

Credibility and Risk Classification

Casualty Actuarial Society / Canadian Institute of Actuaries

Montreal

November 17, 2004

Presented by Christopher Monsour, FCAS, MAAA

Goals

- Establish a connection between three things:
 - Credibility
 - Penalized regression
 - Random effects models
- Show how the cross-validation idea for penalized regression can be applied to credibility to estimate K

Classic example

Auto Insurance

- Credibility weight territorial or type of car experience with experience for entire state
- Loss Ratios or pure premiums or adjusted pure premiums
- Two major questions:
 - How to determine the optimal number of classes / class boundaries?
 - How to determine the credibility to give each class?
 - Or, more simply, assuming one is going to use the formula N/(N+K), how to determine K?
 - It's the ratio of within variance to between variance, but is estimating the variances the right way to estimate K?
 - Related question: Are you measuring N appropriately?
 - Note that generalized linear models as usually used do not provide all the answers

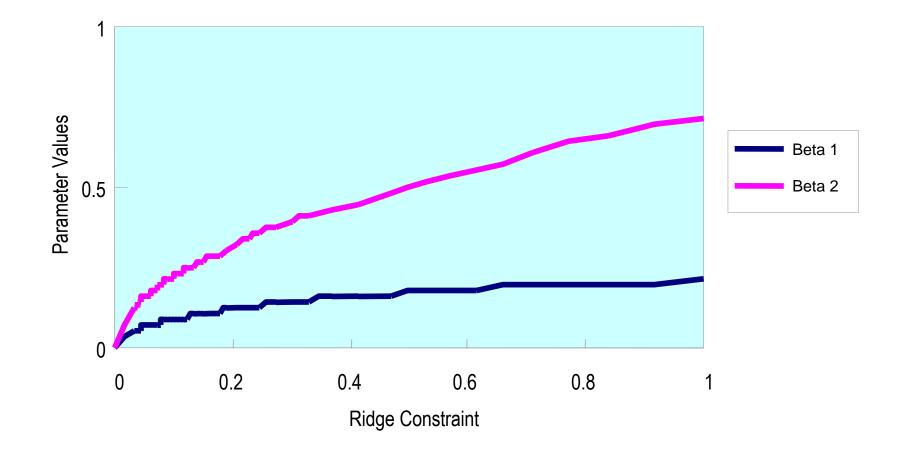
Random Effects Model

- Just like a regression model, but there is a prior belief for the parameters
- Consider the simplest case: Two classes
 - Let x_i = 0 or 1, indicating the class of policy i
 - Let y_i be the corresponding pure premium or loss ratio
 - Center X and Y by subtracting the mean from each. (This eliminates the need for a constant term in the regression). For example, now each x_i is equal to -π or 1-π where π is the proportion of class 1
- Then the regression model is Y=βX, and the negative log-likelihood is equal to a constant plus the following expression:

 $\sum_{i} (y_i - \beta x_i)^2 / \sigma^2$, which is proportional to $\sum_{i} (y_i - \beta x_i)^2$

If β is taken as N(0,τ²) and X is N(0,σ²) (i.e., τ² is between variance and σ² is within variance), the negative log-likelihood is then

