 1.5% 
to 6% over the past 10 years. Consequently, the optimal adjusted ruin probability has 
been in the range of about 0.4% to 1.8% over this period.  



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures  
 

Draft 6-25-13; For submission to Casualty Actuarial Society Forum 26 

The corresponding optimal unadjusted ruin probabilities can be smaller than the 0.4% 
to 1.8% range, as indicated in the section 3.5 examples (tables 3.5a and 3.5b). However, 
several factors (e.g., using a more realistic loss distribution,25 incorporating the 
regulatory constraints in section 7 and including the effects of guaranty funds) will 
increase the unadjusted ruin probabilities. Consequently, the above range of frictional 
capital costs appears to be broadly consistent with more subjective solvency measures 
such as the Solvency II 99.5% VaR standard, which translates to a 0.5% unadjusted 
ruin probability. In other words, the overall required capital for an average insurer 
under the ARP risk model is not inconsistent with current practice. 

5.3 Numerical Examples 
Here, I’ve used the normal distribution with exponential utility from section 3.5. For 

the same parameters (1000 mean, 100 standard deviation, 0.02 risk aversion) and with a 
capital cost rate z = 0.05, we get the optimal ARP of 5% and optimal capital of 330.66 
using equation 5.13 and equation A4.9 in Appendix A4. The CE expected loss is 1100 
and CED value is 2.46 from equation A4.8. The premium is 1016.53 = 1000 + 
0.05(330.66), and so the consumer value of the insurance contract is 81.00 =  1100 – 
1016.53 – 2.46. Figure 5.3 below shows how the consumer value of the insurance varies 
by amount of capital. 

                                            
25 The normal and lognormal distributions that I’ve used for illustration have unlimited losses. In practice, 
insurance coverage imposes policy limits. Consequently, policyholders must absorb the high end of their 
losses, which carry the greatest CE values. This effect reduces the CE default value and increases both 
the ARP and the unadjusted ruin probability corresponding to the optimal capital. 
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Figure 5.3 
Consumer Value of Insurance by Capital Amount in Numerical Example 

Normal Loss/Exponential Utility Model 
 

 
 

Notice how the shape of the CV curve is steep at low levels of capital and flattens 
with higher capital. This behavior indicates that, beyond the optimal capital level, 
adding more capital has only a slight impact on PH welfare. Thus, the relative 
insensitivity of the optimal capital might be exploited in practical applications, where it 
could be necessary to use approximate values for some of the underlying variables. 

Table 5.3 shows how the optimal capital varies by standard deviation (SD) and risk 
aversion: 

 
Table 5.3 

Optimal Capital by Standard Deviation and Risk Aversion in Numerical Example 
 

Risk Aversion SD = 25 SD = 50 SD = 100 SD = 200 
0.005 44 92 205 493 
0.010 46 103 247 661 
0.020 51 123 331 1007 
0.040 62 165 504 1720 
0.080 83 252 860 3186 

 
As we would expect, the optimal capital increases with both risk aversion and the 

volatility of the losses. 
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5.4 Comparison to Other Risk Measures 
The conventional solvency risk measures can be considered as equal to or as simple 

functions of the tail moments of the loss distribution. Here I define the nth tail moment 
as 

     

 
   
MT(n) = (x −A)n

A

∞

∫ p(x)dx , (5.41) 

 

where p(x) is the density function and A is the assets, as defined earlier. Notice that if 
assets are zero, the tail moment equals the regular moment of the entire distribution. 

Observe that the ruin probability is the 0th tail moment and the expected default 
(policyholder deficit) is the first tail moment. Define the valuation level as the 
predetermined numerical value of the tail moment, such as 1% or 5%, that produces the 
desired level of assets. In other words, if the risk measure is ruin probability (RP) and 
the valuation level is 1%, then MT(0) = 0.01 and we solve equation 5.41 for A. 

VaR is the amount of assets such that     α = 1−MT(0)  or 1 minus the RP, where α is 
the VaR confidence level. Tail value-at-risk, or TVaR,26 is the amount of assets equal to 
VaR + MT(1)/MT(0) at the α confidence level. Thus, the conventional risk measures 
are simple functions of the tail moments with n equal to 0 or 1.27 In the following 
discussion, I use the ruin probability and the expected default ratio to loss (D/L) to 
characterize the tail-moment based solvency measures. 

It is noteworthy to compare the adjusted ruin probability (ARP) measure to the 
common tail-moment risk measures. Assume that both a straight (unadjusted) ruin 
probability (RP = 1 – VaR) and an unadjusted EPD measure are also used to 
determine capital. Further assume that all three measures (ARP, RP and EPD) are 
calibrated to give the same capital for a typical insurer. We observe the valuation level 
for each risk measure implied by the capital and keep it fixed as we change the variance 
of the loss distribution. 

                                            
26 Notice that TVaR and the EPD are not equivalent and will not necessarily produce the same capital 
amount. EPD includes only the amount of loss exceeding the asset threshold A, while TVaR also includes 
the portion of the loss below A for losses exceeding A. 
27 The value of n need not be an integer. For example, with n = 0.5, the weight of the tail losses will be 
somewhere between that of a ruin probability and an expected default measure. 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures  
 

Draft 6-25-13; For submission to Casualty Actuarial Society Forum 29 

For this exercise, let the typical insurer have the characteristics of the section 5.3 
example, with a 5% ARP providing optimum capital of 330.66. This capital amount 
implies that RP = 0.047% and the EPD/Loss ratio = 0.0012%. We fix all three 
measures and consider two other insurers, also having normally distributed losses. One 
insurer has low-risk policyholders with a standard deviation of 50; the other has high-
risk PHs with a 200 SD. We apply each risk measure to these insurers, and compare to 
the typical insurer: 

 
Table 5.4a 

Comparison of Risk Measures Calibrated to Normal SD = 100 
Adjusted Ruin Probability = 5% 

 

SD 
Optimal 

Capital 

Implied 
RP 
Using 
Optimal 
Capital 

Implied 
EPD Ratio 
Using 
Optimal 
Capital 

A 

Capital: 
RP 
Standard 

B  

Capital: 
EPD 
Standard 

A  
% Diff. 

B  
% Diff. 

50 123.3 0.685% 0.0112% 165.3 156.0 34.1% 26.6% 

100 330.7 0.047% 0.0012% 330.7 330.7 0.0% 0.0% 

200 1007.0 0.00002% 0.000001% 661.3 697.0 -34.3% -30.8% 

 
Notice that the low-risk insurer has more capital under RP and EPD, with the high-

risk insurer having less capital, compared to the optimal capital under ARP. Because 
the resulting capital for the low and high-risk insurers is not optimal, using a 
conventional risk measure reduces consumer value. For the high-risk insurer, using RP 
(or its VaR equivalent) lowers the CV from 344.07 to 311.79, a decrease equaling 3.2% 
of the expected loss. For the low-risk insurer, the CV drops from 17.70 to 16.60, a 
reduction of only 0.1% of the expected loss. Similarly, applying the EPD ratio reduces 
CV by 2.5% of expected loss for the high-risk insurer and 0.1% for the low-risk insurer. 
Note that this disparity between the high and low-risk insurers is due to the fact that, 
for the same level of risk-aversion, high-risk policyholders gain more consumer value 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures  
 

Draft 6-25-13; For submission to Casualty Actuarial Society Forum 30 

from insurance than low-risk PHs.28   

We get similar results with a lognormal29 distribution paired with exponential utility. 
Here the typical insurer again has a mean loss of 1000, standard deviation of 100 and a 
risk aversion of 0.02. The initial calibration gives RP = 0.037% and the EPD ratio = 
0.0013%. Varying the SD and keeping the risk measures constant, we get similar results 
to the normal case. Figure 5.4 shows the loss in CV/ expected loss for the lognormal 
case compared to the optimal ARP capital. For comparison, it also provides the results 
for the normal distribution. 

 
Figure 5.4 

Loss of Consumer Value by Using RP and EPD Measures 
Compared to Optimal ARP Result; Percentage of Expected Loss 

Normal and Lognormal Distributions 
 

 
 

                                            
28 The CE value of the loss (being related to the variance) is lower with respect to its expected value as 
variance decreases. At the extreme, with a zero variance, there is no difference between the CEL and the 
expected loss and so the difference in CV from using any risk measure must be zero. 
29 Here I’ve approximated the lognormal distribution using the binomial option pricing method as 
described by Panjer [1998], page 246. The CE ruin probabilities and default values are directly determined 
using the method of Appendix A4. Also, I have adjusted the risk aversion parameter to produce, for each 
standard deviation value, the same CE loss as with the normal distribution. 
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For both distributions, the CV loss is slightly less (for the high-risk PHs) using the 
EPD, compared to the RP measure. To summarize the above results, we see that, 
compared to the ARP standard, the conventional risk measures overstate the optimal 
capital for low risk lines and understate the capital for above-average risk lines. The 
latter effect is more serious, because the under-capitalization can produce a meaningful 
loss in consumer value. For the low-risk lines, the loss in CV appears to be negligible. 

To gain further insight regarding the deficiencies of the conventional measures, 
assume that we have calibrated all three risk measures to produce the same capital for 
an insurer, as in the above example (e.g., Table 5.4 with a 100 standard deviation). Now 
we increase the size of a particular possible loss x > A in the tail by an amount ∆.  

