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Introduction

Copula: For a random vector (X, Y) with continuous marginal

distributions F; and F;, its copula is defined as

C(x,y)=P(F(X)<x,FR(Y)<y) for 0<x,y <L

t-copula: The t-copula is an elliptical copula defined as

Cluvipy) =[5 20
+%}*(V+2)/2 dydx.’

1)

v(1-p?)
where v > 0 is the number of degrees of freedom, p € [-1,1] is
the linear correlation coefficient, t, is the distribution function of a

t-distribution with v degrees of freedom and t, denotes the
generalized inverse function of t,. When v = 1, the t-copula is also

called a Cauchy copula.
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Known results: Breymann, Dias and Embrechts (2003) and

Mashal, Naldi and Zeevi (2003) showed that empirical fit of the
t-copula is better than the Gaussian copula. Some recent

applications and generalization of t-copula include: Schloegl and
O’Kane (2005) provided formulas for the portfolio loss distribution

when t-copula is employed; de Melo and Mendes (2009) priced the
options related with retirement funds by using the Gaussian and t
copulas;
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Chan and Kroese (2010) used t-copula to model and estimate the
probability of a large portfolio loss; Manner and Segers (2011)
studied the tails of correlation mixtures of the Gaussian and t

copulas; grouped t-copula were given in Chapter 5 of McNeil, Frey
and Embrechts (2005); Luo and Shevchenko (2010) and Venter et

al. (2007) extended the grouped t-copula; tail dependence for
multivariate t-copula and its monotonicity were studied by Chan
and Li (2008).
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Estimation: In order to fit the t-copula to a random sample

(X1, Y1), -+, (Xn, Ya), one has to estimate the unknown
parameters p and v first.

Pseudo MLE: Since the distribution of (F1(X;), F2(Y:))'s is the
t-copula, we can use maximum likelihood estimation. However, F;

and F, are unknown. Therefore we estimate them by
Fri(x) = n%_l Sy Xiand Fo(y) = ﬁ i1 Y, respectively.
Hence, we can apply the MLE to the pseudo data

(Fn1(Xi), Fn2(Y7))'s, which is called pseudo maximum likelihood
estimate by Genest, Ghoudi and Rivest (1995).

Although, generally speaking, the pseudo MLE is efficient, its
computation becomes a serious issue when applying to t-copulas

especially with a large dimension.
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Two-step estimation procedure: A more practical method to

estimate p is through the Kendall's tau, defined as

11
7 = E(sign((X1—X2)(Y1—Y2))) = 4/0 /0 C(u1, u2) dC(uy, up)—1.

It is known that 7 and p have a simple relationship

p = sin(77/2).

By noting this relationship, Lindskog, McNeil and Schmock (2003)

proposed to first estimate p by

p=sin(w?/2), where ?:ﬁ Z sign((X;—X;)(Yi—Y))),

1<i<j<n
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and then to estimate v by maximizing the pseudo likelihood
function
n
11 c(Far(X0), Faa(Yi): 5, v),
i=1
where ¢(u, v; p,v) = %C(u, v; p,v) is the density of the
t-copula defined in (1). In other words, the estimator © is defined
as a solution to the score equation
n
D 1B vi Fun(X5), Fra( V7)) = 0, )
i=1
where I(p,v;u,v) = % log c(u, ¢; p,v). 7 is called the Kendall's
tau estimator.
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Asymptotic limit: A recent attempt to derive the asymptotic

distribution for the two-step estimator (p,?) is given by Fantazzini
(2010), who employed the techniques for estimating equations.

Unfortunately the derived asymptotic distribution in Fantazzini
(2010) is not correct since the Kendall's tau estimator is a

U-statistic rather than an average of independent observations.
Numeric comparisons for the two estimation procedures are given
in Dakovic and Czado (2011).
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Methodology

Here we first derive the joint asymptotic limit of the two-step

estimator (p, D) as follows.
Theorem 1. As n — oo, we have

Vn{p - p}
= cos(F) 7= 3oy H{ C(Fu(X0), Fa(Y7)) — EC(Fi(X), Fa(Y1))}

—cos(5) 75 27t 2{Fu(Xi) + Fa(Y3) — 1} + 0p(1)
®3)

and
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VAlD - v)
= KM S0 (o, Fa(X0), Fa( YD) + Kon/A(p — p)

