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Highlights:

e Bayesian methodology and actuarial science
e Case study in loss reserving

* Questions
* Appendix: Bayesian analysis in Excel
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Bayesian methodology and actuarial science
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Bayesian methodology

e Fundamental question is
Given data and a specified model, what is the distribution of the parameters?

e With the posterior distribution of the parameters, the distribution of any
quantities of interest can be obtained

e The key is the Bayes' theorem:

Posterior distribution is proportional to data distribution * prior distribution

O Prior
O Posterior
O Likelihood{data)
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Application to the actuarial field

e Most of you are Bayesian!

— Bornhuetter-Ferguson type reserving to regulate data or account for
information not in data with prior knowledge of the average loss ratio

— Credibility. Bihlmann and Gisler (2005) said

“Credibility theory belongs mathematically to the area of Bayesian
statistics [and it] is motivated by questions arising in insurance
practice.”

e So, when you are talking about these, you are thinking in a Bayesian world

e But...... Few of you are doing Bayesian analysis!

Now, there is an opportunity to be a real Bayesian!
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More on credibility

¢ Credibility theory refers to

“any procedure that uses information (‘borrows strength’) from samples from different, but
related, populations.” — Klugman (1987)

e We should not retain the word just for the actuarial credibility formulas
® These formulas are only a subset of all credibility methods
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More on credibility

e We should recall that Bayesian analysis is where actuarial credibility theory started

Given a group of policyholders with some common risk factor and past claims experience,
what is the Bayes’ premium to be charged for each policyholder?

[ Bayes’ Premium }

Bayesian Analysis Credibility to
y y borrow information

| |
[ Bulmann formulas } [ ...... ]

¢ These formulas are only linear approximations to overcome computational difficulties:
— No closed form except for some simple models and distributions

— Hard to estimate the population parameters
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Credibility example

e Now, there is no reason to linearly approximate Bayesian methods as advances in
statistical computation in the past several decades have enabled more complex and

realistic models to be constructed and estimated

* Consider the following example in Workers’ Comp (see Scollnik 2001):

Group 1 Group 2 Group 3
Year
Payroll | # Claims | Payroll # Claims | Payroll # Claims
1 280 9 260 6
2 320 7 275 4 145 8
3 265 6 240 2 120
4 340 13 265 8 105 4

e Question: What's the expected count for year 5, given the observed claim history?

* Let's do the Bayesian analysis and then compare it with other estimates
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Visualization of the hierarchies

¢ Intuitively, we assume claim count to be a
Poisson distribution

#claims, ~ Pois(exposure, x6,)

* Credibility view assumes that each group has a
different claim rate per exposure 6,, but each 6,
arises from the same distribution, say

logd, ~ N(logé,,07)

e If 6, is estimated using all the data, so will each
g,.. Thus, the estimation of one group will
borrow information from other groups, and will
be pooled toward the overall mean

¢ Assign non-informative (flat) priors so that o
and 6, are estimated from the data, e.g.

o ~U(0,100); 6, ~ N(0,100%)
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Results of different estimations
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Visualization of posterior distribution

Distribution for Group 1: Distribution for Group 1:
Hierarchical structure, non—-informative prior Informative prior with mean 0.04, small variance
O Prior O Prior
O Posterior O Posterior
O Likelihood(data) O Likelihood(data)
Frequency parameter Frequency parameter
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Case study in loss reserving
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Importance of loss reserving
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Percentage %
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Cause of P/C impairments

Reason
. Deficient loss reserve

. Rapid growth

. Impairment of an affiliate

. Catastrophe losses

. Investment problems/overstated assets
. Significant change in business
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Challenges

e Challenges in current loss reserving practices:

Most stochastic models need to be supplemented by a tail factor, but the
corresponding uncertainty is hard to be accounted for