If RP or VaR is the standard, there is no change in capital since the loss increment 
does not affect the RP. Yet policyholders are worse off. This effect was exploited in a 
perverse way during the 2008 financial crisis, when financial firms “stuffed the tails” to 
keep their apparent risk low (see section 2.1). To manipulate the tail probabilities, the 
firms designed securities to have a low probability of loss, but with an extreme loss size 
when the loss occurred. 

Under an EPD or TVaR standard, the effect of a loss increment is more subtle. 
Suppose that we take two “slices” of the tail, one with smaller losses and the other with 
larger losses. The widths of the slices (i.e., the probability that the losses in the intervals 
will occur) are selected so that the probability of losses being in each interval are equal. 
Let x1 be the average loss in the lower interval and x2 be the average loss in the upper 
interval. If we simultaneously adjust losses so that x2 increases by ∆ and x1 decreases by 
∆, the expected default amount remains the same (as does the default probability). 
Note, however, that this operation increases the variance of the tail losses. Since the 
certainty equivalent value function k(x) is concave upward, we have k(x2) > k(x1), and 
thus this adjustment will increase the CE value of the default. Therefore, more capital is 
needed, even though the EPD stays constant. 

The preceding discussion shows that, given a particular loss distribution, under the 
ARP method it is not possible to “engineer” the tail to produce an artificially low 
capital amount. If the tail is altered by reinsurance or other financial techniques, the CE 
value function will automatically produce the proper capital as long as the firm uses the 
correct loss distribution (adjusted for PH risk preferences). 
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A practical disadvantage of using the ARP measure is that it does not translate to 
any fixed conventional standard. For example, to get the correct optimal capital under 
the 5% ARP standard, the appropriate unadjusted RP in table 5.4 ranges from 
0.00002% to 0.685%. The EPD ratio has a similar large range. Although this ARP 
feature presents no difficulty in calculating capital, it may create problems in comparing 
results to conventional solvency measures. 

5.5 Subadditivity  
To clarify risk definition in financial economics, theoreticians have described several 

properties for a risk measure. A coherent risk measure30 is a function that satisfies 
monotonicity, subadditivity, homogeneity, and translational invariance. Subadditivity 
has become the most important of these properties when applied to risk measures used 
in practice. 

The subadditivity (SA) property requires that the value of the risk measure for the 
combination of two risks is less than or equal to the sum of the risk measure values 
taken separately. For insurance capital requirements, this means that when two risks (or 
risk portfolios) are combined, the required assets derived under the risk measure must 
be less than or equal to the sum of the assets derived from applying the risk measure to 
the risks individually. To be consistent with the individual PH focus of our analysis, the 
subadditivity requirement can be restated: if two risks are combined, the assets per risk 
under the risk measure cannot be greater than assets for either risk taken separately 
under the risk measure.  

Assume that two PHs have identically distributed losses. Let RM1(A) represent a risk 
measure that is a function of assets per policyholder A for a PH of an insurer with one 
risk and RM2(A) for a PH of an insurer with two risks combined. For two different asset 
amounts A2 > A1, we have RM1(A2) ≤  RM1(A1) and RM2(A2) ≤  RM2(A1); i.e., 
increasing assets decreases the value of the risk measure (this is the monotonicity 
property of a coherent risk measure). A subadditivity violation will occur when  

 

    RM
2
(A) > v > RM

1
(A) , (5.51) 

                                            
30 See Artzner [1999] for a discussion of coherent risk measures with insurance applications. 
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 where v is the valuation level of the risk measure and A is any asset amount. Under 
this inequality, a SA violation occurs because, for both measures to equal v, assets in the 
combined-risk insurer must increase and assets in the single-risk insurer must decrease 
(this effect is shown graphically in figure 5.51). Therefore, assets per PH in the 
combined-risk insurer will be greater than for the single-risk insurer. 

A classic bond risk example,31 which has a binary loss distribution, is used to 
illustrate SA violation. I have modified this investment illustration to represent 
insurance by using the section 3.6 example with two independent binary risks each with 
a 2% probability of a $1000 loss. Suppose that the VaR measure is set at 97%. This 
means that a single risk must have at least a 3% chance of loss in order to require assets 
(and thereby capital). Otherwise no assets are required to back the loss. Thus, with a 
2% chance of loss, no assets or capital are required. However, if two independent risks 
are combined, the probability of a loss is 3.72% = 2(0.02)(0.98) + 0.02(0.02) and 
therefore $1,000 of total assets (for both PHs) is required. This reduces the default 
probability to 0.04% and satisfies the 97% VaR valuation level. Subadditivity is violated 
here since more assets are required per PH for the combined risks ($500 each) than for 
either of the separate risks (zero). 

Using the ruin probability counterpart to VaR as the risk measure, we have v = 0.03. 
Let Q1(A) denote the RP for the single risk and Q2(A) the RP for the combined risks. 
Applying equation 5.51, we see that for A (assets per PH) from 0 to $500,  
[Q2(A) =  0.036] > 0.03 > [Q1(A) = 0.02]. Thus, subadditivity is violated. For assets 
above $500, we have 0.03 > [Q1(A) = 0.02] > [Q2(A) =  0.004],  so there is no SA 
violation. Also, for a valuation level v > 3.68% (required assets are zero for both the 
single or combined risks) or v < 2% (required assets are $1000 per PH for the single risk 
and $500 for the combined risks), there is no SA violation.  

For the adjusted ruin probability measures   Q̂(A)  or    θ(A) in equations 5.13 and 5.14, 
there also is SA violation for a range of valuation levels. Applying equations A5.4 and 
A5.6 in Appendix A5 to the parameters for this example, we get Figure 5.51, which 
graphically shows the pairs   Q̂2

(A),   Q̂(A)  and    θ2(A) ,    θ(A) . These are labeled respectively 

                                            
31 This example is from Albanese [1997] and has been used by Artzner and others. 
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as Qhat 2, Qhat, Theta 2 and Theta (for simplicity, I have dropped the subscript 1 
denoting a single risk). 

 

Figure 5.51 
Adjusted Risk Measures for Section 3.6 Example 

 

 
 

Notice that a risk measure based on PH risk preferences can be a continuous function 
of the asset amount, even if the underlying loss distribution is discrete. This occurs 
because the values of the CE expected default and its derivatives are continuous with 
respect to the amount of assets if the underlying CE function k(y) or the equivalent 
utility function is continuous.  

The graph shows that   Q̂2
(A) >   Q̂(A)  for  ≥ 6.78%, where assets per PH are less 

than $364.44. Subadditivity can be violated in this region. Similarly,    θ2(A)  >  

when > 6.34%, corresponding to A < 260.80. 

Does the SA violation create any negative effects for the policyholders in this 
example? To answer this, suppose that the frictional cost of capital is z = 7%, which is 
the valuation level for the adjusted risk measures. It exceeds the above critical values of 
6.78% and 6.34%, so there will be a SA violation for each measure. From section 5.1, we 
have the premium and from section 3.6 the CED values by asset amount. Thus, the 
consumer value for any asset value can be readily found. 
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For a fair premium, when assets are zero, the expected default equals the expected 
loss of $20. The premium and capital are also zero. Since the CED equals the $60.13 CE 
loss, the consumer value of the insurance is zero. When assets equal the $1,000 loss 
value, the expected default is zero, but the premium equals L + zC and capital equals 
assets minus the premium (the capital cost zC is not an available asset to pay losses). 
Thus, the capital is $980 and the premium is $88.60 = 20 + 0.07(980). The consumer 
value is negative: –$28.47 = 60.13 – 88.60. Between these asset value extremes, the CV 
will have an optimal value. Figure 5.52 shows the per-PH CV by assets for a single risk 
and for two combined risks. 

 

Figure 5.52 
Consumer Value per PH by Asset Amount for Single Risk and Two Risks 

Fair Premium Model; z = 7% 
 

 

 

Here, for both cases, the optimal CV is positive. This is achieved with a per-PH asset 
value of $219.51 for one risk and $244.59 for the two combined risks. The corresponding 
respective optimal capital amounts are $215.12 and $234.90. These optimal amounts are 
derived directly by solving for θ(A) = 0.07 in equation 5.14, using the Appendix A5 
relationships.  

This example clearly shows that the subadditivity criterion is violated, since more 
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assets (or capital) are required per policyholder for the combination of two risks than for 
the single risk. It is also clear that the PHs are better off with the SA violation under 
the ARP risk measure, since their optimal consumer value is higher when the risks are 
combined. 

For the basic (non-fair) premium case, where the risk measure is   Q̂(A) , we get similar 
results, with the optimal assets for a single risk being $347.43, which is less than the 
$356.15 optimal per-PH assets for the combined risks. However, since the premium is 
not actuarially fair, the CV is lower than for the fair premium case, for both the single 
risk and the combined risks: 

 

Figure 5.53 
Consumer Value per PH by Asset Amount for Single Risk and Two Risks 

Basic (Non-Fair Premium) Model; z = 7% 
 

 

 

Notice that the CV for the single risk here is negative for all asset values, indicating 
that the risk is not insurable — the PH is better off without insurance. However, when 
the two risks are combined, they become insurable.  