+\% > jbl j;)l L(psv; u, vV){I(F1(X;) < u) — u}c(u, v) dudv

+ 2 S0 fo Jo Mpsviu V{I(Fa(Y:) < v) = vie(u, v) dudv}
+0p(1),

(4)
where I,(p,v; u,v) = U%I(p,y; u,v), h(p,viu,v) = 0%/(/), viu,v),
and for a=v,p,

K,=E (%I(p,l/; F1(X1), Fg(Yl))> = /01 /01 %/(p,y; u,v) dC(u,v).
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Using the above theorem, we can easily obtain that

Vitp=p.o-0" 4w (007 (2 %)) )

g12 0’2

where 02,012 and 03 are constants whose values are given in the

proof of Theorem 1.
Question: How to construct confidence intervals/regions

effectively?
Normal Approximation Method: We seek an alternative way,

Empirical Likelihood Method, since the above asymptotic
covariance matrix is too complicated.
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Parametric likelihood ratio test

Observations: X, - -+, X, iid with pdf f(x; g(u)), where g is a

known function, but 4 = E(X1) is unknown.

Question: test Hp : 1 = po against H, @ p # po

PLRT: Let /i denote the maximum likelihood estimate for p. Then
the likelihood ratio is defined as

A =ML f (X5 g(n0)) /M £ (Xis g (1))

The likelihood ratio test is based on the following

Wilks Theorem. Under Hp, —2log A X?(1) as n — o0.
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Empirical likelihood method

When we do not fit a class of parametric family to X;, but still test

Ho : ;o= po vs Ha @ o # po, a similar approach to the parametric
likelihood ratio test was introduced by Owen (1988, 1990), which

is a nonparametric likelihood ratio test and called empirical
likelihood method.
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Define the empirical likelihood ratio function for 11 as

n n n
R(p) = sup{] [(npi) | pi = 0.> pi =1,>_ piXi = pu}.
i1 i1 i1

By Lagrange multiplier technique, we have

pi=n"H1+AT(X; = p)} " and

—2log R(1) =2 " log{1 + AT (X; — )},
i=1

where A = A(1) satisfies

n71i7Xf7H =0
1+ (Xi—p)

i — M

Liang Peng Estimating bivariate t-copulas via Kendall's tau



Methodology

Notes

Wilks Theorem: Under Hp,

W (o) := —2log R(po) LA X2(d) as n— oo,

where y € R9.
Confidence interval/region: The above theorem can be employed

to construct a confidence interval or region for u as

lo={p: W(p) < x50}

Advantages: i) No need to estimate any additional quantities such

as asymptotic variance; ii) the shape of confidence interval/region

is determined by the sample automatically; iii) Bartlett correctable
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Estimating equations

A popular way to formulate the empirical likelihood function is via

estimating equations.
Observations: Xi,---, X, iid with common distribution function F

and there is a g-dimensional parameter 6 associated with F.
Conditions: Let yT denote the transpose of the vector y and

G(x:0) = (g1(x:0), -+ ,gs(x:0))"

denote s(> q) functionally independent functions, which connect
F and 6 through the equations EG(X1;6) = 0.
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Empirical likelihood function:

R(0) = sup{[[(np) : o > 0.3 pi =1,> piG(X;; 6) = 0}.
i=1 i=1 i=1

Wilks Theorem: —2log R(60) > x2(q) as n — oo.
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Profile empirical likelihood method
Suppose we are only interested in a part of . Then like the
parametric profile likelihood ratio test, we have the profile
empirical likelihood method.
Observations: Xi,---, X, iid with common distribution function F
and there is a g-dimensional parameter 6 associated with F. Write
0= (aT,BT)T, where a and j3 are gi-dimensional and
go-dimensional parameters, respectively, and g1 + g2 = g. Now we
are interested in a.
Conditions: Let y7 denote the transpose of the vector y and
G(x:0) = (g1(x:0),-- ,8s(x;0)7
denote s(> q) functionally independent functions, which connect
F and 6 through the equations EG(Xy;6) = 0.
Methodology
Notes
Profile empirical likelihood ratio:
(@) = 2le((@”, BT(a))T) — 2/(8),
where Ig(0) = S0 log{1 + AT G(X;;0)}, A = A\(0) is the solution
of the following equation
1< G(Xi; 0
0= X 1 irepa
n 14+ ATG(X;;0)
G=(a",8™)T minimizes /g(#) with respect to 6, and 3(c)
minimizes I((a”,87)7) with respect to 3 for fixed a.
Wilks Theorem: /() LA x2(q1) as n — oo, where ag denotes the
true value of a.
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Jackknife empirical likelihood method

