11/14/2014

Predictive Mode

Chapter 12
Unsupervised Learnt

CAS Annual Meeting November, 20
Louise Francis, FCAS, MAAA

Francis Analytics and Actuarial Data Mining, Inc
www.data-mines.com




11/14/2014

Objectives

Introduce chapter on unsupervised

learning to actuaries

Provide some insight into statistics

underlying unsupervised learning
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Provide examples relevant to actuaries
Indicate what resources are available
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Major Kinds of Modeling

» Supervised learning + Unsupervised learning
— Most common — No dependent variable
situation — Group like records together
— A dependent variable * Agroup of claims with

similar characteristics

* Frequency might be more likely to

e Loss ratio be fraudulent
 Fraud/no fraud * Ex: Territory

— Some methods ﬁ‘ﬂsirs]'i?]gmem’ Text
* Regression — Some methods
« CART « Association rules
 Some neural  K-means clustering

networks « Kohonen neural
_ networks
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Dimension Reduction
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Unsupervised Learning — a
historical example

» Carl von Linaeus — Classification of plants and Animals
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Classical Unsupervised Learning in
P&C Insurance

* From Shaver “Revision of Rates Applicable to a Class of Property
Insurance”, PCAS, 1957

L\} REVISION OF RATES APPLICABLE TO A CLASS QF PROPERTY FIRE INSURANCE 77

ing the resulting factor to each rate involved in the particular classi-
fieation. If, for example, the experience indicates a 59% increase for
Class 029, construction-protection code 1 (Dwellings—Buildings only
—frame protected,) it would be necessary to apply the 5% increase
to the rates for the following Class 029 combinations:

Occ, Const.-

Class of Bldg. Town Class No. of Fam. Class Prot. Rate

Frame approved roof 1 to 4 1to2 029 1 i |

Frame approved roof 1 to 4 3to4 029 1 14

Frame approved roof 5and 6 1t02 029 1 13

Frame approved roof 5and 6 3to4d 029 1 15

Frame approved roof Tand 8 1to2 029 1 .15

Frame approved roof 7and 8 3to4 029 i A7

ﬂ Frame unapproved roof 1 to 4 1to2 029 } }2

B . [p—. 1 4+ A Do A NN
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Data

» Inflation data from the BLS
 CAARP (California Auto Assigned Risk) data — Actual and
Simulated

— The original data contain exposure information (car counts, premium)
and claim and loss information (Bodily Injury (Bl) counts, Bl ultimate
losses, Property Damage (PD) claim counts, PD ultimate losses)

e Texas Closed Claim Data. Download from:
— http://lwww.tdi.texas.gov/reports/report4.html
— Data collected annually on closed liability claims that exceed a threshold

(i.e., 10,000).
« from a number of different casualty lines, such as general liability, professional
liability, etc.

+ includes information on the characteristics of the claim such as report lag, injury
type and cause of loss, as well as data on various financial values such as
economic loss, legal expense and primary insurer’s indemnity.

ed Automobile PIP Fraud Data
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Software

R Programming Language was used

— Clustering, principal components and
Factor Analysis libraries used

All procedures can also be done in
commonly available software such as
SAS, SPSS, Statistica

Simulated data programmed in R
RStudio editor used

F«’ ! !g — Code is available
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Variable Reduction

» Classical Approaches

— Principal Components |

— Factor Analysis &
 Newer Approaches

— PRIDITS
— MDS and SVD

F} ! H!:% . — Some kinds of neural networks
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Factor analysis Model

* Views random variable as a combination
of an unobserved factor and a unigue
random component

« Correlation matrices are important

— Highly correlated variables have same
underlying factor

x, =8 F +u, ¥ =variable,b = loading, F = factory: = mnique compon=nl
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lllustration: P&C Trends
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Principal Components Analysis

 No assumption about underlying causal
factor

 Instead it posits that a set of (typically
correlated) variables can be decomposed
INto components

* The “pattern” underlying the variables can
then be reconstructed from a suitable

Mighting of the components
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lllustration: Medical CPI vs 2
Components of Medical Cost