With lower values of z in this binary loss example, subadditivity is not violated. For 
instance, with fair premium and z = 2%, optimal per-PH assets for the single-risk 
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insurer are $648.35, compared to only $401.65 for the two-risk insurer.  

In the financial economics literature an economic justification for the subadditivity 
constraint is that “if a firm were forced to meet a requirement of extra capital that did 
not satisfy this property, the firm might be motivated to break up into two separately 
incorporated affiliates, a matter of concern for the regulator.”32 But the above examples 
show that PHs are clearly better off being combined — with the consequent 
subadditivity violation requiring extra capital — than being insured separately. In fact, 
for the basic model, violating subadditivity turns uninsurable risks into insurable ones. 

Nevertheless, given that a major purpose of the subadditivity constraint is to 
promote aggregation of risks, the underlying economic basis of the adjusted risk 
measures used here will always indicate that PHs are better off33 (or no worse off, if the 
risks co-vary) when risks are combined. Therefore, these measures promote the spirit of 
the SA constraint. 

To summarize this section, I have shown that risk measures based on PH risk-
preference can violate subadditivity, but when they do, the result makes perfect sense 
economically. Further, policyholders are never worse off when risks are combined — a 
fact that does not depend on the risk measure used to determine capital. Therefore, we 
must conclude that subadditivity is an unnecessary criterion for an insurance solvency 
risk measure. 

6. EXTENSIONS OF RESULTS 

The analysis in the preceding sections is based on a simplified model of an insurer, 
and concentrates on estimating optimal capital for insurance losses only. I have omitted 
some important elements that must be addressed before implementing the concepts for 
regulation, internal insurer risk management, pricing or other applications. 

                                            
32 See Artzner [1999], page 14. 
33 For the basic premium model, at any per-PH asset level A, the difference between the combined-risk 
CV and the single-risk CV equals the difference between the single-risk CED and the combined-risk CED. 
This is so because the premiums for the two cases are identical. Thus the result will be non-negative. For 
a fair premium, the difference is the basic premium differential minus the difference between the 
unadjusted expected default amounts. This too will always be non-negative. 
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This section discusses some of these important missing pieces. The scope of this paper 
does not permit a full development of the topics, so for each of them I have stated the 
issue and outlined the general direction of the analysis. Although these areas present 
some difficulties, they can be attacked using the major idea of section 5: optimal capital 
can be determined by trading off the cost of holding the capital and the value to 
policyholders of having the capital. 

6.1 Asset Risk 
The treatment of asset risk adds another dimension to the section 3 formulation of 

default risk for losses, where I assumed that assets were riskless, with a zero return. 
Now assume that the insurer has a portion of its investments in risky securities. For 

initial assets of A0, the ending asset value will be random, with an expected value of 

 A ≥ A0 (the reward for bearing market risk is an expected return exceeding the risk-

free rate). Further assume that the insurer keeps the total asset and loss risk constant, 
so that it varies its asset (and capital) level by changing the amount of riskless assets. 

The certainty equivalent value of a risky asset is the converse of that for a risky loss: 
it is less than the expected value of its possible payoffs. Therefore, with a zero risk-free 
investment return, the beginning of period certainty-equivalent value of the ending asset 
amount equals the expected value of the ending amount, where the expectation is taken 
over an adjusted probability distribution. For an average investor, the expected value 
must equal the market value of the assets. Thus, this calculation removes the expected 
return from the ending asset values. The adjusted, or risk-neutral distribution (see Hull 
[2008]), reflects the concept that the ex ante perceived value of a particular asset 
outcome will depend on the economic scenario that generated the asset value.34 For 
example, a low asset value may correspond to an unfavorable economy where a dollar is 
worth more; in that case the investor will weigh the result more heavily than the 
symmetrical high asset value. 

Assume that the policyholder has the same risk preferences as the typical investor. 
For each ending asset value Ai, the CE expected default is D̂

i
= L̂− L̂(A

i
) , where from 

                                            
34 Note that a risky asset whose return is uncorrelated with market returns will generally not command a 
positive expected return above the risk-free rate. 
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section 3, L̂(A
i
)  is the CE amount of loss limited to Ai. Therefore, the unconditional CE 

of default over all asset values is the sum of the conditional values   D̂i
 weighted by the 

risk-neutral probabilities pA(Ai) for the asset values occurring: 

 

 
   
D̂ = L̂− p

A0

∞

∫ (x)L̂(x)dx .   (6.11) 

  

Note that, if losses and assets are correlated, each   L̂(A
i
)  will derive from a different 

expected loss corresponding to each Ai. For most applications using continuous 

distributions, the above integral can be evaluated with numerical techniques.35 The 

result gives the CED for a particular initial asset amount A0. The optimal capital occurs 

when    −∂D̂ /∂A
0

= z .  

To illustrate this calculation, I return to the normal-exponential example from section 
5.3. Here, the expected loss is 1000 with a standard deviation of 100, the risk aversion is 
0.02 and the capital cost rate is 5%. Assume that the insurer has 400 of risky assets, 
also with a normal distribution, with a 5% expected return and a SD of 80 (the 
volatility, or SD per unit of risky assets is 20%). The remaining assets are riskless, with 
a zero return. Also, asset risk is independent of loss risk.  

Assuming that the risk-neutral distribution is also normal, its expected value equals 
the initial asset amount.36 The optimal capital with the risky assets becomes 356.89, 
which is 26.23 greater than the 330.66 for the case with riskless assets. The optimal CV 
at 78.88, is 2.13 lower than with the riskless assets. 

Generally, under the policyholder welfare framework, the capital is always higher and 
the CV is lower when an insurer has a risky investment portfolio. Since on average, 
insurers’ investment managers cannot beat the market, financial theory indicates that 

                                            
35 For the calculations here, I have used a discrete binomial approximation to the normally distributed 
ending assets.  Each asset value determines the CE value of the loss limited to the asset amount using the 
conditional bivariate normal loss distribution (where the mean loss is a linear function of the asset/loss 
correlation). The overall CED was determined by inverting the expected utility of the conditional CE 
values using the risk-neutral asset probabilities. 
36 If one does not reduce the expectation to the beginning asset level, the result can be an optimal capital 
amount that is less than that for the riskless assets. In this case the additional capital required for risky 
assets is negative.  
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there is no benefit to PHs for holding the risky assets. In other words, the optimal 
investment portfolio has only riskless assets. Then why do insurers in practice have 
risky assets? To resolve this puzzle, there are several hypotheses, including: the insurers 
may believe that their investment managers can individually beat the market (although 
collectively they cannot); management compensation schemes reward positive income 
without penalizing negative income; and insurers may build an above risk-free 
investment return into their pricing models. 

However, even though risky assets may lower the consumer value for PHs, the 
reduction may be small enough so that it is not material. For example, in the above 
calculation, the loss in CV is only about 0.2% of the expected loss. So the risky asset 
conundrum is theoretically interesting but generally may not be a practical issue. 
Regulators, rating agencies and insurance management recognize that a large amount of 
risky assets is imprudent. Especially large risky investment portfolios require additional 
capital whose costs cannot be passed on to PHs in a competitive market.  

An important point to make here is that the risk-neutral probability distribution 
removes the positive expected excess market return from the CE default calculation. If 
an insurer increases its asset risk through securities whose return is uncorrelated with 
the market, the expected default will rise and more capital is required. Thus it is 
essential for an insurer to maintain a diversified investment portfolio. 

Also worth observing is that both insurance losses and investment returns are not 
considered to be normally distributed; often a lognormal model or some other skewed 
distribution is used to approximate these variables. It may not be possible to represent 
the joint distribution in a tractable form. A more realistic application of the CE 
approach for total asset and loss risk will require a more elaborate method, such as a 
simulation model.  

6.2 Guaranty Funds 
This topic deserves a full treatment in a separate paper. There is much academic 

literature37 on the economic basis and design of guaranty funds, but I have found none 

                                            
37 Cummins [1988] is one of the most often cited references. He argues that a pre-funded GF system is 
superior to the predominant post-failure assessment model in current use. However, based on the analysis 
here, a properly constructed RBC implementation might produce equivalent results. 
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that analyzes the effect of the funds on insurers’ capital requirements. 

 Under the policyholder welfare concept, guaranty funds will substantially reduce the 
optimal capital for an insurer. To see why this is so, consider an economy in which all 
policyholders of all insurers are completely covered by a single guaranty fund (GF). 
Clearly, no policyholder will suffer an uncovered loss unless the entire industry defaults. 
Thus, the aggregate capital for all insurers is used to protect any individual 
policyholder. Contrast this situation with the opposite extreme, where no policyholder 
has GF protection. Here, the policyholder has access only to the capital of his/her own 
insurer. In this case, the insurer needs much more capital than in the full GF situation. 

Under a GF within the U.S., essentially all of the capital for each insurer in a 
particular state is pooled to provide default protection for policyholders. The coverage is 
limited (usually $300,000 per policyholder for most lines of business), but some lines, 
such as Workers’ Compensation, have unlimited protection and others, such as Surety, 
have no protection. For lines protected by the $300,000 limit, the GF coverage can vary 
significantly. For example, assuming a lognormal distribution with a 5.0 coefficient of 
variation, policyholders in a line with an average loss per policy of $1,000 (e.g., personal 
insurance) will have 99.53% of their expected losses covered by the GF, with only 0.47% 
exposure to the insurer’s default. However, those policyholders in a line with an average 
loss per policy of $5,000 (say, commercial insurance) will only have 95.96% covered, 
with a 4.04% exposure. Relative to their expected loss, the ratio of non-covered losses 
for the two lines is 8.6 to 1. So, for this example the presence of GF protection is a 
major factor in assessing the optimal capital for the two lines. 