Empirical likelihood method has difficulties in dealing with

nonlinear functionals.
Example: Covariance. Suppose (X1, Y1), -+, (Xn, Ys) are iid with

covariance o1 = E{(X1 — E(X1))(Y1 — E(Y1))}, and we are
interested in testing Hp : 012 = 0 against H, : 012 # 0p.

Method 1: Define the empirical likelihood function

R(o12) =sup{I]i_s(npi) 1 pi > 0,377 pi =1,

S P X = X p X HY = X P Yt = o)

In this way, the above minimization is too complicated due to no
formula for p/s.
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Method 2: Define the empirical likelihood function

R(o12) = sup{II7_1(np)) - pi > 0,501 pi =1,

S pidXi = n P XY = 0 Y Y = ol

Then —2log R(0g) can not converge in distribution to a

chi-squared distribution since the above procedure fails to catch
the variances contribution made by n=1>>7_; X; and n71 37, Y.

As a matter of fact, the limit is a weighted sum of two
independent chi-squared random variables.
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Method 3: Define the empirical likelihood function as

R(p1, po012) = sup{[ ;= (npi) s pi > 0,357 pi = 1,

Yoy PiXi = 1, Do pi Yi = pa,
i pi(Xi = p)(Yi — p2) = o012}

and the profile empirical likelihood function as

Rp(o12) = max R(p1, pi2, 012).

Wilks theorem: —2log Rp(c0) % x2(1) as n — co.
Computional issues: After introducing the link variable y, the

computation is increased.
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Jackknife empirical likelihood for covariance: Put

n

n n
T= L 0 X (YY)
i=1 j=1

j=1
and

) 1 1 1
bni = =g D AXi— o= D XHY - = DV
il

# #

Then define the jacknife sample as

Zy=n6,—(n—1)6n,

for I =1,---,n, and define the jackknife empirical likelihood
function as

R(o12) = SUP{H("Pi); pi > Ovzpi = LZP;Z,' =012}
i=1 i=1 i=1
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Wilks Theorem: —2log R(o9) A x2(1) as n — oo.

Computation: In R, one can employ the package 'emplik’.

Liang Peng Estimating bivariate t-copulas via Kendall’s tau

Methodology

Notes

Interval estimation for . A direct application of empirical

likelihood method fails to catch the contribution made by the first
step estimation for p. Here we consider the jackknife empirical

likelihood. In order to construct a jackknife sample as in Jing, Yuan
and Zhou (2009), we first define for i = 1,--- ,n p; = sin(w7;/2),

2
= ——<— E Xi — X)(Y; —Y)),
7i (n—1)n—2). , '51g11(( \j 0184 1),
1<j<I<n i i

Frail) = 2 S I0G <00, Fraaly) = 2 3 1Y <),

J#i J#i
and then define the jackknife sample as

Zi(v) =Y 1(p,vi Fa (X)), Fra(Y)) =D _ 1pis vi Fan,i(X)), Frzi(Y7))
j=1 J#i
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Based on this jackknife sample, the jackknife empirical likelihood

function for v is defined as

n n n
Li(v) = sup{H(np;) ip1>0,--+,py >0, ZP;‘ =1, ZP;‘Zr‘(V) =0}
-1 i-1

i=1

By the Lagrange multiplier technique, we have

/1(V) = —2log Ll(V) = 2i |Og{1 + 2)\12,'(1/)},
i=1

where A1 = A\;(v) satisfies

- Zi(v) _
; 1+ )\12;(11) =0

The following theorem shows that Wilks Theorem holds for the

above jackknife empirical likelihood method.
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Theorem 2. As n — oo, li(1p) converges in distribution to a

chi-square limit with one degree of freedom, where 1 denotes the
true value of v.

