WHAT IS NEEDED?

CAT MODEL INPUT AND OUTPUT

<table>
<thead>
<tr>
<th>Input (from user)</th>
<th>Output (key metrics for business decisions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Average Annual Loss (AAL): the amount of modeled premium an insurer needs to collect in order to cover the average peril loss over time</td>
</tr>
<tr>
<td>Physical characteristics of insured buildings</td>
<td></td>
</tr>
<tr>
<td>– Occupancy</td>
<td>– Combination of event frequency and mean event loss</td>
</tr>
<tr>
<td>– Year Built</td>
<td></td>
</tr>
<tr>
<td>– Construction</td>
<td></td>
</tr>
<tr>
<td>– Number of Stories</td>
<td></td>
</tr>
<tr>
<td>– Floor Area</td>
<td></td>
</tr>
</tbody>
</table>
| – Other characteristics… | **Exceedance Probability (EP)** curve: the probability of exceeding a loss level in a given year. Most often referred to as ‘return period’.
| Coverages | Two types of EP curve: |
| – Structures, Contents, Additional | – Occurrence Exceedance Probability (OEP) |
| – Living/Loss of Use | |
| – Limits, Values, Deductibles | – Aggregate Exceedance Probability (AEP) |
| – Reinsurance | |
Two types of modeling challenges:

1. **Data Challenges:**
 - Incomplete observational data record
 - Need for more claims data
 - Changing claims practices

2. **Technology Challenges:**
 - Trade-off between meaningful results and a model that can be used
Industry losses leading up to the 2008 update were lower than the long-term average

2008 – 2012 experienced over $70 BN in loss to the industry

These additional years provide additional information that can be used to better calibrate SCS models
NEW TOOLS FOR CAT MODELING

New Data
- $70 BN in Industry Loss Data
- $5 BN in Location Level Claims
- New Historical Tail Events

New Methods
- Improved representation of tail risk
- Leverage V11 wind research

New Insights
- Trends in severity and claims inflation
- Line of Business differentiation
• Example 1: The Southeast US had high risk and was primed to experience a large outbreak.
Example 2: Frequency not as important as location
TORNADOES PER STATE
2008

Storm Obs: 36k+

PCS Loss: $10.5 BN
TORNADOES
PER STATE
2011

Storm Obs: 30k

PCS Loss: $26.2 BN
WHAT WE’VE LEARNED

- Some states experienced unprecedented SCS events since 2008
 - 2010 hailstorm in AZ
 - 2011 tornadoes in AL, MS and MO

Example 3: Large, damaging events less rare than we understood
HAIL HAZARD ASSESSMENT

- Storm Prediction Center dataset does not have the spatial detail to define local hazard severity
- E.g., map shows the $3B Phoenix hailstorm in October 2010
 - 4 or 5 point observations in SPC archive
- Radar data from Weather Decision Technology, Inc also shown on map
- One km spatial resolution, for two hailstone size categories
 - H1 (0.75” to 2”) and H2 (> 2”)
- **New radar data enables more accurate estimates of event severity**

October 5, 2010 hailstorm
Phoenix, Arizona

- Storm Prediction Center Hail Reports
- WDT radar-derived footprint (hail size = more than 2 inches)
- WDT radar-derived footprint (hail size = 0.75 to 2 inches)
SPC lists the length and width** for all observed tornadoes

Assume tornado is ellipse and compute total area

What is the distribution of F scale in the whole footprint?

Combine with total tornado area to obtain the area of tornado at the six different severities

Do this for all tornadoes in SPC archives, 1973-2012

The methodology and new events since 2008 form a new target for SCS-Update, resulting in increases for some regions and decreases for others

** - SPC measured widths are inhomogeneous due to change in observing practice
- Observed widths were modified
Vulnerability updates validated by
1) Joplin 2011 tornado reports
2) Tuscaloosa 2011 tornado damage reports
3) Moore, OK 2013 tornado recon
SCOPE OF US + CANADA SCS MODEL UPDATE

- Recalibration of high-frequency event set
- Refine and add several vulnerability functions for key LOBs
- Improve tail risk representation in hazard event set
- Update secondary modifier credits/penalties to match NAHU v11 framework
- Re-calibrate hazard and vulnerability components for U.S. and Canada SCS
- Addition of new vulnerability regions for both the U.S. and Canada

©2013 Risk Management Solutions, Inc.
IMPLICATIONS

Improved Tail Risk
Recent large events have given us more data points
Better reflection of possibility of major SCS catastrophe
Improves model usage for reinsurers and large single location risks

Enhanced Risk Diff.
Given additional data, differentiation is easier to quantify between varying occupancies, years of construction, floor area, and construction
Improves model for users who capture detailed location information

Better Match to History
Comparisons of model to incurred ratio for industry and individual client portfolios in much better agreement
Leads to more meaningful results for all users