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Background — The Collective Risk Model

Describe as a simulation algorithm

1.Select a random number of claims, N
2.Fori=1to N

— Select a random claim amount, Z,

N
3.Total Loss = ZZ,.
i=1



History
1980 Discussion Paper Program

 Glenn Meyers

— Used collective risk model simulation for
retrospective rating.

e Shaw Mong

— Used Fourier transforms to calculate collective
risk model probabilities WITHOUT simulation.

— Assumed that claim severity had a gamma
distribution.

— Later generalized by Heckman and Meyers (1983)



History — Statistical Community (1984)

e University of lowa Department of Statistics
— Poisson frequency, gamma severity
— Used in order restricted inference

 Tweedie publishes paper

— Tweedie, M. C. K., “An Index which Distinguishes
between Some Important Exponential Families,” in
Statistics: Applications and New Directions,
Proceedings of the Indian Statistical Golden Jubilee
International Conference, J. K. Ghosh and J. Roy (Eds.),
Indian Statistical Institute, 1984, 579—604.



Uses of Collective Risk Model

e Calculating Aggregate Loss Distributions
— Retrospective rating
— Reinsurance
— Enterprise risk management

e Fitting models of insurance loss data

— Simulation is of no help in maximum likelihood
estimation

— The Tweedie distribution is a member of the
exponential dispersion family and thus can be used in
a GLM



Tweedie as a Compound Poisson Model

e Claim Count N ~ Poisson(A)
e Claim Severity Z~ Gamma(a.,0)
— KPW Loss Models parameters
 Translate into standard Tweedie parameters

P (-0
(l+2’ M:}L.a.e’ (I): (OC )
a+1 2—p

p:

] With some algebra we can see that
Var[Y]=¢-pu” =A-6°-o-(a+1)

e This is the same as predicted by well known
collective risk model variance formulas



o 7

Interpreting the Tweedie “p

o+ 2
p:

1
, CV for gamma distribution = —
o+1 /_oc
Aso — o0, CV—>0andp—1

* For p =1, the Tweedie is called the
Overdispersed Poisson distribution

— Claim amounts are constant

e For most P/C insurance applications
— CV > 1 which implies p > 1.5



lllustrating the Effect of p

Simulation vs R’s “tweedie” package

Figure 1 - Compound Poisson/Tweedie Comparison
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lllustrating the Effect of p

Simulation vs R’s “tweedie” package
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Tweedie Density Function

e Dispersion model form — Dunn and Smyth(2008)

f(ylp,,¢)=f(yl p,y,d))-exp(—ﬁd(y,u)j

e Deviance - d(y,u)

d(y'u)zz((l—lﬁy)-(z—p)_yiilp +;—P)




GLMs with the Tweedie Distribution

Maximize log-likelihood 1 Minimize Deviance

GLMs focus only on estimating u

— p and ¢ are either given, or estimated outside the
GLM framework.

Unnecessary to evaluate f(y|p,y, )
— Very fortunate for GLM

Not helpful for more general models

— Dunn and Smyth (2005,2008) evaluate f(y|p,y,9) using
complicated math involving series expansions and
Fourier inversion. It is also computationally slow.

— Dunn is the author of the Tweedie package in R.



Problem with the Compound Poisson
Interpretation of the Tweedie Distribution

o AP (aB) I R o 1 T

2-p A-(2-p)  2-p

e A constant ¢ will force an artificial relationship

between the claim frequency, A, or the claim
severity, 0.

e Uses of Tweedie distribution

— Desire to build pure premium models where claim
frequency and claim severity have their own
independent variables.

— Monte-Carlo Markov Chain simulations
* Need speed



Rearrange Calculation of
Tweedie Density

* Objectives of method

— Allow ¢ to vary as an input
— Computationally fast

e Keep p fixed
— Current applications can reliably estimate p.

— Experience indicates that pure premium estimates
are relatively robust with respect to p.

— Be careful if accurate estimates of frequency are
required.