Based on the above theorem, one can construct a confidence
interval with level « for 1y without estimating the asymptotic

variance as
h(e) = {v: h(¥) < xia),

where x2 , denotes the a-th quantile of a chi-square limit with one
degree of freedom.

Liang Peng Estimating bivariate t-copulas via Kendall’s tau

Methodology

Notes

Interval estimation for (p, ). Since the Kendall's tau estimator is

not a linear functional, one can not apply the empirical likelihood
method directly to construct a confidence region for (p,v). Here

we employ the jackknife empirical likelihood method by defining
the jackknife empirical likelihood function as

La(p,v) =sup{I[i_1(npi) :p1 > 0,-- ,pn 20,371 pi =1,
Yo piZi(v) = 0,300 pi(np — (n—1)p;) = p}-.
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Theorem 3. As n — oo, —2log Ly(po, 119) converges in

distribution to a chi-square limit with two degrees of freedom,
where (po, 7o) denotes the true value of (p,v)7.

Based on the above theorem, one can construct a confidence
region with level a for (pg,19)7 without estimating the asymptotic

variance as

b(a) = {(p,v) : —2log La(p,v) < X3 4},

where 3, denotes the a-th quantile of a chi-square limit with two

degrees of freedom.
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Simulation

We investigate the finite sample behavior of the proposed jackknife

empirical likelihood method for constructing confidence intervals
for v and compare it with the parametric bootstrap method in

terms of coverage probability.
We employ the R packge 'copula’ to draw 1,000 random samples

with size n = 200, 500 from the t-copula with p = 0.1,0.5,0.9 and
v = 3,8. For computing the confidence interval based on normal
approximation, we use parametric bootstrap method to obtain the

critical values by resampling 1,000 samples with size n from the
t-copula with parameters p and ©. The R package 'emplik’ is

employed to compute the coverage probability of the proposed
jackknife empirical likelihood method.
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(n,p,v) JELM NAM JELM NAM
Level 90% Level 90% Level 95% Level 95%

(200,0.1,3) 0.886 0.813 0.935 0.844
(200,0.5,3) 0.849 0.771 0.908 0.802
(200,0.9,3) 0.878 0.826 0.928 0.849
(200,0.1,8) 0.831 0.600 0.909 0.615
(200,0.5,8) 0.815 0.594 0.886 0.611
(200,0.9,8) 0.837 0.664 0.902 0.680
(500,0.1, 3) 0.871 0.825 0.923 0.853
(500,0.5,3) 0.874 0.838 0.933 0.870
(500,0.9,3) 0.876 0.844 0.932 0.869
(500,0.1,8) 0.871 0.728 0.939 0.760
(500,0.5,8) 0.862 0.747 0.920 0.769

00,090 8 Q.89 0) 4 04 9
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Data Analysis

First we fit the bivariate t-copula to the data set on 3283 daily

log-returns of equity for two major Dutch banks, ING and ABN
AMRO Bank, over the period 1991-2003, giving p = 0.682 and

7 = 2.617. The empirical likelihood ratio function /;(v) is plotted
against v below from 1.501 to 3.5 with step 0.001, which shows

that the proposed jackknife empirical likelihood intervals for v are
(2.280, 3.042) for level 0.9 and (2.246,3.129) for level 0.95. The
normal-approximation-based intervals for v are (2.257,2.910) for

level 0.9 and (2.195,2.962) for level 0.95. As we see, the intervals
based on the jackknife empirical likelihood method are slightly

longer and more skewed to the right than those based on the
normal approximation method.
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15 2.0 25 2.0 as

Figure: Equity. The empirical likelihood ratio /(v) is plotted against v
from 1.501 to 3.5 with step 0.001 for the daily log-returns of equity for
two major Dutch banks (ING and ABN AMRO Bank) over the period