Also, the GFs themselves can become exhausted38 in extreme events, since there is an 
annual limit to the amount they can assess the solvent insurers. Thus, in order to 
estimate optimal capital for a particular insurer, the risk of GF exhaustion must be 
analyzed. When this threat is considered, a much higher portion of default risk becomes 
attributed to extreme events. Consequently, modeling these becomes paramount. The 
extreme events can be national or world-wide in scope (e.g., a financial crisis or a deep 
pricing down-cycle) or regional (such as a natural catastrophe). 

                                            
38 The term guaranty fund is somewhat of a misnomer. The vast majority of the state GFs merely assess 
other solvent insurers; they have no “fund” to pay claims. Thus, the GFs themselves cannot become 
insolvent. 
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An important implication for analysis is that, with GF protection the optimal capital 
depends not only on the risk of a policyholder’s own insurer’s default, but also the 
default risk of the other insurers covered by the fund. Therefore, in analyzing the effect, 
say, of catastrophes on capital, one must also estimate the effect of the same 
catastrophes on the other insurers. This modeling might be simplified by using a default 
correlation parameter (DCP) for the insurer, where the parameter measures the 
correlation between the insurer’s default and that of the remainder of the insurers in a 
particular state. A value of zero for the DCP would mean the insurer’ capital can be 
modeled as a stand-alone entity. At the other extreme, a value of 1 would mean that 
whenever the insurer defaults, the GF is exhausted due to the simultaneous defaults of 
other insurers. 

Although the protection afforded by a GF is considerable (the expected loss above a 
$300,000 threshold is a small fraction of the total expected loss), the certainty 
equivalent value of the above-threshold amount is large relative to its expectation. 
Consequently, the value of the GF protection for the policyholder is reduced somewhat 
in comparison to its straight expected value. 

Other considerations in modeling the effect of GFs on optimal capital are that there 
may be a degradation of service (e.g., a delay in settlement) when, upon insolvency, a 
policyholder’s claim is transferred to another claims management firm or that there may 
be market disruption from the insolvency of a large insurer. These effects can be 
incorporated into the model by modifying equation 5.11 to include a coefficient greater 
than 1 for the CE of the default. 

The analysis of optimal capital under a GF should feature an additional term in the 
premium calculation: the expected GF assessment for the failure of other insurers. This 
is an unavoidable cost to the policyholder that is paid ex post, so its value is stochastic 
at the time of the policy is purchased. Note that, for a specific insurer, the expected GF 
assessment depends on the capital levels of the other insurers, so the optimal capital 
level for that insurer is influenced by both the GF assessment and the ability of the 
other insurers to provide GF protection for the insurer.  

The presence of guaranty funds adds another element to the regulator’s role of 
solvency protection. By monitoring capital for a particular insurer, the regulator must 
not only protect the interests of that insurer’s policyholders, but also the interests of the 
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policyholders of the other insurers who would be assessed in the event of the particular 
insurer’s demise. 

 Summarizing this section, GF protection adds two important variables to 
incorporate into optimal capital determination. The first is the degree of GF coverage, 
which varies by line of business. More capital is required for lines with less GF coverage. 
Second, the optimum capital for an insurer depends on the default risk of other insurers 
covered by the GF. Thus, the correlation of the default risk with other insurers will 
affect capital: the higher the correlation, the higher the capital amount. Including these 
variables requires analysis of an insurer’s data by state: for example, to properly 
determine catastrophe risk capital, the effect of GF exhaustion must be estimated for 
each state where there is material exposure.  

6.3 Multiple Periods 
This topic is the subject of much debate in the actuarial and insurance finance 

literature.39 There are two camps: one side advocates using an annual time horizon, 
wherein capital is only needed to offset default risk based on market values over the 
upcoming year. The other side argues that capital is needed to offset the risk that cash 
flow will not be sufficient to pay claims over the entire duration (the runoff horizon) 
required to settle the liability. This topic also deserves a separate paper, so here I have 
only outlined a procedure that will establish optimal multi-period capital. 

The single period model, with the above and other extensions, should suffice to 
determine optimal capital for lines of business, such as property, whose claims are paid 
over a short duration. For liability insurance, workers’ compensation and life insurance, 
we need to expand the model to encompass long-duration claims. Although the long-
duration contracts can be modeled in continuous time, it makes sense to use a discrete, 
multi-period time frame. This is because accounting time frames determine the 
valuation of insurer assets and liabilities and hence capital. The annual time period is 
especially important, so for practical purposes, we need to examine long time-horizon 
asset and liability risk over one-year time increments. For shorter time periods (e.g., 
quarterly), a similar analysis will apply. 

                                            
39 For a good discussion of this topic, see Lowe et al [2011]. 
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With long-horizon risks, we can use the same fundamental assumptions that drive 
optimal capital for a single period. The main point is that the optimal capital over 
several periods still depends on the balance between capital costs and the certainty 
equivalent value of default.  

A key component of the analysis is that the value of a long-horizon risk element (e.g., 
losses or assets) is stochastic (i.e., random) at the end of every period. Assume that we 
know the probability distribution for the evolution40 of the risk element value and there 
are n periods. Suppose the risk element is a loss with expected present value L. So, if 
the insurer begins the first year with an optimal capital level C1 and the loss value at 

the end of the year happens to be    L1
≠ L , then the risk of default (either in the next 

period or ultimately) will change if the original capital remains the same. Thus, the 
capital must be changed accordingly to regain the optimal position. 

This process leads to a sequence of capital amounts    {C1
,C

2
,C

n
} corresponding to 

the sequence of loss values     {L,L
1
,…L

n−1
} . It will also produce a series of CE expected 

default amounts at the end of each year driven by the loss values:    {D̂1
,D̂

2
,…D̂

n
} . 

For each of these sequences of value realizations, we can determine the present value 
of the consumer value. However, we need a rule or strategy to determine the capital 
amount at each period Ct (based on Lt) that optimizes the expected present value over 

all possible realizations of the     {L,L
1
,…L

n−1
}  sequence. If we find a single strategy that 

does this, then we have settled the issue of setting capital for a long-horizon risk 
element.  

This type of problem can be solved by a process called discrete time stochastic 
dynamic programming.41 One of the techniques used in this method is backward 
induction, where one starts at time n – 1, finds the optimal decision rule, then steps 
backward to time n – 2, finds the optimal decision rule at that stage, and so forth, all 
the way back to the beginning of the first period. If the stochastic process is regular 
(such a random walk with a constant drift), then the decision rule at each stage will 

                                            
40 This process is analogous to a discrete model of interest rate evolution, where the value at any period 
will generate multiple possibilities for the next period. Graphically, the structure will look like a tree, with 
each successive period having more branches. 
41 See Birge and Louveaux [1997]. 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures  
 

Draft 6-25-13; For submission to Casualty Actuarial Society Forum 45 

likely be the same.  

7. APPLICATIONS 

The preceding sections have developed a theoretical framework for determining 
optimal capital for insurers. This section discusses several issues involved in applying 
the theory in a practical setting. 

There will be some applications of these results that are not directly related to setting 
the level of an insurer’s capital, such as capital allocation,42 but I will leave those topics 
for further research. Also, since capital is an essential ingredient in pricing models, the 
optimal capital results will be relevant to that application;43 however, this work is 
outside the scope of this paper.  

7.1 Implementation of Results 
The results here are new and somewhat contrary to current practice. In my view, 

there are three major obstacles to implementing them. 

The first is that there is little empirical work, especially for insurance, in quantifying 
policyholders’ risk preferences. All we know for certain is that insurance consumers are 
risk-averse, and will pay more than expected value for their coverage. In the absence of 
empirical evidence the best we can do is to assume a functional form for the risk 
aversion process, such as the exponential utility used in sections 3 through 5 (I do not 
necessarily advocate this model; I have used it because it is familiar and provides 
mathematically tractable results). This can be calibrated to a presumed certainty 
equivalent factor (k) for an individual PH based on judgment. 

Second, the adjusted ruin probability risk measure is not as easy to understand as the 
conventional ruin probability measure. That fact that a constant ARP translates into 
different conventional ruin probability standards for different risk elements (e.g., lines of 

                                            
42 The Myers and Read [2001] capital allocation method uses an expected default that is not adjusted for 
policyholder risk preferences. Incorporating this element will allocate relatively more capital to lines with 
more risk-averse policyholders. 
43 Section 5.1 has shown that, to the extent that PHs tend to select insurers having capital levels based on 
their risk preferences, then the insurer’s actual capital level (rather than an industry standard) will be 
relevant to setting prices. 
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business) may be difficult for some to comprehend, and may undermine acceptance of 
the results.  

