Catastrophe Life and Personal Accident

David Lalonde, FCAS, FCIA, MAAA 2004 CAS Annual Meeting November 14-17, 2004 Montreal, Quebec, Canada

BETTER TECHNOLOGY BETTER DATA BETTER DECISIONS

www.air-worldwide.com

Modeling Extreme Events

- Extreme event losses are highly variable and are a key driver of enterprise risk profile
- □ The high severity and low frequency of extreme events are not amenable to estimation via traditional actuarial methods
- Technology, science and engineering allow us to improve dramatically upon traditional approaches
 - Historical loss data is scarce
 - Property values change
 - Repair and replacement costs change
 - New properties continue to be built in areas of high hazard
- □ Modeling of detailed exposure allows incorporation of actual policy conditions
- Modeling of extreme event risk provides more complete picture of your company's current risk profile and the potential impact on financial results

Catastrophe Model Components

- Where?
- How big?
- How often?
- How much?

Components of Injury Related Models

Location details

- Address information sufficient for geocoding (street address preferable)
- Number age and sex of insureds at each location
- > For life and accident, both work and home location of insureds
- > For workers' compensation, employee shift (day, evening, night)
- Property physical characteristics
 - Construction type
 - Occupancy type
 - > Individual risk characteristics i.e. building height
- Insurance value and terms
 - Expected claim costs
 - Workers' compensation benefits by state and injury type
 - Life and Accident policy face value
 - Disability average payments and duration
 - Deductibles, waiting periods
 - Reinsurance terms

Example of Augmenting Data

Determine the Location Details

- Utilize public industry databases
 - > Identifies individual locations and total insureds per location
 - SIC code for each location
- Determine the Structural Characteristics for Modeling
- □ Utilize detailed property industry database
 - > Used for over 15 years by property insurance / reinsurance
 - > SIC codes provide defaults for construction, age and height by ZIP Code
- Determine Location by Time of Day
- □ Industrial occupancy rates vary by time of day
 - > 2:00 p.m.: 80%
 - > 5:00 p.m.: 50%
 - > 2:00 a.m.: 10%

Determine Claims Benefit Structure

- > Utilize client provided policy values
- > Utilize medical cost data

Estimating Earthquake Damage

Create engineering models.

Assess vulnerability at the component level.

Assemble composite damage function for the building.

Calculating Physical Damage from Earthquake Events

Physical Damage versus Monetary Damage

Cause of Injury by Construction Type

Note: Data from County of Santa Cruz hospitals

Typical Injury Types from Earthquakes

Building Physical Damage Distribution Mapped to Damage States

- 1 Slight Damage
- 2 Moderate Damage
- 3 Extensive Damage
- 4 Complete Damage
 - collapse
 - no collapse

Damage and Casualty Estimates Consider Multiple Effects on the Target and Surrounding Buildings

Typical Injury and Fatalities from Conventional Attacks

Calculating Damage and Injuries from CBRN Attacks

- Physical damage state not relevant for CBRN attacks
- DOD's Hazard Prediction and Assessment Capability (HPAC) Model for CBRN Events
- Event simulation
 - Full spectrum of CBRN
 - > Accurately predicts the effects of hazardous material releases
 - Embedded climatology and historical weather data
 - > Terrain data and supporting wind-flow models calculate the local windfield
- Model output
 - Fatality rate contours
 - Contaminant concentration levels over time and distance

Simulated Losses from a CBRN Attack

Anthrax Aerosol Dispersion

- □ 3,144 fatalities
- □ 250,811 injuries

Sample Severity Calculation

- The expected duration of injuries simulated by the model is used to determine if disability payments will result
- Disability payments begin after a number of days away from work
 - > Short term disability provides benefits for 13 to 26 weeks
 - Long term disability picks up when short term benefits expire, and continues for an extended period of time
- Average ultimate disability claim cost = expected claim duration x average monthly payment
- □ Expected claim duration is developed from a claim continuance table

Managing Life and Personal Accident Risk

- Where are our exposure concentrations the greatest?
- How close are we to any potential terrorist targets?
- What are our losses if a terrorist attack occurs in a certain location?
- What are our losses from a repeat of the 1906 San Francisco earthquake?
- How do we price or evaluate earthquake insurance?
- How do we quantify our total risk to terrorism?

□ Defining exposure

- Number of Locations
- Number of Employees
- > Total Replacement Value
- > Total Insured Value
- Number of Landmarks
- Net Insured Value

Select Boundary

- State
- County
- > Postal Code
- Landmark Ring
- Location Ring

Identifying Exposure Concentrations and Proximity to Potential Targets

Simulated Losses from Midtown Manhattan Delivery Truck Bomb

- Delivery truck bomb
- 80,000 workers in surrounding area
- Expected 25,000 casualties (workers)
 - > 2,500 fatalities
- \$4-5 billion workers' compensation loss
- \$187M in group life losses
- \$3-4 billion total property loss
 - > 29 buildings affected

Typical Injury Types from CBRN Weapons Sarin Attack - Tokyo Subway, March 20, 1995

- □ 12 killed
- □ 5,122 injured
- 984 severe to moderate poisoning
- Types of injuries
 - > Miosis
 - Headache
 - > Dyspnea
 - Nausea
 - Ocular pain
 - Blurred vision
 - Vomiting
 - Coughing
 - Muscle weakness
 - Cardiac arrest
 - Respiratory arrest
 - Post-traumatic stress disorder

Source: Intensive Care Medicine. 1995: 21:1032-1035.

Probabilistic Portfolio Analysis

Results of the Catastrophe Models

- Event by event loss information
- Probability distribution of losses (EP curves)
- Annual aggregate losses
- Annual occurrence losses
- Industry and company specific
- Direct, ceded and net retained
- Loss costs
- Large losses, historic losses
- Number of injuries by severity level
- Structural flexibility
 - Location, policy, zone, territory, portfolio levels
 - Foreign vs. domestic sources, conventional vs. CBRN attacks

Exceedance Probability (EP) Curve - Occurrence

- Originally, models were used to help insurers and reinsurers assess the price and structure of reinsurance contracts
- Today, models are integrated into companies operations and form the basis of sound risk management practices
 - Assess companies' risk profile
 - Ensure companies collect adequate premium
 - Manage exposures
 - Evaluate underwriting guidelines
 - > Assess the feasibility and credits of mitigation strategies
 - Price various risk transfer strategies
 - Analyze the risk in securitizations of insurance risk
 - Assess aggregate exposure in mergers and acquisitions
 - > Manage the correlation within portfolios of reinsurance contracts
 - Relied on by rating agencies and investors
 - Input to underwriting and enterprise risk management models

- Catastrophe models have been successfully extended to life and personal accident insurance
- Ongoing improvement in the level of detailed data being collected to deal with accumulation exposures throughout the insurance industry
- Data augmentation methods are available to supplement incomplete data
- Companies are managing their catastrophe risk by monitoring concentrations of exposure and performing deterministic and fully probabilistic analyses