1991-2003.
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Second we fit the t copula to the nonzero losses to building and

content in the Danish fire insurance claims. This data set is
available at www.ma.hw.ac.uk/~mcneil/, which comprises 2167

fire losses over the period 1980 to 1990. We find that p = 0.134
and U = 9.474. The proposed jackknife empirical likelihood

intervals for v are (6.830,16.285) and (6.415,17.785) for levels 0.9
and 0.95 respectively, and the normal-approximation-based

intervals for v are (0.978,12.719) and (—2.242,13.070) for levels
0.9 and 0.95 respectively. The above negative value is due to some
large values of the bootstrapped estimators of v. It is clear that

the proposed jackknife empirical likelihood intervals are shorter and
more skewed to the right than the normal approximation based

intervals.
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rato

Figure: Danish fire losses. The empirical likelihood ratio /(v) is plotted
against v from 5.005 to 20 with step 0.005 for the nonzero losses to
building and content in the Danish fire insurance claims.
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Proofs

Proof of Theorem 1. Define
g(x,y) =Esign((x = X))(y - V1)) -7

= 4{C(Fi(x), F2(y)) — EC(F1(X1), F2(V1))}
—2{F1(x) — 3} —2{Fa(y) — 3}

Y(xa, y1, %2, y2) = sign((xa — x2)(y1 — y2)) — g(x1, y1) — g(x2, y2)-

It follows from the Hoeffding decomposition and results in

Hoeffding (1948) that
vn{f -1}

= \% 27:1 g(Xi«, YI) + ,7(2,,7\{51) Zle<j§n ’L/)(X,-’ Y"’)<J'= YJ) (6)
= 250 80X, V) + 0p(1),

which implies (3).
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By the Taylor expansion, we have

0 = oS (5.3 Fn(X0), Faa(Yi))
= 75 Ly o, vi Fn(X0), Fra(( V7))

_._% 2?=1{i)%l(p’ vi Fpa(Xi), Fr2(Yi) (P — p)
+ 2 ST o, v Fa(X0), Fra(Yi))} (2 = v) + 0p(1)
= 7 Xl l(p.vi (X)), Fa(Y7))

+7 iy v Fu(X), Fa(Yi) {F (X5) — Fu(Xi)}

5 Sia b v FL(XG), (YD) {Fra (Y1) = Fa(Y0)}
1 Xl (o v (), R(Y)HA(5 — p)

+3 S, v Fu(X), Ro(Yi) V(o — v) + Op(l)am

which implies (4). More details can be found in Wang, Peng and

Yang (2013).
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The values of Jf,olz and 0'% can be calculated straightforward by
using the Law of Large Numbers, which are

0} = cos?(F)m{8 [} [i{2C3(u,v) — 2(u + v)C(u,v) + uv}
dC(u,v)+ 3 — 72+ 27},

03 = K, 2(K*+Ri+Ro+2R3+2Ra+2Rs + K203 +2K,(Li+ Lo+ L3)),

0%y = —K; 1Ko + L1 + Ly + L3),

where
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1l
K2 = / / I(p,v; u,v)? dC(u, v),
0 Jo

Ry = f;)l fbl ]01 ]61 Lu(p, vi ur, vi)lu(p, vi 2, va) (U1 A u2 — u1u)
dC(ul, Vl)dC(UQ, VQ)7

Ry, = fol fol fol fol L(p,v; ur, vi)l(p, v; ug, va)(vi A va — viva)

dC(Ul, V1)dC(U27 VQ),

Ry = fol fol fol fol lu(p, vi ut, i)l (p, v ua, v2)(C(u1, v2) — u1va)

dC(Ul, vl)dC(uz, VQ),
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Ro=Jo 3 o fd hulp, vi un, vi)(p, v; uz, va)(H(uz < un) — wr)
dC(u1,v1)dC(uz, v2),

Rs = Jo Jo Jo Jo Mp.viun, vi)l(p,v;uo, va)(I(v2 < v1) — va)

dC(u1,v1)dC(uz, v2),

T ot
L= cos(7)7r/0 /0 I(p,v; u,v){4C(u,v) — 2u —2v} dC(u,v),

Ly = cos(%y)m fol fol fol fol lu(p,vi ur, v1){4C(u2, v2) — 2ux — 2vp} x

{I(u2 S U1) — ul} dC(U17 Vl)dC(uz, Vz),

and

L3 = cos(TF)m fol fol fol fol (p,v; ur, vi){4C(u2, v2) — 2up — 2va} X

{I(va < v1) — w1} dC(u1,v1)dC(uz, v2).
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