Third, the analysis has unearthed several currently unrecognized variables (e.g., the 
frictional cost of capital, which reflects interest rates and income tax rates; also, the 
level of guaranty fund protection) that should be considered in setting capital. 
Incorporating them will require considerably more data-gathering and analysis than is 
presently done. Based on the analysis of sections 3 through 6, Table 7.1 shows the key 
variables that should be considered in establishing optimal capital levels: 

 
Table 7.1 

Summary of Key Variables for Setting Capital Requirements 
N = None; L = Low; M = Moderate; H = High 

 
Inputs 

 Risk-free 
investment 
rate 

Effective 
tax rate 

Risk-aversion 
parameter 

Fraction of 
default not 
covered by GF 

Insurer-GF 
default 
correlation 

Variation by:      
Time M L N L L 
Insurer L L/M L/M L/M M 
Line of Business L L/M M H H 
State N N N L/M H 
Econ. Scenario/  
Extreme Event 

M L M M H 

Difficulty of 
Estimation: 

L L H L/M M/H 

 
Here I have provided my subjective estimates of the importance of each relevant 

variable introduced in this paper, and how much each variable varies by time, insurer, 
line of business and other factors. I have also indicated the difficulty of estimating the 
parameters (in modeling the capital requirements) for each variable. I have assumed 
that incorporating the risk aversion component is done simply, perhaps with a single 
parameter. Similarly, the correlation between insurer default and guaranty fund 
exhaustion is modeled with a single parameter. Notice that other variables, such as the 
loss distribution, are quite important but are currently considered when assessing risk-
based capital. 
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Although it may appear that the conventional risk measures are better than the ARP 
because they are simpler (needing fewer variables to evaluate), this is not the case if one 
accepts the policyholder risk-preference basis of this paper: these variables were always 
important, but simply were not recognized by the conventional risk-based capital 
methodology.  

7.2 Regulatory Role in Capital Standards 
The preceding sections have addressed finding the optimal capital for an insurer. In 

an efficient market, insurers will gravitate toward these optimal levels without 
regulatory intervention. However, the market is far from efficient from the perspective 
of maximizing policyholder welfare, and the involvement of regulators is often necessary. 
An important role of the regulator is to mimic the outcome of an efficient market, or at 
least to mitigate the effects of the market imperfections. 

Consequently, this means attempting to maximize policyholder welfare while 
maintaining a competitive market for insurance. The goal of this process is to 
approximate the optimal capital generated in an efficient market. Using risk-based 
capital standards, the regulator has the authority to force an insurer to maintain a 
minimum level of capital. If the insurer fails to achieve the desired capital, the regulator 
can impose various restrictions on the insurer’s operations,44 including shutting down the 
insurer. So, the regulator will want to set the intervention thresholds at levels that will 
tend to produce optimal capital levels. 

This means that the more severe (i.e., shut-down) thresholds will be lower than the 
optimal capital amount for an insurer. For example, if the regulator sets the shut-down 
level at the optimum level, the insurer’s management will need to carry more than that 
amount of capital. There are several reasons why the stringent thresholds should be 
lower than either the optimal capital level: 

(1) An insurer operating above, but near the shut-down level would have a strong 
chance of being forced out of business if the business does not perform well over 

                                            
44 Under the current U.S. risk-based capital framework designed by the National Association of Insurance 
Commissioners (NAIC), there are five control levels (thresholds), ranging from no regulatory action when 
capital exceeds 200% of the base RBC amount, to mandatory takeover of the insurer at 70% of the base 
RBC. 
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the following year. Therefore, its management will try to maintain a sufficient 
clearance above the threshold to minimize this possibility.  
 

(2) With a high threshold, there is strong possibility of misidentifying companies 
that are actually strong as weak. Harrington (in H. Scott, ed., 2005) discusses 
this problem. Regulators will tend to value this type of error (Type 2) more than 
the converse (Type 1 error) where weak companies are incorrectly identified as 
being strong. This type of forbearance will lower the stringent threshold levels. 
 

(3) An insurer cannot operate near a stringent threshold without the market knowing 
about it. Operating near the threshold will signal that the insurer is weak, 
resulting in loss of business. Consequently, the insurer will become weaker, and 
the result will tend to be a self-fulfilling prophecy. 
 

Additionally, the regulator cannot be certain that an insurer with a low capital level 
is truly undercapitalized or the insurer’s policyholders have low risk aversion. In the 
latter instance, the low capital amount could be appropriate for those PHs. This 
possibility requires a lower stringent threshold than if all PHs had the same risk 
preferences.  

Since the insurers will tend to carry more capital than the stringent intervention 
thresholds, these must be set low enough to induce insurers to generally carry the 
optimum level of capital. It will be difficult to quantify the relationship between the 
optimal capital and the regulatory thresholds that will produce the optimal capital. So, 
as is currently done, it may be necessary to use expert judgment to establish the 
threshold levels,45 even if the optimal capital itself can be estimated reasonably well. 

I observe here that it is quite possible that insurers will in practice carry more capital 
than the optimal amount required to benefit policyholders. This will imply a wide gap 
between the stringent-threshold regulatory amount and the amount typically held by 
insurers. Because of incentive conflicts, the interests of insurance management, 
shareholders, regulators and rating agencies may differ from those of policyholders. For 
example, shareholders may be interested in protecting the franchise value of the insurer 

                                            
45 Setting the proper threshold level is conceptually another optimization problem: find the level that will 
create the best overall policyholder welfare, recognizing the above market-disrupting effects. 
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and may shortchange the interests of current policyholders to obtain future profits. 
Insurance management may desire capital sufficient to protect their private interests 
(e.g., future employment prospects) and may care more about the chance of insolvency 
than the expected amount of the default. Regulators and rating agencies have a vested 
interest in limiting the frequency of insurer insolvencies, since the failures can be viewed 
as a breakdown of supervision or of the rating system. 

The above incentive conflicts are exacerbated by the presence of guaranty funds, 
since the GFs allow for a somewhat painless insolvency experience from the policyholder 
perspective, but not painless to the other parties such as regulators or insurance 
management. 

8. CONCLUSION 
Based on maximizing policyholder welfare, it is possible to determine the optimal 

capital that an insurer should carry. To accomplish this, the appropriate solvency risk 
measure is ruin probability, using an adjusted probability distribution that reflects 
policyholders’ risk aversion. The level of the adjusted ruin probability standard depends 
only on the insurer’s frictional cost of holding capital. The assessment of underlying 
probability distributions of losses and assets, however difficult, is a standard actuarial 
problem. Determining the frictional cost of capital is a straightforward financial 
economics problem. On the other hand, estimates for the policyholder risk preferences 
are presently not available. This presents a ripe new area for empirical research.  

The results of the analysis here establish that a number of variables, which are not 
considered in conventional risk measures, are important to properly establish an 
insurer’s optimal capital. These features are absent when applying conventional solvency 
risk measures such as VaR or expected policyholder deficit. Incorporating these new 
factors is also a rich opportunity for further study.  

Finally, although I have focused on property-casualty insurers in particular, the 
underlying principles will apply to other financial institutions as well. These entities 
have primary stakeholders such policyholders, depositors and investors. As with 
property-casualty insurance, the welfare of these parties is governed by the same general 
relationship between consumer value and the cost of carrying capital.  
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APPENDIX A: UTILITY THEORY AND CERTAINTY  
EQUIVALENT LOSSES 

In this appendix I show the relationship between utility theory under risk and the 
certainty equivalent valuation of insurance losses. The utility of a wealth amount W is 
designated by u(W) and the initial wealth of the PH by W0. Accordingly, the utility of 
wealth given a loss y is u(W0 – y). However, since we are concerned with insurance 
losses here, it is convenient to redefine the utility to be a function of the loss amount:  
U(y) = u(W0 – y). 

Since the utility theory axioms have u'(W) > 0 and u''(W) ≤ 0, with the derivatives 
taken with respect to wealth, when we convert to the utility of loss basis, we get  
U'(y) < 0 and U''(y) ≤ 0. Here, the derivative is taken with respect to the loss size y. 
These results are developed in Appendix A2. On the utility of loss basis, the relative 
risk aversion function    RA

(W ) =− ′′u (W )/ ′u (W )  becomes    RA
(y) = ′′U (y)/ ′U (y) .  

A1: Finding CE Values From a Utility Function 
The expected utility (of wealth) is  

    

 
   
EU = U(y)p(y)dy

0

∞

∫ .   (A1.1) 

 

The certainty-equivalent wealth is the amount of wealth that gives as actual utility, 
the same amount as the expected utility. Thus,    CEW =U −1(EU ), where    U

−1  is the 
inverse of the utility function. The certainty-equivalent wealth, in turn, equals the 
actual wealth minus the certainty equivalent of the expected loss, or 

 

    CEW =U −1(EU ) =W
0
− L̂ .  (A1.2) 

 

Suppose that a policyholder faces a loss of size y with probability p, or no loss with 
probability 1 – p. We want to determine the certainty equivalent amount corresponding 
to y, or k(y)y, where k(y) is the CE function defined in section 3.2. The CE loss is  

 

    L̂ = k(0)(1− p) ⋅0 + k(y)p ⋅y = k(y)py .  (A1.3) 
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From equations A1.2 and A1.3, we can determine the CE function value: 

     

 
   
k(y) =

W
0
−U −1(EU )

py
 . (A1.4) 

 

Thus, it is possible to determine the CE value of an individual loss amount directly 
from a utility function and the initial wealth.  