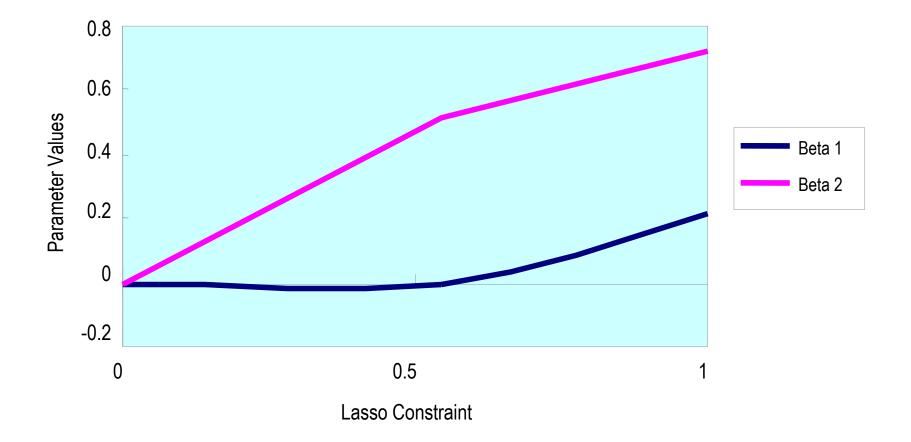
 $\sum_{i} (y_i - \beta x_i)^2 / 2\sigma^2 + \beta^2 / 2\tau^2$, which is proportional to $\sum_{i} (y_i - \beta x_i)^2 + (\sigma^2 / \tau^2)\beta^2$

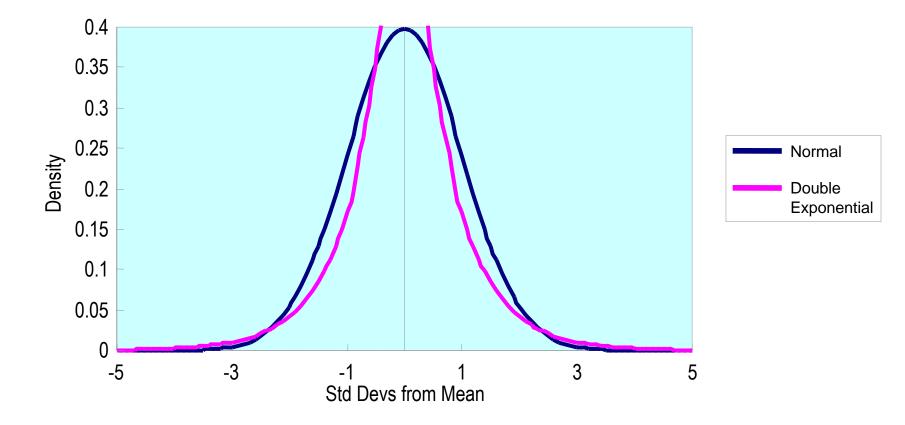

Ridge Regression

- Used to penalize large parameters, using sum of squares of parameter sizes as the penalty
- Center Y
- Center and standardize each X_i (divide by standard deviations), separately for each i
- Equation to minimize is
 - $\Sigma_i (y_i \Sigma_j \beta_j x_{ij})^2$ subject to $\Sigma_j \beta_j^2 < \Lambda$
 - Equivalent to minimizing $\sum_{i}(y_i \sum_{j}\beta_j x_{ij})^2 + \lambda \sum_{j}\beta_j^2$ with $\lambda > 0$
- Goal of ridge regression is to control for multicollinearity
 - This is the reason for standardizing the predictor variables
 - In credibility applications, one does not want to standardize the predictors, as they are class indicators

Ridge Regression and Credibility

- For one variable, the solution for β is the ordinary least squares solution times
 - $(\Sigma_{i} x_{i}^{2}) / \{ (\sigma^{2} / \tau^{2}) + \Sigma_{i} x_{i}^{2} \}$
 - Corresponds to $M\pi(1-\pi) / \{ (\sigma^2/\tau^2) + M\pi(1-\pi) \}$, where M is the total number of observations
 - When the total number is much larger than the number N=Mπ in the rare class, this reduces to N / (K+N), exactly the Bayesian credibility result
 - Note that this doesn't mean classical credibility is wrong for large classes...just that the variance of β no longer precisely corresponds to the between variance in that case
 - Of course, we knew this would happen because normal-normal is a conjugate pair


