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My Nomination for Honorary Actuary
• “There are known knowns. These are things 

we know that we know. There are known 
unknowns. That is to say, there are things that 
we now know we don’t know. But there are also 
unknown unknowns. These are things we do 
not know we don’t know.” – D. Rumsfeld, 
February 12, 2002

• This talk deals with “known unknowns” and 
how our knowledge is influenced by data.

• Unknown Unknowns – Buy “sleep insurance.”



You have two models, Blue and Green.
You are uncertain which one applies.
How do you reflect this uncertainty?



Take a mixture of the two
Red = 0.75 × Blue + 0.25 × Green



Take a mixture of the two
Red = 0.50 × Blue + 0.50 × Green



Take a mixture of the two
Red = 0.25 × Blue + 0.75 × Green



Identify Distributions

• Blue = Lognormal?
• Green = Gamma?
• Does it matter?
• Blue ~ Lognormal with μ = 7.5 and σ = 0.5
• Green ~ Lognormal with μ = 8.5 and σ = 0.5
• I want to discourage any distinction 

between “model risk” and “parameter risk”



Mixing Many Distributions

• σ = 0.5 and μ = 7.5 – 8.5

• Mixture is equally weighted



Issues in using Mixtures

• Given that we have data
– Choosing the mixing distributions
– Choosing the mixing weights

• I will illustrate with a simple one-
dimensional example, and follow up with 
links to more complicated examples.



Choosing the Mixing Distributions

• Start with conventional goodness of fit 
testing
– PP Plots
– Kolomogorov-Smirnov test
– Chi-Square goodness of fit
– etc

• Need not restrict to single model such as 
lognormal

• Pass on examples for short presentation



The likelihood ratio test
• Suppose you have a model and a maximum 

likelihood estimate k-vector
• You want a range for the “true” parameter vector     

Find a Range for Parameters
• My nomination for the second most important 

theorem in statistics
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The Likelihood Ratio Test
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Set of μ’s for which H0 is accepted

Simulation #1 – 25 Data Points



Set of μ’s for which H0 is accepted

Simulation #2 – 25 Data Points



Set of μ’s for which H0 is accepted

Simulation #3 – 25 Data Points



Set of μ’s for which H0 is accepted

Simulation #4 – 100 Data Points



Choosing Weights for the Mixture

• My nomination for the most important 
theorem in statistics

Bayes Theorem
• Likelihood = Pr{Data|Model}
• Set Weight = Pr{Model|Data}



Using Bayes’ Theorem

• Then using Bayes’ Theorem, calculate the 
posterior probability of each μ given the data.

• Assume prior models are equally likely in this 
example.
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Plot of Posterior Probability of μ
25 Observations



Posterior Weighted Mixture of Models
25 Observations



Mixing Many Distributions

• σ = 0.5 and μ = 7.5 – 8.5

• Mixture is equally weighted



Quantities of Interest

• No real interest in the posterior probability 
weighted mixture of distributions.

• “Expected Reinsurer Deficit” is of more 
interest.

Expected Reinsurer Deficit
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Computing ERD for a Mixture
• Calculate mean for each model and then 

mix to get the overall mean.
• Calculate integral for each model with the 

overall mean and then mix.
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Plot of ERD Calculations

Radius of each dot is 
proportional to its 
posterior probability



Contrast Mixture with 
Maximum Likelihood Estimate

Mixture
• ERD = 693
• Mean = 3,446
• ERD ÷ Mean = 20.1% 

Maximum Likelihood
• ERD = 677
• Mean = 3,428
• ERD ÷ Mean = 19.7% 



More Elaborate Examples

• 2005 COTOR Challenge
http://www.casact.org/cotor/index.cfm?fa=round3

• Models had log-t distributions
• 4d parameter space

− μ, σ, trend and degrees of freedom
• Uniform prior distributions on parameters

– Academic example



More Elaborate Examples

• On Predictive Modeling for Claim Severity 
– CAS Forum, Summer 2005

http://www.casact.org/pubs/forum/05spforum/05spf215.pdf

• Models had mixed exponential 
distributions derived from fits on large 
insurers

• Fixed parameters for each model
• Equal prior probability for each model

– Real example



More Elaborate Examples

• “Proxies”
http://www.actuaries.org/ASTIN/Colloquia/Helsinki/Papers/S4_21_Myers.pdf

• Uses Bayes’ Theorem and a loss reserve 
triangle to reweight 5,000 loss reserve 
models.

• Priors determined from MCMC scenarios 
of 50 large insurers

• See my Variance paper “Stochastic Loss 
Reserving with the Collective Risk Model”
in Session P3 tomorrow.



Summary of Methods to 
Quantify Model Risk

• Carefully, and with considerable thought
– Choose models that might describe the distribution of 

possible outcomes.
– Assign prior probabilities to each model

• With Bayes’ Theorem, calculate the posterior 
probability of each model given the data you 
have.

• Calculate quantities of interest (e.g. ERD) in terms 
of a mixture of models, i.e. the derived model risk. 



Some object to assigning 
prior probabilities.

• Actuaries routinely render “Actuarial 
Statement of Opinions” (ASOP)

• Considerable thought and analysis can go 
into these actuarial opinions.

• Similar thought and analysis should go 
into prior distributions.

• Prior probabilities are transparent.