To illustrate, consider the utility function 
   
U(y) = W

0
−y . The initial wealth is 1600 

and a loss of 1200 has a 10% probability. The expected wealth is 1600 – 0.1(1200) = 

1480. The utility of the initial wealth is   40 = 1600 . The utility if the loss occurs is  

  20 = 1600−1200 , so the expected utility is 38 = 0.9(40) + 0.1(20). 

The certain wealth corresponding to the expected utility of 38 is  

   1444 =U −1(38) = 382 . Therefore, the certainty equivalent value of the expected loss is 
156 = 1600 – 1444. From equation A1.4, the CE function value for the 1200 loss amount 
is k(1200) = [1600 – 1444]/[0.1(1200)] = 1.3. Notice that this value corresponds to a CE 
probability of 13% for the 1200 loss amount. 

A2: The Shape of the CE Value Function  
Because utility theory axioms impose constraints on the shape of the utility function, 

these restrictions will be reflected in the shape of the corresponding certainty-equivalent 
function. From Appendix A1, the CE function is related to the inverse of the utility 
function, so the properties of inverse functions will govern the translation from utility to 
certainty equivalence. 

The first utility axiom is that utility increases with wealth: the derivative of utility 
with respect to wealth is    ′u (W ) > 0 . This means that utility declines as the loss size y 
becomes larger (i.e.,    ′U (y) < 0 ) and thus the certainty-equivalent function value 
increases with y:    ′k (y) > 0 . 

The second utility property is that, because individuals are assumed to be risk-averse, 
the second derivative of the utility function with respect to wealth is negative:. 

   ′′u (W )≤ 0 . This means that utility declines as the loss size y increases, but at an 
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increasing rate. This property translates to a CE function that increases at an 
increasing rate:    ′′k (y)≥ 0 . 

Returning to the Appendix A1 example, we can vary the loss size from 0 to 1600, 
keeping the other parameters the same (e.g., p = 0.1). Thus the CE function value is 

 

 
   
k(y) = 1.8

1600− 40 1600−y
y

−0.1.   (A2.1) 

 

Values for this function are shown graphically in Figure A2: 

 

Figure A2 
CE Function for Appendix A2 Numerical Example 

 

 
 

A3: The CE Loss Distribution 

An important restriction on the CE function k(y) is that 
   

k(y)
0

∞

∫ p(y)dy = 1 . This 

constraint means that the average value of the CE function equals 1, and thus will be 
less than 1 for losses that are small. This result seems anomalous, since the PH will be 
averse to the risk of small losses as well as for larger ones (albeit less risk-averse for the 
small ones), since the small losses are also random. However, it makes sense when we 
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consider the entire loss distribution: since losses are mutually exclusive, two different 
loss values are negatively correlated. The negative co-variation will reduce the CE 
function value if the loss amounts are simultaneously considered, as compared to a 
situation where some loss sizes are considered selectively. 

To illustrate the effect of negative covariance, consider a PH facing a loss of    y− ε  
with probability ½ or another loss of    y + ε  also with probability ½.  The amount  ε  is 
very small. One of the two amounts will occur, but not both. If the PH insures against 
the first event and not the second, the CE expected loss will be greater than its 
expected value. This is because there is apparent risk:  the loss will be zero or    y− ε  
with equal probability. The same is true if the second event is insured but not the first. 
However, if both events are insured (i.e., the entire loss distribution), then the CE 
expected loss will equal the expected value y, since essentially, the entire distribution is 
a single point y and there is no variance. The value y (plus or minus  ε ) is certain to 
occur. Thus the CE expectation over the entire distribution will be less than the sum of 
the CE values of the individual loss sizes taken in isolation. 

The effect of the negative loss co-variation is that the k(y) values (such as in 
Appendix A2) will be reduced somewhat when other loss values are considered 
simultaneously. Extending the Appendix A2 example, suppose that (in addition to a loss 
amount of 1200 with a 10% probability) another loss of 1500 can occur, also with a 10% 
probability. Either may occur, but not both. Thus, there is an 80% chance that no loss 
will occur.  

The utility if the 1200 loss happens is   20 = 1600−1200 , and the utility if the 1500 
loss happens is   10 = 1600−1500 . So, the expected utility is 35 = 0.8(40) + 0.1(20) + 
0.1(10). This gives a CE wealth of 1225 = 352  and the CE of the expected losses is 375 
= 1600 – 1225. Thus the joint CE of the two loss amounts is 3750 = 375/0.1. However, 
taken separately, the CE of the 1200 loss is 1560 and the CE of the 1500 amount is 2310 
(determined as in the Appendix A1 example). This gives a total CE for the separate 
losses of 3870, which is 130 more than their joint CE. 

In this example, adding more possible loss values to fill out the entire probability 
distribution will reduce the CE values for all of the loss amounts even further.  

To summarize, the particular value k(y) of the CE factor for a loss size y depends not 
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only on y but also on all other loss values in the loss distribution, and their respective 
probabilities. 

A4: Finding CE Default and Ruin Probability from a Utility Function 
If we know the probability distribution of losses and the utility function, the 

certainty equivalent loss can be determined by inverting the expected utility, as shown 
in section A1. The expected utility for losses limited to an amount of assets A is 

 

 , (A4.1) 

 

where U(y) is the utility if loss size y occurs and Q(A) is the ruin probability, or 
chance that the loss exceeds assets. The expected utility for the entire loss distribution 
equals equation A4.1 with A set to infinity. The CE value of the limited loss is 
determined from the inverse utility function:    L̂(A) =U −1[EUL(A)]. The CE of default is 
the difference between the CE of the entire loss and the loss limited to assets, just as 
the expected default is the difference between the expected loss and the limited expected 
value. Thus    D̂ = L̂− L̂(A) . Since (from appendix C) the CE ruin probability   Q̂(A)  
equals    −∂D̂ /∂A , we have    Q̂(A) = ∂[L̂(A)]/∂A . Note that the derivative of   ̂L  is zero, 
since it is not a function of A. Equation A4.1 thus provides a method for determining   D̂  
and   Q̂(A)  given U(y). 

This method for getting the CE values for default and ruin probability can be 
illustrated using a general loss distribution with exponential utility. Here, I define the 
utility of wealth for loss size y as    U(y) =−eay , with a being the risk aversion parameter. 
The expected utility of the limited loss is  

 

 
   
EUL(A) = −eayp(y)dy−eaA

0

A

∫ Q(A). (A4.2) 

 

To find   Q̂(A) , we first take the derivative of equation A4.1 with respect to A, getting  

 

   
EUL(A) = U(y)p(y)dy +U(A)Q(A)

0

A

∫
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∂EU[L(A)]
∂A

= [U(A)p(A)−U(0)p(0)]+U(A)[−p(A)]+Q(A)
∂U(A)
∂A

=Q(A)
∂U(A)
∂A

.
       (A4.3) 

 

The terms involving p(A) and p(0) vanish since p(0) = 0 and the derivative of Q(A) 
is –p(A). The inverse of the exponential utility function for a utility value X is 

   U
−1(X) = ln(−X)/a . Next, we take the derivative of  L̂(A) . Note that since    U(A) =−eaA , 

its derivative equals   aU(A): 

 

 

   

Q̂(A) =
∂L̂(A)
∂A

=
∂
∂A

ln[−EUL(A)]
a

=
−1

aEUL(A)
∂[−EUL(A)]
∂A

=
Q(A)

aEUL(A)
∂U(A)
∂A

=
Q(A)U(A)
EUL(A)

 (A4.4) 

 

or    Q̂(A)/Q(A) =U(A)/EUL(A) . With a normal loss distribution, we can directly 
determine EUL(A). The normal density is  

   

 
    
p(y) =

1

2πσ
exp
−(y−L)2

2σ2

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
 . (A4.5) 

 

Since the density in equation A4.1 is multiplied by –exp(ay), the product U(y)p(y) for 

the normal p(y) becomes another normal density ps(y) with a variate (shifted from the 

mean L) of     zs
= (y−L−aσ)/σ , multiplied by the constant     −exp[aL + 1

2
a2σ2 ]. Thus, 

the expected utility equals this constant and its CE is the inverse, equal to 

    L + 1
2
aσ2 = L̂ . This derives the result in equation 3.43. For the normal distribution, 

equation A4.1 becomes  

 
   
EUL(A) =−eaL̂ p

s
(y)dy

0

A

∫ −eaAQ(A) =−eaL̂P
s
(A)−eaAQ(A) . (A4.6) 

 

Here  Ps
 is the cumulative normal probability with the shifted variate zs. Converting 
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EUL(A) to a certainty equivalent, we get  

 

 
   
L̂(A) =

ln[eaL̂P
s
(A)+eaAQ(A)

a
. (A4.7) 

 

Since    D̂ = L̂− L̂(A) , we finally have  

 

                         D̂ =
− ln[P

s
(A)+ea(A−L̂)Q(A)

a
.              (A4.8) 

 

To determine the adjusted ruin probability   Q̂(A)  for the normal distribution, we use 

equations A4.4 and A4.6, getting: 

 

 
   
Q̂(A) =

Q(A)
Q(A)+e−a(A−L̂)P

s
(A)

 . (A4.9) 

 

Notice that the distribution for Ps(A) has a mean of     L +aσ2 , while for Q(A) the 

mean is L. The mean underlying the   Q̂(A)  distribution is     L̂ = L + 1
2
aσ2 . Letting  

   A = L̂ + x , we see that    Ps
(L̂ + x) =Q(L̂−x). From equation A4.9 it is straightforward 

to show that    Q̂(L̂ + x)+Q̂(L̂−x) = 1 and therefore the CE distribution is symmetric 

around   ̂L . However, as shown below, the CE distribution is not normal. 