Ridge Plot


The Lasso

- Unlike ridge, can shrink some parameters all the way to 0
- Penalty is sum of absolute parameter values, i.e., minimize
 - $\Sigma_i (y_i \Sigma_j \beta_j x_{ij})^2$ subject to a constraint $\Sigma_j |\beta_j| < \Lambda$
 - This corresponds to minimizing $\Sigma_i (y_i \Sigma_j \beta_j x_{ij})^2 + \lambda \Sigma_j |\beta_j|$ with $\lambda > 0$
- In Bayesian interpretation, corresponds to prior for each β_i that is double exponential with a density of $(\sigma^2/\lambda)\exp(-\lambda|\beta_i|/2\sigma^2)$
 - Note that $var(\beta_i)=4\sigma^2/\lambda$. Call this τ^2
 - This corresponds to a more diffuse (more tail-heavy) prior than the normal
- Again, in "standard" penalized regression, one centers Y and centers and standardizes each X_i. In credibility-type applications, one would only center, but not standardize
- Equivalent to moving every parameter estimate toward zero by 2K/N, where K is σ²/τ² and N is the size of the class. Large parameter values are drawn back toward the mean less than they would be by a credibility multiple

Lasso Plot

Comparison of Priors

Comparison of "Credibility" Methods

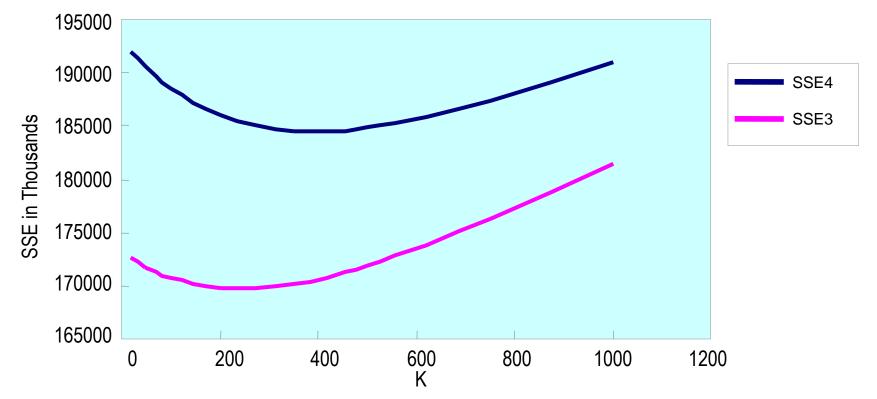
Unbiase	d estima	ate of bet	ta = 100	Unbiased	Unbiased estimate of beta = 10				
			Normal	Dbl Exponential			Normal	Dbl Exponential	
			Prior	Prior			Prior	Prior	
Ν	К		Z	Z	Ν	N K		Z	
1(0	2000	0.50	0.00	10	2000	0.50	0.00	
20	0	2000	0.99	50.00	20	2000	0.99	0.00	
50	0	2000	2.44	80.00	50	2000	2.44	0.00	
100	0	2000	4.76	90.00	100	2000	4.76	0.00	
200	0	2000	9.09	95.00	200	2000	9.09	50.00	
500	0	2000	20.00	98.00	500	2000	20.00	80.00	
1000	0	2000	33.33	99.00	1000	2000	33.33	90.00	

What's wrong with a lasso (double exponential) version of credibility?

- It does exhibit strange behavior, as you can see above
- It depends on the scaling of the Y variable. Essentially this means that you have to test different K values and determine the one you like
- Maximum likelihood estimates give posterior mode, not posterior mean
 - For normal, these are the same
- On the other hand, the lasso can be useful as a selection method, for determining what distinctions to include, since it does force some parameters to zero
- Equivalent to ranking the classes by βN, i.e., by their difference from the global mean times their size, and choosing a threshold on this ranked list for including a given class as being substantially different from the global mean
 - If you can order the classes, can use a similar condition for adjacent classes

Cross-validation

- \land in penalized regression traditionally determined by cross-validation
- Divide data into N pieces at random
 - For each piece, estimate model from the other N-1 pieces, and test its fit (e.g., sum of squared errors) on the piece
 - Add up these sum of square errors
 - Plot vs. λ
- Can do the same thing with K in credibility
- Can even simply use goal-seek to minimize out-of-sample (cross-validation) squared error and minimize K
- Minimizing squared error on in-sample data results in overfit
 - For example, testing on in-sample data always results in preferring two classes to one


