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CAS Antitrust Notice

 The Casualty Actuarial Society is committed to adhering strictly to the 
letter and spirit of the antitrust laws.  Seminars conducted under the 
auspices of the CAS are designed solely to provide a forum for the 
expression of various points of view on topics described in the 
programs or agendas for such meetings.

 Under no circumstances shall CAS seminars be used as a means for 
competing companies or firms to reach any understanding – expressed 
or implied – that restricts competition or in any way impairs the ability 
of members to exercise independent business judgment regarding 
matters affecting competition.

 It is the responsibility of all seminar participants to be aware of antitrust 
regulations, to prevent any written or verbal discussions that appear to 
violate these laws, and to adhere in every respect to the CAS antitrust 
compliance policy.
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Objectives

 Avoid the need for “tricks” to make models more tractable

 Deal directly with non-linear models

 Establish a common framework for evaluation and study of 
many candidate models, including many deterministic ones 
currently in use

 Derive estimates of model parameters as well as of uncertainty 
in the model parameters

 Selected solution – Maximum Likelihood Estimators (MLEs)

 Many convenient properties of MLEs including

– Asymptotically unbiased

– Asymptotically efficient

– Asymptotically Normal (Gaussian)

4

Framework

 Work with standard development triangles, can be paid or 
incurred

 Consider incremental amounts, removing induced correlation 
between amounts at one age and the next

 So as to remove effects of volume change from one accident 
year to the next focus on average (rather than aggregate) costs, 
either severity or pure premium

 Assume Aij denoting the incremental average for accident year i
and development year j is a random variable

 Assume further that the various incremental amounts are 
independent across accident and development years
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Overall Model

 Assume the expected value of the incremental averages can be 
expressed as functions of a parameter (possibly vector) θ

 We will also assume that the variance of each Aij is proportional 
to a power of its mean.  Since each Aij represents an average 
we also adjust the assumed variance to reflect different 
exposure (claim) levels by accident year, denoted wi so we 
assume
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Overall Model - Continued

 Commonly used development models incorporate this assumed 
variance structure (omitting the w values)
– Constant variance if p = 0

– Over-Dispersed Poisson if p = 0.5

 We allow p to be a parameter to be estimated using the data

 Since the Aij are averages of a number of exposure units, the 
law of large numbers implies their distribution is asymptotically 
Gaussian

 Thus we assume the Aij are Gaussian with mean and variance 
given in the prior slide
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Parameter Estimation

 Under the previous assumptions the negative log likelihood 
function of the observations given a set of parameters is given 
by
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 Except for very simple loss models finding the minimum of this 
expression not possible

 Numerical methods available in many packages (R, MATLAB, 
etc.) can handle the job
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Parameter Uncertainty

 MLE theory gives a way to estimate uncertainty in the 
parameters estimated using MLE, given the data and the 
underlying model

 For this we need the Fisher Information Matrix

 The Fisher Information Matrix is the Hessian with respect to the 
parameters of the negative log likelihood function on the 
previous slide

 The Hessian of a function is the matrix whose ijth element is the 
second derivative of that function with respect to the ith variable 
then with respect to the jth variable

 The variance-covariance matrix of the parameters is the inverse 
of the Fisher Information Matrix evaluated at the MLE
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Distribution of Forecasts, Fixed Parameters

 Since we assume incremental averages are independent once 
we have the parameter estimates we have estimate of the 
distribution of future outcomes given the parameters

 This is the estimate for the average future forecast payment per 
unit of exposure, multiplying by exposures

 This is not a distribution of forecasts under the model since 
there is no uncertainty in parameter choice
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Distribution of Forecasts

 If we assume sample size sufficient for the MLE to have a 
distribution that is close to Gaussian then that (multivariate) 
Gaussian has 

– Mean equal to the MLE

– Variance-Covariance Matrix equal to the inverse of the Fisher 
Information Matrix

 With the formula on the prior slide we can estimate the 
distribution of forecasts from the model given the data

 Generally a closed form solution is either difficult or impossible, 
but the distribution of forecasts can be simulated

 MCMC is one way, another is a bit more straight forward

– First randomly pick a parameter vector from the Gaussian

– Then randomly calculate reserves from distribution on prior slide
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Observations to This Point

 Discussion so far does not specify a model for the incremental 
averages

 In order for the MLE theorem to work, you only need mild 
regularity conditions, most usual reserve methods are

 Minimization of the negative log likelihood function can be done 
numerically, either by bespoke code, or with tools found in 
available packages such as R or MATLAB

 Usually the optimization routines are more efficient if gradient 
and Hessian are specified, Hessian also needed for Fisher 
Information

 All these derivatives can be worked out in terms of derivatives of 
the g functions assuming only they are twice differentiable
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Parameterization – Cape Cod

 Generally the Bornhuetter-Furgeson method has Aij = αiβj

 Overspecifies the model

 We use the following (similar to England & Verall)
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 θ1 is the upper left corner incremental

 θi for i = 2, …, n is change in incremental from accident year i-1 to age i

 θi for i = n+1, …, m+n-1is change from age i – n to accident year i – n +1
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Parameterization – Berquist-Sherman