To show the non-normality, I use the section 3.5 example with L = 1000, σ = 100 
and a = 0.02. With assets of 1300 (3 standard deviations above the mean) the 
unadjusted expected default D is 0.038 and the ruin probability is Q(1300) = 0.135%. 
The CE expected loss is 1100 = 1000 + 0.5(0.02)(100)2. The shifted variate is zs = 1.00 
= [1300 – 100 – (0.02)(100)]/100, which is one standard deviation above the mean. 
Thus, the shifted cumulative probability is Ps(1300) = 0.8413. The factor    exp[a(A− L̂)]  
equals exp[0.02(1300 – 1100)] = 54.598, so we get  

  D̂  = 4.439 = {–ln[0.8413 + (54.598)(0.00135)]}/0.02. The CE ruin probability is  

  Q̂(1300)  = 8.05% = 0.00135/[0.00135 + 0.8413/54.598]. Notice that the denominator of 
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equation A4.9 contains an exponential factor that is the reciprocal of the one in 
equation A4.8. 

If the CE distribution were normal, then its ruin probability of 8.05% would imply a 
standard deviation of 142.71. Then, if we change the assets to 1200, we would get a CE 
ruin probability of 24.17%. However, following the above calculation, the true   Q̂(1200)  
is 25.16%. Consequently, the CE distribution for the normal-exponential model is not 
normal. 

It is interesting to compare the CE density   ̂p(y)  with that of the underlying normal 
distribution p(y). The approximate   ̂p(y)values can be calculated taking the difference of 

successive   Q̂(A)  values. Figure A4 below shows the two densities. 

 
Figure A4 

Probability Densities for Normal-Exponential Model 
Illustrative Example 

 

 
 

Notice that the CE density is symmetric, centered at the CE loss value of 1100. It 
also has a greater variance than its normal parent distribution. Also observe that, for a 
given asset amount (above the mean), the tail area of the adjusted distribution is much 
greater than that of the unadjusted distribution. 
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A5: CE Values for Binary Loss Model with Exponential Utility 
Assume that an individual faces a loss of amount B with probability p > 0, and 

amount 0 with probability q = 1 – p. This is called a binary model, since there are two 
possible loss values: B or zero. The individual has risk preferences defined by 
exponential utility with risk aversion parameter a and has initial wealth of W0 before 
considering the loss prospect. The utility of the initial wealth is     −e

−aW0  and the 
expected utility of wealth considering the loss is  

 

    EU(0) =−qe−a(W0−0)− pe−a(W0−B) =−e−aW0[q + peaB ] . (A5.1) 

 
Letting   Ŵ0

 denote the CE value of the wealth considering the loss, we have 

   Ŵ0
=W

0
− L̂  , where   ̂L  is the CE expected loss. Since    −e

−aŴ0 =−e−aW0[q + peaB ] , we get 

 

    L̂ = ln[q + peaB ]/a . (A5.2) 

 

If the individual buys insurance for a premium π and the insurer has assets A, then 
the amount of loss absorbed by the individual is B – A and the expected utility is 

    EU(A) =−qe−a(W0−π)− pe−a(W0−B+A−π) .  The certainty equivalent wealth after the insurance 

purchase is the initial wealth minus the premium minus the CE expected default, or 

    W0
−π− D̂ . Since     −e

−a(W0−π−D̂) = EU(A) , we solve for   D̂ :  

 

    D̂ = ln[q + pea(B−A) ]/a . (A5.3) 

 

Notice that if A = 0, then    D̂ = L̂  and if A = B, then    D̂ = 0 . The CE ruin 
probability   Q̂(A)  equals the negative derivative of the CED, so we get 

 

 
   
Q̂(A) =

pea(B−A)

q + pea(B−A)
.  (A5.4) 

 

If A = 0, we have    Q̂(0) = peaB /(q + peaB) and at A = B,    Q̂(B) = p . 
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For two combined independent binary risks, the development is similar (the values of 
variables for the combined risks are denoted with a subscript 2). Here we set the initial 
wealth and premium to zero, since they do not influence the CED and hence the CE 
ruin probability. Following section 3.6, assets are A per PH, for a total of 2A. For  

A < B/2, the expected utility per PH is    EU(A) =−q− pqea(B−2A)− p2ea(B−A) . For  

B/2 ≤ A < B,    EU(A) =−q− pq− p2ea(B−A) . Then the respective CED values are 

 

    D̂2
= ln(Z

1
)/a             for A < B/2 (A5.5) 

    D̂2
= ln(Z

2
)/a      for B/2 ≤ A < B,  

 

where    Z1
= q + pqea(B−2A) + p2ea(B−A)  and    Z2

= q + pq + p2ea(B−A) . Here, if A = 0, we again 

get    D̂2
= L̂  and if A = B, then    D̂2

= 0 . Taking the derivative of the CED with respect 

to A, we get the CE ruin probabilities: 
 

    Q̂2
(A) = [2pqea(B−2A) + p2ea(B−A) ]/Z

1
     for A < B/2 (A5.6) 

 
    Q̂2

(A) = p2ea(B−A) /Z
2
               for B/2 ≤ A < B. 

 

For A = 0, we get    Q̂2
(0) = (1−q 2)eaB /(q + peaB)  and for A = B,    Q̂2

(B) = p2 . Notice 

that    Q̂2
(0)/Q̂(0) = 2− p >1 and that    Q̂2

(B)/Q̂(B) = p <1 . Thus, the CE ruin 

probability for the combined risks has a higher maximum value (at A = 0) and a lower 
minimum value (at A = B) than for a single risk. Thus, based on equation 5.51, there is 
a region where a subadditivity violation may exist and another region where a SA 
violation cannot happen.  

For a fair premium, equation 5.14 defines the risk measure as 

    θ(A) = [Q̂(A)−Q(A)]/[1−Q(A)]. For a single binary risk, the unadjusted ruin probability 

is Q(A) = p, for A ≤ B. Consequently, 
 

     θ(A) = [Q̂(A)− p]/q , (A5.7) 
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so the fair premium risk measure    θ(A) is a linear function of the basic premium risk 
measure   Q̂(A) .  

For a combination of two independent binary risks, and for A < B/2, the expected 
default for a single PH is    D2

= pq(B−2A)+ p2(B−A) . By taking the negative of the 

derivative of D2 with respect to A we get    Q2
(A) = 1−q 2 . For B/2 ≤ A < B, we have  

   Q2
(A) = p2 . Therefore, equation 5.14 gives 

 

     θ2(A) = [Q̂
2
(A)+q 2−1]/q 2              for A < B/2 (A5.8) 

      θ2(A) = [Q̂
2
(A)− p2 ]/[1− p2 ]     for B/2 ≤ A < B. 

 

For A = 0, with some manipulation, we get     θ2(0)/ θ(0) = (2− p)/q >1  and for A = B 

(as a limit),     θ2(B)/ θ(B) = p <1 . Just as in the basic premium case, there is a region 

where a subadditivity violation may exist and another region where it cannot occur.  

APPENDIX B: STOCHASTIC MEAN LOSS MODEL 

The classic aggregate loss model from risk theory (see Lundberg [1903]) is the 
compound Poisson process, where the number of losses is Poisson and each individual 
loss has the same distribution with prescribed parameters and thus a stable mean. The 
individual losses are independent. However, in practice, the losses are not independent 
(they are subject to common factors such as inflation, regulation and the court system). 
Further, the mean of losses for a given line of business (or other subdivision of an 
insurer’s risk portfolio) is not known; it must be determined empirically.  

Relaxing the independence assumption, we introduce another random variable that 
governs the mean, from which all the individual losses are drawn (in this section, 
random variables are indicated with a tilde).  

Let   I  represent the stochastic mean variable, which itself has a mean 1 and variance

  γ
2  . We assume that there are N policyholders. Each PH i  has losses (we allow for 

multiple claims in the one-period model) denoted by   
x

i
. The   

x
i
 are measured before 

applying the mean variable   I .  

Let   S  denote the sum of aggregate losses before applying the stochastic mean. The 
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unconditional aggregate losses are  

 

     
X = I ⋅ S = I [x

1
+ x

2
+…+ x

N
].   (B.1) 

 

Here the {  
x

i
} are the individual losses and N  is the number of losses.   I and   S  are 

independent, so the covariance between losses is due to the stochastic mean. Let M be 
the mean of the individual loss   

x
i
 and   σ

2  its variance. Let  ρ  be the correlation between 

the individual losses. The variance of   S  is   

  

      Var(S) = σ2[N + ρ(N 2−N )]  (B.2) 

  

and its mean is NM. 

