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What Is Timeline Simulation?

e Current simulations
— Collective Risk model

— Choose a time interval, and ask “how many
events in the interval?”

e Timeline simulation

— Associate a time with all events — everything
IS on a time line.

— Ask “how long to the next event?”



Motivation: we want

Transparency — complete audit trail for
each realization

Causality during each realization

Reality — be able to model closer to how
things actually happen

Intuitive modeling.
Reproducibility of current procedures
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Event Cascade

Every event occurs at a time.

Every event Is connected with causal links
back to its ultimate source.

We can pick up any event and see the
chain that led there.

Events can influence the generation of
other events.



Events

 Events are basically anything of interest
that you want to model.

 E.g. premiums, losses, ceded losses, loss
adjustment expense, other expenses.

e Could include indexes, unemployment
rates, economic activity, ...



Causality

Events can influence the generation of
other events.

— Inflation hits claim payments and index
clauses

— Successful suits engender more of the same
— Management rules affect writings or rates

— Economy can influence frequency and
severity. Mortgage derivative insurance,
anyone?



Reality

Events do happen at points in time. Later
events can be causally influenced by
earlier events.

Discounting and index clauses can be
done exactly.

Frequency and severity need not be
iIndependent.

Seasonality can be easily done.



Intuitive

e Event generation is separated from
reporting: there is one timeline and AY,
AQ, RY, RQ etc are just different views.

* \We can do new models simply. E.g. “big
claims pay out later” is easy If you make
the distribution of the time lag to payment
depend on the realized severity.



Reproducibility

» Collective risk modeling generally amounts
to assuming all losses happen Iin the
middle of the period. This is a special
case.

 Arbitrary frequency distributions can be
used. Poisson, negative binomial, and
more generally any mixed Poisson
distributions are natural and easy.



Some Problems Avoided:

e Sparse matrices: with weekly periods most
entries are zero, but still need
housekeeping.

 Event generation dependent on reporting.
 Inappropriate allocation of deductibles.



Some examples where a timeline
approach is useful:

Success of one claim engenders others —
think toxic mold.

A change In exposure affects premiums,
frequency of individual losses, and
severity of aggregated losses.

Indexation clauses

Probability of two large hurricanes within
two weeks of each other.




Theory

o Simple In principle: after each event ask
for the time to the next, rather than how
many events there are in a given time.

 The essential results are
— Simulations are easy.
— We can reproduce how we currently do
things.
— We can get new modes of thinking and
models.



“At some point his theory becomes so abstract it can only be
conveyed using interpretative dance”

-NOT



Theory

e Assumptions:

— In an arbitrarily short time interval At there is
at most one event. Clearly true for insurance
work.

— The probabillity of an event in At is
proportional to At. The proportionality Is the
Instantaneous frequency.



Instantaneous Frequency A

* Intuitively, the propensity for an event to
occur.

It can depend on time, number of events,
or anything else in the problem, such as
previous events.

* As a formula, the probabillity of an event in
At IS

PrZK(t, n,...)At



Fundamental relation

 To have n events at t+At you either
already had n at t and did not get another
In At, or you had n-1 and did get another.

e So0: the probability of having exactly n

events at time t+At Is the sum of the
orobability of n events at time t times the
orobability of no events between t and t+At
nlus the probability of n-1 events at time t
times the probabillity of one event between
t and t+At.




Fundamental relation (2)

e Easier to see as a formula on probabillities:

) (t+At) =Ry (1) 1-A(t,n) At |+ P, (t)[ A(t,n—1)At

Had n / Had n-1 [ /

Didn’t get one DIid get one




Differential Equations

e Gotolimitas At—>0 :
—P( )= =MEn)Ry(t) +Atn-1) R, (Y

 Boundary condition: No claims at t=0.

F,0)=1 B ,(0)=0



Probabillity of no events

e This is ultimately used in simulation.

* In general,
d

SRy ()=2(L0)R (1)

* The solution with the boundary condition Is

R (t) = eXP 5

(1

—IX(T,O)dI

. 0

\




Waiting Time Distribution

e The distribution of waiting time T from time
t=0Is

(T

F(T)=1-Py(T)=1-expi—[ A(z,0)dr;

0
\

 The substitution of a random uniform
deviate for F(T) will generate a random
time T to the next event. We need to
solve for it, of course.