Cross-validation example

Origin of Data in Spreadsheet

- Auto Insurance
- Based on Turner's paper in the 2004 Ratemaking Forum
- Created random claims data to duplicate the means and variances in his data
- Then divided this into cross-validation folds
 - See Exhibit on last page of handout
- Can try combining various combinations of classes into one and compare the cross-validation SSEs.
- It is possible for the best fit to come from no divisions at all
 - In this case, combining 2 and 3 is best (the "three class" example in the slide below)

Cross-validation example

- Chart of cross-validation SSE versus K for four and three class examples
- K's estimated by Turner from the actual within cell variances are 675 for the four class example and 504 for the three class example

Cross-Validation SSE

Cross-validation and credibility

- Cross-validation is a reasonable method to estimate any "tuning" parameter
- It often makes sense to us separate years of data as the "folds" in the crossvalidation, since it's predictive value across years that matters most

Credibility is no longer a unique animal

As a profession we need to become acquainted with its cousins

Cross-Validation for credibility	1-			VARY	K 395	TO MINIMIZE		Cross-validation SSE (sum of col (8))	184490992	
Four class Examp Risk Class	le Cross-Validation Fold	Exposures** (1)	Average Loss (2)	Total Loss** (3)	Other folds Class Mean (4)	Other folds Global Mean (5)	Z* N/(N+K) (6)	Credibility Estimate (7)	(Grouped) SSE (8) (1) x ((7)-(2))^2	
1	1	362	749.75	271,411	721.06	937.08	0.777	769.16	136348	
	2	354	606.93	214,852	757.68	897.64	0.778	788.70	11697027	
	3	354	586.88	207,756	762.80	950.92	0.778	804.50	16764109	
	4	328	751.26	246,413	721.40	940.70	0.782	769.31	106892	
	5	343	948.46	325,322	672.70	929.73	0.780	729.32	16471265	
2	1	277	928.60	257,223	915.66	937.08	0.758	920.85	16658	
	2	284	832.15	236,331	937.86	897.64	0.757	928.08	2613674	
	3	323	972.35	314,069	903.30	950.92	0.751	915.16	1056531	
	4	332	1114.19	369,911	862.93	940.70	0.750	882.41	17835616	
	5	298	712.63	212,363	968.37	929.73	0.755	958.89	18072666	
3	1	294	890.17	261,710	944.69	937.08	0.746	942.76	813038	
	2	272	1150.89	313,042	883.78	897.64	0.750	887.25	18906339	
	3	316	873.89	276,148	950.25	950.92	0.743	950.42	1851130	
	4	294	838.76	246,597	957.69	940.70	0.746	953.38	3862285	
	5	280	935.49	261,938	933.25	929.73	0.749	932.36	2746	
4	1	298	1131.88	337,300	1150.84	937.08	0.768	1101.35	277823	
	2	310	1461.50	453,065	1072.35	897.64	0.767	1031.61	57288986	
	3	315	1120.98	353,109	1153.74	950.92	0.766	1106.31	67813	
	4	332	1127.74	374,410	1152.42	940.70	0.764	1102.40	213162	
	5	354	927.02	328,165	1209.47	929.73	0.761	1142.50	16436886	
Total All Classes	1	1248	907.16	1,132,131	937.08					
	2	1208	1071.19	1,294,002	897.64					
	3	1301	855.62	1,113,160	950.92					
	4	1248	892.64	1,114,016	940.70					
	5	1257	936.65	1,177,364	929.73					
* Value of N for credibility formula is based on the number of observations in the other folds										

* Value of N for credibility formula is based on the number of observations in the other folds
** Data in total for each risk class based on data in Turner's 2004 Ratemaking Forum paper "Credible Risk Classification" Division into cross-validation folds is illustrative