Tweedie Density Function

e Dispersion model form — Dunn and Smyth(2008)

fvlpwd)=f(yl p,y,d))-exp(—id(y,u)j

* First term - f(y|p,y,0)

— Slow to calculate when called
— Not any slower for calling with a long vector y



Dunn-Smyth Rescaling (2008)
(v 1p0)=k-f(ky | p,ku,k* 7))

For given A, 0, o use the above formulas to
calculate ¢, u and p.

Find a short and fast approximation for f(y|p,y,1)

Given f, calculate k and use Dunn-Smyth rescaling

and the approximation to calculate for y > O:
1

Setk=¢ >*, then f(ylp.y,0)=k-f(ky|p,ky,1)
2—p

Fory =0, set f(Olp’H’(l)):exp(_(l)-Elz—P)j




Approximating log(f(y|p,y,1))

Calculate, log(f(y|p,y,1)) using “dtweedie”, ONCE
with a long vector y, ;.

Find 3 values in the vector y; ., that are close to y.

Use divided differences interpolation to

approximate log(f(y|p,y,1)).
Increase accuracy by putting more points in Yfixed-



Accuracy with 10,000 yg, s
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R Code for Last Plot

library(statmod)

library(tweedie)

p=1.5

num=10000

log.ybot=log(.01)

log.ytop=log(100)

del=(log.ytop-log.ybot)/num

log.yl=seq(from=Ilog.ybot,to=log.ytop,length=num)

front=dtweedie(exp(log.y1),p,exp(log.y1),1)

#

Idtweedie.front=function(y, lyf,front){
If=log(front)
ly=log(y)
del=Iyf[2]-lyf[1]
low=pmax(floor((ly-lyf[1])/del),1)
do1=(If[low+1]-If[low])/del
d12=(If[low+2]-If[low+1])/del
d23=(If[low+3]-If[low+2])/del
d012=(d12-d01)/2/del
d123=(d23-d12)/2/del
d0123=(d123-d012)/3/del

Id=If[low]+(ly-lyf[low])*d01+(ly-lyf[low])*(ly-lyf[low+1])*d012+
(ly-lyfllow])*(ly-lyf[low+1])*(ly-lyf[low+2])*d0123

return(ld)

}

Idtweedie.scaled=function(y,p,mu,phi){
dev=y
ll=y
k=(1/phi)*(1/(2-p))
ky=k*y
yp=ky>0
dev[yp]=2*((klyp]*ylyp])*(2-p)/((1-p)*(2-p))-klyp]*ylyp]*
(klyp]*mulyp])*(1-p)/(1-p)+(klyp]*mulyp])*(2-p)/(2-p))
lIlyp]=log(k[yp])+Idtweedie.front(ky[yp],log.y1,front)-dev[yp]l/2
Ilyp]=-mullyp]*(2-p)/philtyp]/(2-p)
return(ll)
}
#
runif(1000,min=0,max=exp(log.ytop))
front.true=log(dtweedie(y,p,y,1))
front.int=Idtweedie.front(y,log.y1,front)
plot(log(y),front.int-front.true)

rug(log(y))
summary(front.int-front.true)



Remarks

* flylp,y,0) and {a} can be calculated in R with the
tweedie package.

* |log of Tweedie densities can quickly calculated in
closed form using the cubic approximation.

— Fast calculation of log-likelihood is necessary for
Bayesian estimation using the MCMC simulations.

— Coefficients of the cubic approximation allow for
easy coding in SAS and Excel for MLE estimation of ¢.
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Abstract

The Tweedie family of distributions is a family of exponential dispersion
models with power variance functions V{u) = p? for p € (0,1). These distri-
butions do not generally have density functions that can be written in closed
form. However, they have simple moment generating functions, so the densitics
can be evaluated numerically by Fourier inversion of the characteristic fune-
tions. This paper develops numerical methods to make this inversion fast and
accurate. Acceleration techniques are used to handle oscillating integrands. A
range of analytic results are used to ensure convergent computations and to
reduce the complexity of the parameter space. The Fourier inversion method is
compared to a series evaluation method and the two methods are found to be
complementary in that they perform well in different regions of the parameter
space.