Inference at an arbitrary point is hard to obtain, e.g., 3 months or 9 months
Too many parameters! Parsimony is the basic principle of statistics
Treat accident year, development lag, or both independently
Focus on one triangle, lack a method to blend industry data
Usually rely on post-model selection using judgment:
* Input of point estimate is almost meaningless, but large leverage

e Extra uncertainty is not accounted for
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Benefits of the Bayesian model to be built

e Allows input of external information and expert opinion

e Blending of information across accident years and across companies

e Extrapolates development beyond the range of observed data

* Estimates at any time point can be made

e Uncertainty of extrapolation is directly included

e Full distribution is available, not just standard error

e Prediction of a new accident year can be achieved

® Minimizes the risk of underestimating the uncertainty in traditional models

e Estimation of company-level and accident-year-level variations

Focus On

Performance 15



Steps in the Bayesian analysis

e Steps in a Bayesian analysis
— Setting up the probability model
* Specify the full distribution of data and the priors

¢ Prior distribution could be either informative or non-informative, but need to result
in a proper joint density

— Computation and inference

e Usually need to use sampling method to simulate values from the posterior
distribution

— Model checking
* Residual plot
* Out-of-Sample validation

* Sensitivity analysis of prior distribution
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Visualization of data

e Workers’ Comp Schedule P data (1988-1997) from 10 large companies

e Use only 9 years’ data, put the 10t year as hold-out validation set
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Probability model

We use the Log-Normal distribution to reflect the skewness and ensure that
cumulative losses are positive

We use a nonlinear mean structure with the log-logistic growth curve: t*/(t«+6~)

Expected cumulative loss = premium * expected loss ratio * expected emergence

We use an auto-correlated process along the development for forecasting

We build a multi-level structure to allow the expected ultimate loss ratios to vary by
accident year and company:

— In one company, loss ratios from different years follow the same distribution with
a mean of company-level loss ratio

— Different company-level average loss ratios follow the same distribution with a
mean of the industry-level loss ratio

Growth curve is assumed to be the same within one company, but vary across
companies, arising from the same industry average growth curve

Assign non-informative priors to complete model specification
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Visualization of the model
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Computation and model estimation

* Such a specification does not result in a closed-form posterior distribution
* Must resort to sampling method to simulate the distribution
¢ We use Markov Chain Monte Carlo algorithms
— Developed in the 50s, but became popular in early 90s
— The software WinBUGS implements the MCMC method
— Always need to check the convergence of the MCMC algorithm
* Trajectory plot
* Density plot

e Autocorrelation plot

A Focus On

A= Performance 20



Checking convergence of the Markov chain
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Joint distribution of growth parameters

Density plot of the growth parameters
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Estimation of loss ratios

e Industry average loss ratio is 0.693 [0.644, 0.748]
* Variations across company is about twice as large as those across accident years

Comp #1 Comp #2 Comp #4 Comp #5 Comp #6

Comp #7 Comp #8 Comp #9 Comp #10
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Loss reserve estimation results

e Autocorrelation is about 0.479 [0.445, 0.511]
* Industrial average emergence percentage at 108 months is about 93.5%

* Bayesian reserves projected to ultimate are greater than the GLM estimates
projected to 108 months, by a factor about 1.4.

Q Estimate at ultimate Estimate at the end of the 9th year
§ Bayesian Bayesian GLM-ODP
= Reserve | Pred Err | 50% Interval Reserve | Pred Err | Reserve | Pred Err
1 260.98 46.84 (230.80,292.54) 170.33 25.98 155.99 10.90
2 173.13 22.00 (159.37,188.60) 136.20 15.13 139.63 7.11
3 216.19 13.95 (206.70,224.83) 151.82 9.01 130.71 4.53
4 81.95 7.39 (77.17,87.14) 63.28 4.80 54.69 3.46
5 44.60 6.69 (40.33,49.21) 37.95 5.14 33.56 2.12
6 48.86 5.27 (45.48,52.41) 38.31 3.97 37.00 2.05
7 34.45 2.19 (33.03,35.90) 26.21 1.49 25.11 0.91
8 22.91 2.06 (21.62,24.32) 16.46 1.37 16.83 0.72
9 30.66 5.62 (27.11,34.42) 22.58 3.22 18.39 1.52
Focus On 10 | 19.88 1.35 (18.94,20.80) 15.47 0.91 17.71 0.68
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Residual Plot
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Out-of-Sample test