 Cape Cod has n + m -1 parameters

 Berquist & Sherman recognized that incremental averages may 
be related to each other from one accident year to the next by 
trend

 They developed a model that replaces accident year level 
factors by a simple trend 

  1ni
ij jg e  θ

 θj  for j = 1, …, n is the accident year 0 average incremental cost 
at age j

 θn+1  is the natural log of the annual trend in the data
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Parameterization – Wright

 Number of Cape Cod parameters can also be reduced in the 
development direction

 Wright used a Hoerl curve to accomplish this

 We use a similar approach 

 θi for i = 1, …, m is the accident year level

 Remaining three parameters determine shape of incremental 
averages as an accident year ages

 Flexible enough to be either monotonic or have a mode

            2
1 2 3exp lnij i m m mg j j jθ
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Parameterization – Hoerl Surface

 The Wright model still has m + 3 parameters

 Why not reduce the parameters still further assuming (as in 
Berquist – Sherman) an expected annual accident year trend?

 This gives

 θ5 represents the log of the annual trend

 Both this and the Wright model require positive expected  
incrementals (no such constraint in Cape Cod or Berquist-
Sherman)

 Only 5 parameters

            2
1 2 3 4 5exp lnijg j j j iθ
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Parameterization – Chain Ladder

 Basic requirements for expected values

– Ratio of cumulative averages from one age to the next same for all 
accident years

– The expected amount to date (on the diagonal) is observed amount 
to date 

 In our parameterization we label the amount to date for accident 
year i as Pi and the age of accident year i to date as ni

 Also in our parameterization we can think of the parameters θj

as the portion of the total amounts emerging at age j

 The incremental percentages can be negative or larger than 1

 We force the percentage for the last age to be the complement 
of the remainder resulting in n – 1 parameters.
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Parameterization – Chain Ladder (Continued)
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Example Commercial Auto Liab. Paid Data 

Cumulative Average Paid Loss & Defense & Cost Containment Expenses per Estimated Ultimate Claim

Accident Months of Development Count

Year 12 24 36 48 60 72 84 96 108 120 Forecast

2001 670 1,480 1,939 2,466 2,838 3,004 3,055 3,133 3,141 3,160 39,161

2002 768 1,593 2,464 3,020 3,375 3,554 3,602 3,627 3,646 38,672

2003 741 1,616 2,346 2,911 3,202 3,418 3,507 3,529 41,801

2004 862 1,755 2,535 3,271 3,740 4,003 4,125 42,263

2005 841 1,859 2,805 3,445 3,950 4,186 41,481

2006 848 2,053 3,076 3,861 4,352 40,214

2007 902 1,928 3,004 3,881 43,599

2008 935 2,104 3,182 42,118

2009 759 1,585 43,479

2010 723 49,492
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Results

Model Expected Reserves (000,000)

Cape Cod $391

Berquist-Sherman 480

Wright 388

Hoerl Surface 474

Chain Ladder 393

 Some difference in expected reserves

 Is the difference random?

 Is the difference significant?

 How do you know?

 Stochastic models help answer these questions

20

Process vs. Parameter Uncertainty

Model
Total Reserve Process 

Std. Dev. (000)
Total Reserve Total 

Std. Dev. (000)

Cape Cod $  9,435 $20,101

Berquist-Sherman 15,997 29,405

Wright 10,029 20,375

Hoerl Surface 16,115 29,454

Chain Ladder 9,447 15,557
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Reserve Forecasts by Model

300 350 400 450 500 550 600

Millions

Aggregate Reserves

CapeCod Berquist Wright Hoerl Chain
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What Happened?

Standardized Residuals

Berquist Cape Cod

Hoerl Chain Ladder
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Some Observations

 The data imply that the variance for payments in a cell are 
roughly proportional to the mean to the 0.85 power for both 
Cape Cod and Chain Ladder, roughly to the mean for the Hoerl
model and to the mean to the 1.30 power for the Berquist
model.  

 Total standard deviation well above process, often more than 
double, meaning parameter uncertainty is significant

 Comparison of forecasts among models underlines the 
importance of model uncertainty

 Still more work to be done to get a handle on model uncertainty 
– possibly greater than the other two sources
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More Observations

 We chose a relatively simple models for the expected value

 Nothing in this approach makes special use of the structure of 
the models

 Models do not need to be linear nor do they need to be 
transformed to linear by a function with particular properties

 Variance structure is selected to parallel stochastic chain ladder 
approaches (overdispersed Poisson, etc.) and allow the data to 
select the power

 The general approach is also applicable to a wide range of 
models

 This allows us to consider a richer collection of models than 
simply those that are linear or linearizable
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Some Cautions

 MODEL UNCERATINTY STILL NEEDS TO BE CONSIDERED
thus distributions are distributions of outcomes under a specific 
models and must not be confused with the actual distribution of 
outcomes for the loss process

 An evolutionary Bayesian approach can help address model 
uncertainty

– Apply a collection of models and judgmentally weight (a subjective 
prior)

– Observe results for next year and reweight using Bayes Theorem

 We are using asymptotic properties, no guarantee we are far 
enough in the limit to assure these are close enough

 Actuarial “experiments” not repeatable so frequentist approach 
(MLE) may not be appropriate
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Questions?
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Thank You