The variance of the product of two independent random variables   I  and   S  is 

 

     Var(I ⋅ S) = Var(I ) ⋅Var(S)+ E(I )2 ⋅Var(S)+ E(S)2 ⋅Var(I ).  (B.3) 

 

Here, E( ) denotes the expectation. Thus the variance of the aggregate losses   X  is  

 

      Var( X) = [N(1−ρ)+ ρN 2 ]σ2 [1+ γ2 ]+ γ2M 2N 2.  (B.4) 

 

Let     
Y = X /N  denote the share of aggregate losses for an individual PH. Then 

    Var( Y ) = Var( X)/N 2 . Thus, we have 

 

      Var( Y ) = γ2M 2 + ρσ2(1+ γ2)+ (1−ρ)σ2(1+ γ2)/N .    (B.5)   

 

As N becomes large, the variance of the individual PH losses tends toward 

 

      Var( Y ) = γ2M 2 + ρσ2(1+ γ2) . (B.6) 

 

So for large N, the variance of the individual PH losses tends to a constant limiting 
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value. Also, if    γ = 0  and    ρ > 0 , the limit is   ρσ
2 . If    γ > 0  and    ρ = 0 , then the limit is 

   γ
2M 2 . Consequently, if either the losses are subject to a stochastic mean or they are 

correlated, then with a large number of policyholders, the variance of individual PH 
losses will reach a limit.  

An example will illustrate the convergence. Assume that M = 1,000,    σ = 300 , 

   γ = 0.1  and    ρ = 0.2. For N = 1,000, equation B.5 gives an individual PH variance of 
28,253, compared to the asymptotic value of 28,180, a difference of only 0.26%. 
Increasing N to 10,000 policies moves the variance to 28,187, cutting the difference to 
0.03% from the asymptotic value. Notice that the asymptotic standard deviation is 
167.87, compared to 300.00 from the individual loss distribution. 

APPENDIX C: DERIVATIVE OF THE EXPECTED DEFAULT  

To determine the derivative of the expected default, we use the general method for 
the derivative of an integral, with the upper limit a constant b and the lower limit a 
function of the variable whose derivative is taken: 

 

 
   

∂
∂y

F(x,y)
g(y)

b

∫ dx =
∂
∂y

F(x,y)
g(y)

b

∫ dx −F[g(y),y ]
d[g(y)]

dy
 . (C.1) 

 

Thus 

 

 
   

∂D
∂A

=
∂
∂A

[x −A]p(x)dx
A

∞

∫ −(A−A)p(A)
∂A
∂A

. (C.2) 

 

The right-hand term in equation C.2 equals zero and the derivative becomes 

 

 
   

∂D
∂A

= −p(x)dx
A

∞

∫ =−Q(A), (C.3) 

 

where 
   
Q(A) = p(x)dx

A

∞

∫  is the tail, or ruin probability.  
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For an adjusted probability density   ̂p(x), we have in parallel fashion, 

 

 
   

∂D̂
∂A

= −p̂(x)dx
A

∞

∫ =−Q̂(A). (C.4) 

APPENDIX D: OPTIMAL CAPITAL WITH INCOME TAXES 

Expanding the basic model to include income taxes, we also need to introduce an 
investment component. Assume that all cash is invested in riskless investments at a one-
period rate r, and that all income is taxed at the end of the period at a rate t. Premium 
is collected at the beginning of the period and losses are paid at the end of the period. 
We further assume that the losses contain no market risk, so that the expected return 
to investors46 in the insurer is also r. Alternatively, we can assume that the value of the 
loss is adjusted to include the market risk. 

In order to attract capital from the insurer’s investors, the expected rate of return 
after taxes must also equal r.  

If the premium equals the present value of the expected loss, then initial assets are 

   A0
=C + L /(1+ r). The expected value of the ending assets, prior to income tax, is  

   A0
(1+ r)−L =C + rC . The investment income rC is taxed, leaving C + rC – trC. 

However, for a fair return to investors, the ending assets must be C + rC. The amount 
trC must be made up by charging an extra premium amount zC at some rate z 
proportional to capital, so the premium is     π = L /(1+ r)+ zC . The extra premium is 

itself taxed as underwriting profit, so the amount zC will grow to    zC(1+ r)− tzC − trzC
after taxes.  Notice that the investment income rzC on zC is also taxed. Equating the 
ending after-tax value of the additional premium with the double-taxation burden trC, 
we solve for z: 

 

 
   
z =

tr
(1+ r)(1− t)

 . (D.1) 

                                            
46 In this formulation, the expected default is not subtracted from premium, so the result approximates a 
true equilibrium optimum, which is a more complex version of equation 5.14. 
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Let A represent the amount of assets prior to payment of the loss and income taxes. 
If the loss is larger than A, the insurer will default and no tax is paid. I assume here 
that a negative income tax liability arising from a large loss does not increase the assets 
available to pay the loss. Thus we have 

 

 
   
A = [C +

L
1+ r

+ zC ](1+ r) = L +C(1+ z)(1+ r) . (D.2) 

 

In parallel fashion to equation 5.11, the consumer value V of the insurance equals the 
present value of the CE of the covered losses, minus the premium: 

 

 
   
V =

L̂
1+ r

−
D̂

1+ r
−

L
1+ r

−zC . (D.3) 

 

Taking derivatives and equating to zero, we have  

 

 
   
z
∂C
∂A

=
1

1+ r
−∂D̂
∂A

=
1

1+ r
Q̂(A) . (D.4) 

    

From equation D.2, we get    ∂C /∂A = 1/[(1+ z)(1+ r)] . From equation D.4 we get  

 

 
   
Q̂(A) =

z
1+ z

.  (D.5) 

  

Using the value of z in equation D.1, we get the optimal CE ruin probability in terms 
of the interest rate and the income tax rate: 

  

 
   
Q̂(A) =

rt
1+ r − t

 . (D.6) 
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GLOSSARY OF ABBREVIATIONS AND NOTATION  

 
Abbreviation Meaning Section 

Where 
Defined 

ARP Adjusted ruin probability 5.1 
CE Certainty equivalent 3.2 
CEL Certainty equivalent expected loss 3.2 
CED Certainty equivalent expected default 3.5 
CV Consumer value 3.6 
DCP Default Correlation Parameter 6.2 
EPD Expected policyholder deficit 1 
FCC Frictional capital cost 4.2 
GF Guaranty fund 6.2 
NAIC National Association of Insurance Commissioners 7.2 
PV Present value 4.3 
PH Policyholder 3.1 
RBC Risk-based capital 2 
RP Ruin probability 5.4 
SA Subadditivity 5.5 
SD Standard deviation 5.3 
TVaR Tail value-at-risk 1 
VaR Value-at-risk 1 
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Notation Meaning Section 
Where 
Defined 

a Exponential utility risk aversion parameter 3.4 

A Assets 3.5 

A0 Initial assets App. D 

b Upper integration limit App. C 

B Binary loss size  5.5 

C Capital 4.1 

CEW Certainty-equivalent wealth App. A1 

D Expected default 3.5 

  D̂  Certainty-equivalent expected default 3.5 

e0 , e1 Expense coefficients 5.1 
E( ) Expectation operator App. B 

EU Expected utility App. A1 
EUL( ) Limited expected utility App. A4 

f( ) General function 3.6 

F( ) General function App. C 
g( ) General function App. C 

  I   Stochastic mean variable App. B 

k( ) Certainty-equivalent function 3.2 

k Average value of the CE function 3.2 

K Variable in normal-exponential model App. A4 

L Expected loss 3.2 

  ̂L  Certainty-equivalent loss 3.2 

  L̂( )   Limited CE expected loss 3.5 

M Mean of individual loss App. B 
MT( )

 
Tail moment 5.4 

n Degree of the tail moment 5.4 

N Number of policies App. B 

p Binary loss probability App. A1 

p( ) Probability density 3.2 

  ̂p( )  Probability density, adjusted for risk aversion 3.2 

pA( ) Risk-neutral probability density for asset size 6.1 

  ps
( )   Probability density with shifted mean App. A4 

Ps( ) Cumulative probability with shifted mean App. A4 

q Probability of zero loss App. A5 



An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measures  
 

Draft 6-25-13; For submission to Casualty Actuarial Society Forum 69 

Q( ) Ruin probability 5.1 

  Q̂( )   Ruin probability, adjusted for risk aversion 5.1 

r Investment return 4.2 

  RA
( )   Absolute risk aversion function 3.4 

RM1( ), 
RM2( ) 

Risk Measure 5.5 

  S   Sum of aggregate losses, without stochastic mean App. B 

t Income tax rate 4.2 

u( ) Utility function, based on wealth App. A1 
U( ) Utility function, based on loss size 3.4 

v Valuation level of risk measure 5.5 

V Consumer value of insurance contract 5.1 

Var( ) Variance operator App. B 

W Wealth App. A1 

  W0
 Initial wealth 3.4 

  Ŵ0   
CE wealth given a potential loss App. A5 

x Loss size; also a general variable 3.4 

  
x

i   
Random individual loss size App. B 

  X   Unconditional aggregate losses App. B 

y Individual policy loss size 3.2 

  ̂y   Certainty equivalent loss size 3.2 

  Y   Policyholder share of aggregate losses App. B 

z Frictional cost of capital rate 4.2 

zs Shifted normal variate App. A4 
Z1, Z2 Intermediate variables App. A5 
α VaR confidence level 5.4 

  γ
2   Variance of stochastic mean App. B 

Δ Change in loss size 5.4 
ε Small change in loss size App. A3 

π Premium 4.1 
θ(  ) Fair premium risk measure 5.1 
ρ Correlation between losses App. B 

  σ
2   Variance of loss 3.4 
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