Log Gen Medical Index vs Log Physicians Index
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Another Example: 3 Medical
Components
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Principal Components Uses Correlation or
Covariance Matrix to Fit Components

Healthins Compensa

GenMedical Physicians Pharma  urance CPI tion WC Severity
GenMedical 1.000
Physicians 0.980 1.000
Pharma 0.988 0.986 1.000
Healthinsurance 0.994 0.968 0.984 1.000
CPI 0.990 0.993 0.990 0.985  1.000
Compensation 0.972 0.988 0.980 0.973  0.993 1.000
WC Sewerity 0.952 0.958 0.977 0.962  0.963 0.966 1.000

> =C'AC, A = eigenvalues, C = eigenvectors
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Using R to Find Principal
Components

* MedIndices2<-
data.frame(Indices$LnGeneralMed,Indices$LnPhysicians)
* Simple.Princomp<-princomp(MedIndices2,scores=TRUE)

— princomp procedure gives us the “loadings” on each of the
components.

— The loadings help us understand the relationship of the original
variables to the principal components.

— Note that both variables are negatively related to the principal

component.
e > Simple.Princomp$loadings
* Loadings:
. Comp.1 Comp.2

.LnGeneralMed -0.880 0.475
.LnPhysicians  -0.475 -0.880
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Eigenvalues of Principal
Components

Simple.Princomp

000 001 002 003 004

Comp.1 Comp.2

17



11/14/2014

Similarity/Dissimilarity Matrices

* Two popular dissimilarity measures are
Euclidian distance and Manhattan

distance
) .
d' -@(:* —l‘ﬂ]'

dij = Z‘xik _xjk‘
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Clustering Using Dissimilarity:

Try to group like zip codes together
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K-Means Clustering

iterative procedure is used to assign each
record in the data to one of the k clusters

iteration begins with the initial centers or
mediods for k groups.

often they are randomly selected from
records

uses a dissimilarity measure to assign
records to a group and to iterate to a final

F(‘T_%ouping.
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Automobile Example

* Group based on Bl frequency, Bl severity

» >BIClusterl<-pam(ClusterDatl,2,metric="euclidean")
» >BIClusterl<-clara(ClusterDatl,2,metric="euclidean")
» Data can be standardized

> BlIClusterl
Call: clara(x = ClusterDatl, k = 2, metric = "euclidean™)
Medoids:
BIFrequency BlSeverity
[1,1 11.39769 8202.802
2.1 13.28089 10749.593

Objective function: 577.0351
Clustering vector: int [1:100] 11 2111111112122211
Clusteriisizes: 63 37
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Plot the Components

» plot(BICluster2)

lot(clara(x = ClusterDat1, k = 2, metric = "manhattan", stand
clusplot{ Kkeep.data = TRUE))
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Silhouette Plot

Silhouette plot of clara(x = ClusterDat1, k = 2, metric

Silhouette plot of keep.data = TRUEZ)

n=44 clusters C;
il aveeg S

1: 251072

2: 19| 0.62

I T T | | |
0.0 02 04 06 0.8 1.0

g . Silhouette width s;
B Average silhouette width . 0.68
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Clustering Real Data

lot{clara(x = AutoBIVars, k = 2, metric = "manhattan”, stand

Component 2

[an]
i

-5

clusplot{ keep.data = TRUE))

Component 1
These two components explain 75.68 % of the point variability.
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Hierarchical Clustering

» Sequentially partitions the data
» Does not create a specific number of clusters

* Results presented in a graphic that looks like
an inverted tree

» Divisive or
agglomerative
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Common Insurance Applications of
Unsupervised Learning

e Cluster based:
— Find best territorial grouping
— Find outlier records
— Text mining
« Factor/Principal Components based
— Fraud Analysis
— Text mining

— Reduce dimensionality of dataset to be used in
predictive modeling

Understanding drivers of inflation/trend as in
Masterson’s indices
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Coming Attractions

 In volume 2 of the predictive modeling
book there will be a chapter on advanced

unsupervised learning
« The chapter will cover the following

methods
— the PRIDIT method
— Random forest clustering

ﬁ other
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