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Pricing Process – No market concerns

Traditional premium calculation

constant safety loading

Dynamic premium calculation

Lundberg(1903) - Cramer(1930) - Borch (1967) 

Variable (& controllable) safety loading
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Expected Claims Safety loading
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Pricing process – Competitive Market

Market premium calculation

Taylor (1986) and Emms, Haberman & Savoulli (2007)

Variable (& controllable) safety loading 

plus Market concerns

( ) ( ) ( ) [ ( ) ( )] ( )dF t t F t d t p t c t dV t  

The level of the safety loading and consequently 
the level of premium determines the volume of business
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The payoff matrix of a 
competitive insurance market 
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Model Equations for the Insurance Company

( ) ( ) ( ) [ ( ) ( )] ( )dF t t F t dt p t c t dV t  
,

V(t):   is the volume of business at time t (input variable)

p(t):   is the premium rate of the company at time t (controlled variable)

F(t):   is the reserve value at time t (state variable)   , F(0)=F0

δ(t):   is the force of interest earned by the fund at time t

c(t):   is the total cost per policy (claims plus expenses and profit margin) at time t.

  2
0min ( ( ) , ( ) ) min [ ( ) ]

p(t) p(t)
g p t F T F T FΕ Ε 
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Modelling the Volume of Business

( ) ( ( ), ( ), ( ))V t f p t p t t 

is the premium rate of the company,  

is the  market’s average premium rate and 

is a vector of different parameters 
(e.g., money spent in the advertisement campaign of the company)

( )p t

( )p t

( )t

( )
lim ( ( ), ( ), ( )) 0

p t
f p t p t t




( ) 0
lim ( ( ), ( ), ( ))

p t
f p t p t t E




E corresponds to the total market
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Modelling the market’s average premium rate

μ is the average claim rate (drift),  

σ is the volatility of the claim process 

is a fractional Brownian motion ( )W tH

( ) ( )dp t dt dW t   H
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Fractional Brownian Motion
Basic Theory  - (1)

 ( ) ; 0 , (0 .5,1)W W t t  H H H

( ) 0W tΕ    
H

Founders

Kolmogorov (1940)
Theoretical Derivation

Hurst (1951)
Nile River yearly water flows

Mandelbrot & Van Ness (1968)
Physical Derivation

2 2 21
( ) ( )

2
W s W t s t s tΕ           

H H H H H

Formal Description

Pr (0) 0 1W   
H

for any t,s
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Fractional Brownian Motion
Basic  Theory  - (2)

Pictures

Gaussian process - self-similar  - stationary increments  
exhibiting long-range dependency
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Fractional Brownian Motion
Basic Theory  - (3)

Estimation of the Hurst exponent

Given the data of a time series, the Hurst exponent  may be regarded 
as a measure of smoothness and is defined as

R is the respective range, 

S is the standard deviation and 

T is the duration of the sample data. 

Regarding the procedure for the estimation of the Hurst exponent, 
see the algorithm described in Zimbidis (2011)

ln( / )

ln( )

R S

T
H
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Fractional Brownian Motion
Evidence

Greek motor insurance market

■ A quite strange example within the European area

■ Exhibits a low premium rate for MTPL (Motor Third-Party Liability), 
while the road deaths rates are among the highest within Europe. 

■ The tariff system for MTPL has been controlled by the government up 
to the end of 1996. 

■ Investigation period 1998-2006. The Hurst index is similar for each 
line of business, and always greater than the critical value 0.5 and near 
0.6, supporting the evidence for long-range dependency

(see Zimbidis (2011))
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Stochastic Optimal Control
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Limiting Behavior of the Solution
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Calculation of the Safety Loading
Η=0.5 Solvency Ratio = F(t) / F(0) 

 60% 80% 100% 120% 140% 

t      
  1 -19 67% 25% 0% -17% -29% 

      
Η=0.6 Solvency Ratio = F(t) / F(0) 

 60% 80% 100% 120% 140% 

t      
1 32% 14% 0% -11% -20% 
2 30% 13% 0% -10% -19% 
3 28% 12% 0% -10% -18% 
4 28% 12% 0% -10% -18% 
5 27% 12% 0% -10% -18% 
6 27% 12% 0% -10% -17% 
7 26% 12% 0% -9% -17% 
8 26% 12% 0% -9% -17% 
9 26% 12% 0% -9% -17% 

10 26% 12% 0% -9% -17% 
11 26% 12% 0% -9% -17% 
12 26% 12% 0% -9% -17% 
13 26% 12% 0% -9% -17% 
14 27% 12% 0% -10% -17% 
15 27% 12% 0% -10% -18% 
16 28% 12% 0% -10% -18% 
17 28% 12% 0% -10% -18% 
18 30% 13% 0% -10% -19% 
19 32% 14% 0% -11% -20% 
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Time Development of the Safety Loading

Dashed lines corresponds to H=0.5 while Standard lines corresponds to H=0.6 
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Final Remarks

■ empirical evidence found within the data of the Greek motor insurance market 

■ fractional Brownian motion 
as the modeling tool for the driving force of the market’s behavior

■ the optimal premium control strategy differs considerably from the straight line 
when there is some kind of long-range dependency, 
while it remains time invariant when the dependency does not exist .
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