Pricing in a Competitive Insurance
Market Driven by Fractional Noise

Prof. Alexandros A. Zimbidis
Athens University
of Economics and Business




Pricing Process — No market concerns

Traditional premium calculation

constant safety loading

Expected Claims Safety loading

Dynamic premium calculation
Lundberg(1903) - Cramer(1930) - Borch (1967)

Variable (& controllable) safety loading

F(z):F(O)+_(i:(l+€(s))pds7S(t)

Pricing process — Competitive Market

Market premium calculation

Taylor (1986) and Emms, Haberman & Savoulli (2007)
Variable (& controllable) safety loading

dE(t) =0 ()F (t)dt+[p(t)—c(t)]dV (1)

The level of the safety loading and consequently
the level of premium determines the volume of business

The payoff matrix of a
competitive insurance market
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Model Equations for the Insurance Company

dF () = S()F (t)dt + [ p(t) — c()]dV (1)

V(t): is the volume of business at time t (input variable)

p(t): is the premium rate of the company at time t (controlled variable)
F(t): is the reserve value at time t (state variable) , F(0)=F,

5(t): is the force of interest earned by the fund at time t

c(t): is the total cost per policy (claims plus expenses and profit margin) at time t.

minE[g (p(1). F(T)]=minE[F(T)~F,]’

Modelling the Volume of Business

V)= f(p),p(0),y (1))

p(1) is the premium rate of the company,
(D is the market's average premium rate and

v (t) is a vector of different parameters
(e.g., money spent in the advertisement campaign of the company)

lim f(p(2), p(1),y (1)) =0

p(t)—>
lim f(p(0), p(2),y (1)) = E

p(1)—>0

E corresponds to the total market

Modelling the market’'s average premium rate

dp(t) = pudt + cdwW " (t)

u is the average claim rate (drift),
o is the volatility of the claim process

w* (r) is a fractional Brownian motion
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Fractional Brownian Motion
Basic Theory - (1)

Founders Formal Description

Kolmogorov (1940) w o= {W H();t20 } , H €(0.5,1)
Theoretical Derivation

Pr|w"(0)=0]|=1
Hurst (1951) |: () :|
Nile River yearly water flows

E[W"()]=0
Mandelbrot & Van Ness (1968) " u It »u o -
Physical Derivation E[W (s)-w (t)]zz[s + 2 =5 —1| }
Jor any t,s

Fractional Brownian Motion
Basic Theory - (2)

Gaussian process - self-similar - stationary increments
exhibiting long-range dependency

Pictures

Fractional Brownian Motion
Basic Theory - (3)

Estimation of the Hurst exponent

Given the data of a time series, the Hurst exponent may be regarded
as a measure of smoothness and is defined as

 _In(R/S)
In(7)
R is the respective range,
S s the standard deviation and
T is the duration of the sample data.

Regarding the procedure for the estimation of the Hurst exponent,
see the algorithm described in Zimbidis (2011)




Fractional Brownian Motion
Evidence

Greek motor insurance market

m A quite strange example within the European area

m Exhibits a low premium rate for MTPL (Motor Third-Party Liability),
while the road deaths rates are among the highest within Europe.

m The tariff system for MTPL has been controlled by the government up
to the end of 1996.

m Investigation period 1998-2006. The Hurst index is similar for each
line of business, and always greater than the critical value 0.5 and near
0.6, supporting the evidence for long-range dependency

(see Zimbidis (2011))
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Stochastic Optimal Control

T A R (e = T
minE[F(T)-F,]’
p(1)
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dF (1) = {5(Z)F(t) +uE [1 - ﬂﬂ di +cE (1 - ﬂ)dW (1)
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Limiting Behavior of the Solution

IF THEN
a)| F(t) > » p(t) > 0
b)| F()-> F, p(t) > c(t)
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Calculation of the Safety Loading

H=0.5 Solvency Ratio = F() / F(0)
60% | 80% | 100% 120% | 140%
t
1-19 67% | 25% | 0% | -17% | -29%
H=0.6 Solvency Ratio = F() / F(0)
60% | 80% | 100% | 120% | 140%
t
1 32% 14% 0% -11% -20%
2 30% 13% 0% -10% -19%
3 28% 12% 0% -10% -18%
4 28% 12% 0% -10% -18%
5 27% 12% 0% -10% -18%
6 27% 12% 0% -10% -17%
7 26% 12% 0% -9% -17%
8 26% 12% 0% -9% -17%
9 26% 12% 0% -9% -17%
10 26% 12% 0% -9% -17%
11 26% 12% 0% -9% -17%
12 26% 12% 0% -9% -17%
13 26% 12% 0% -9% -17%
14 27% 12% 0% -10% -17%
15 27% 12% 0% -10% -18%
16 28% 12% 0% -10% -18%
17 28% 12% 0% -10% -18%
18 30% 13% 0% -10% -19%
19 32% 14% 0% -11% -20%
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Time Development of the Safety Loading
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Dashed lines corresponds to H=0.5 while Standard lines corresponds to H=0.6
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Final Remarks

m empirical evidence found within the data of the Greek motor insurance market

m fractional Brownian motion

as the modeling tool for the driving force of the market’s behavior

m the optimal premium control strategy differs considerably from the straight line

when there is some kind of long-range dependency,

while it remains time invariant when the dependency does not exist .
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