— Note that this is the cash flow of the coming calendar year
* Policies written in the past

* Policies to be written in the coming year (need an estimated premium)

e The coverage rates of the 50% and 95% intervals in the two validation sets are

We use only 9 years of data to train the model, and validate on the 10t year

For 4 companies, we also have observed data for the bottom right part

50% Interval

95% Interval

Set 1

57%

95%

Set 2

40%

81%

expectation
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Sensitivity analysis
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e Change the prior distribution of the industry-level loss ratio to more

realistic distributions

e 6 scenarios: Gamma distribution with mean 0.5, 0.7 and 0.9, variance 0.1

and 0.2, respectively
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Posterior estimation of loss reserves by company
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Discussion of the model
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* The model used in this analysis provides solutions to many existing challenges

* The model can be further improved:
— Inflation can be readily included with an appropriate model
— Prior information can be incorporated on the accident-year or company level
— Build in more hierarchies: states, lines of business, etc...

— Include triangles that have more loss history to stabilize extrapolation

* For future research:
— How to pick the form of the nonlinear pattern?

— Include multiple lines of business with copula
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Summary

Introduced Bayesian hierarchical model as a full probability model that allows
pooling of information and inputs of expert opinion

lllustrated application of the Bayesian model in insurance with a case study of
forecasting loss payments in loss reserving using data from multiple companies

The application of Bayesian model in insurance is intuitive and promising. | hope
more people will start exploiting it and applying it to their work.

You may download this presentation, the paper and code from my website:

http://www.actuaryzhang.com/publication/publication.html ;

Or contact me at: Yanwei.Zhang@cna.com
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Appendix
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WinBUGS

BUGS (Bayesian inference Using Gibbs Sampling ) was developed by the MRC Biostatistics
Unit, and it has a number of versions. WinBUGS is one of them.

We can work directly in WinBUGS, but better to submit batch run from other software
— R: package R2WinBUGS
— SAS: macro %WINBUGSIO
— Excel: add-in BugsXLA

R is most handy when working with WinBUGS, but we will focus on Excel here

The excel add-in BugsXLA is developed by Phil Woodward, and provides a great user
interface to work with WinBUGS

It allows the specification of typical Bayesian hierarchical models, but enhancement is needed
to fit more complicated and customized models

| will illustrate this using the simple Workers’ Comp Frequency model
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BugsXLA
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* Download and install WinBUGS at http://www.mrc-bsu.cam.ac.uk/bugs/
* Download and install the Excel add-in BugsXLA at http://www.axrf86.dsl.pipex.com/

e Put the data into long format

Payroll " Claims
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BugsXLA
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Specify Poisson Distribution

for the response variable “Claims”

e Want to use identity link, but the
only option is “log”

e But for this simple example, we can

just re-parameterize the model

e Put “Payroll” as offset

* Put “Group” as random effect

* We are done specifying the model.
Now, click “MCMC Options” to

customize simulations
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BugsXLA

e Burn-in: number of simulations to discard | WinBUGS MCMC & Output Options X
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BugsXLA

o After clicking “OK" in the “Bayesian analysis” dialog,
a "Prior Distribution” dialog pops up

e Change the distribution here so that the group
effect is Normally distributed, with a large variance,
say, the standard deviation is uniform on (0,100)

e Click “Run WinBUGS"

e Then,

WARMING: Vidait until WinBUGS has quit before proceading.
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BugsXLA

e Simulation results are imported
— Estimation summary
— Model checks
— Simulated outcomes
e Calculate the mean for each group

¢ Plot the result
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