Poisson Process

e Defined by A being constant.
e Can solve the differential equations and

get i
(1) r((y:)+ 1) o

e This is recognizably the form usually used
for a Poisson, although for arbitrary time.



More Poisson
* Exponential waiting time distribution from t

F(T,t) oMY

« Random walt time given as

T-t= —%ln(uniform random)

 Timeline simulation is basically piecewise
Poisson, with the exception of trend and
seasonality which use their explicit time
dependence.



Mean Count and Frequency

* The rate of change of the mean count is the
frequency averaged over events:

imean(t)::zox(t,n)pn (t)

dt m
e If the frequency does not depend on count,

the frequency is the derivative.

k(t):%mean(t)

 For a Poisson, the mean increases linearly.



An Example of Count Dependence

 \When A(t,n) = a + bn with b>0, the
resulting distribution Is negative binomial
at any fixed time.

 [ts mean increases exponentially in time

mean :&(ebt —1)
b



Frequency mixing of Poisson
distributions Is

e necessary because of parameter
uncertainty.

 also useful because a negative binomial
can be represented as a gamma-
distributed mix of Poissons.

e done at the start of a realization, and
Intuitively corresponds to choosing which
world will be represented.



Freqguency Mixed Poisson

e Formulais < (at) e

i (t):j I'(n+1)

0

e Mean number of events Is

f () dx

£ ()=t 2F (A)d2 =

e Variance to mean ratio Is

|var/mean|  =1+t[var/mean|

count mixing



Negative Binomial as Gamma mix
o—1 _X/
f(x):k e /Y
0°T (o

) The mixing mean is a6
and the variance to mean Is 0.

e The count distribution Is

a)(lfzﬂﬁ(lfeﬂff‘”+“)

['(n+1)I(o)

P

n

e The mean Is a0t and the variance to mean
IS 1+0t.



Uniform mix

o f(x)zL fora<A<b and zero
. b-a

otherwise.

 The count distribution Is
G(bt,n+1)-G(at,n+1)

()= (b—a)t
 where

2 n—1
G(?L,n):l—eX{1+k+—+...+7L }
2 r'(n)




Given the probabillities

We can in principle always find a mixing
function, but it may not be a distribution.

E.qg. if there is exactly one event, then the
probability for no events is zero. That Is,

o0

0=P,(t)=[ f (1)dr

0
This is not possible unless (1) <0

somewhere, and probability densities are
iInherently positive.

We can still generate timeline events, though.



Simulation

o At the start, and after each event, get the
time to the next event.

 Events may be randomly realized, created
IN response to earlier events, or
scheduled.

 Respectively, examples could be losses,
reinsurance, and premium payments — or
a lot of other possibllities.



How to do It?

 One way Is to let time increase by intervals
of At and Iin each interval see If there Is an
event using the current frequencies.

e This Is a lot of realizations, and not
necessary.

* \WWe can use the waiting time distributions
to find the next event. This is exactly
equivalent to looking in each At, since the
probability is still AAt.



So, A Better Way

 Take the problem as Poisson at any point
In time, frequencies fixed until the next
event.

e The time to the next event is
T-t= —%ln(uniform random)

« With many processes, we can evaluate
the time for each of them and choose the
earliest.



A Better Way (2)

* A sum of Poissons is Poisson. Having

processes with frequencies A1, A2, ...
create the sum A = A1+ A2+...

e Get the waiting time for this, and then
choose which process pro-rata on the
frequencies.

* This gives the same result, since the
probability for an event in At for process n
IS (AAY) (ML) = A AL



A Better Way (3)

Having the next random event, compare to
the next scheduled and use the earlier.

After the event, poll the frequencies and
get the next event.

This allows arbitrary interdependence
between events.

The entire realization history is available to
affect process parameters — and anything
else that Is modeled.




An Improved Better Way

Let each generator keep track of its own
next event time, rather than just frequency.

Recalculate the time when an affecting
event happens.

With this, solely time-dependent
frequencies can be done exactly without
having to approximate them as steps.

E.g. trend only requires solving a
guadratic.



Spreadsheet examples

Pure Poisson-Pareto with an XS cover.

Pure negative binomial as a gamma mix,
with a variable number of payments.

Projection and parameter uncertainty for a
negative binomial, and a variable number,
timing, and amount of payments.

Exposure-driven premium, large, and
aggregated losses.

More In the spreadsheet.



And finally

Now that you have seen the model T,

sl
@ @

take a look at the Ferrari.




