Modeling Paid and Incurred Losses Together

Leigh J. Halliwell, FCAS, MAAA
Consulting Actuary
leigh@lhalliwell.com

CASE Seminar
Atlanta, GA
Wednesday, September 30, 2009

Outline

- Review of Linear (or Regression) Models
- GLM? Generalize how?
- Spreadsheet Examples
- The Actuary Wizard Something you'll remember

The Formulation of the Linear Model

$$\left[\frac{\mathbf{y}_{1(t_1 \times 1)}}{\mathbf{y}_{2(t_2 \times 1)}} \right] = \left[\frac{\mathbf{X}_{1(t_1 \times k)}}{\mathbf{X}_{2(t_2 \times k)}} \right] \boldsymbol{b}_{(k \times 1)} + \left[\frac{\mathbf{e}_{1(t_1 \times 1)}}{\mathbf{e}_{2(t_2 \times 1)}} \right],$$

$$Var\left[\frac{\mathbf{e}_{1}}{\mathbf{e}_{2}}\right] = \left[\frac{\Sigma_{11\left(t_{1}\times t_{1}\right)}}{\Sigma_{21\left(t_{2}\times t_{1}\right)}} \middle| \frac{\Sigma_{12\left(t_{1}\times t_{2}\right)}}{\Sigma_{22\left(t_{2}\times t_{2}\right)}}\right]$$

$$= \mathbf{s}^{2} \begin{bmatrix} \Phi_{11(t_{1} \times t_{1})} & \Phi_{12(t_{1} \times t_{2})} \\ \Phi_{21(t_{2} \times t_{1})} & \Phi_{22(t_{2} \times t_{2})} \end{bmatrix}$$

Trend Example

$$\begin{bmatrix} \mathbf{y}_{1(5\times1)} \\ \mathbf{\bar{y}}_{2(3\times1)} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ \frac{1}{1} - \frac{5}{6} \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \boldsymbol{b}_{(2\times1)} + \begin{bmatrix} \mathbf{e}_{1(5\times1)} \\ \mathbf{\bar{e}}_{2(3\times1)} \end{bmatrix},$$

$$\mathbf{var} \begin{bmatrix} \mathbf{e}_{1} \\ 1 \end{bmatrix} = \mathbf{g}^{2} \begin{bmatrix} \mathbf{I}_{(5\times5)} & 0_{(5\times3)} \end{bmatrix}$$

$$Var\left[\frac{\mathbf{e}_{1}}{\mathbf{e}_{2}}\right] = \mathbf{s}^{2} \left[\frac{\mathbf{I}_{(5\times5)}}{\mathbf{0}_{(3\times5)}} + \frac{\mathbf{0}_{(5\times3)}}{\mathbf{I}_{(3\times3)}}\right]$$

The BLUE Solution

$$\hat{\mathbf{y}}_{2} = X_{2}\hat{\mathbf{b}} + \Phi_{21}\Phi_{11}^{-1}(\mathbf{y}_{1} - X_{1}\hat{\mathbf{b}})$$

$$\hat{\mathbf{b}} = \left(\mathbf{X}_{1}' \mathbf{\Phi}_{11}^{-1} \mathbf{X}_{1} \right)^{-1} \mathbf{X}_{1}' \mathbf{\Phi}_{11}^{-1} \mathbf{y}_{1}$$

$$Var\left[\mathbf{y}_{2} - \hat{\mathbf{y}}_{2}\right] = \sigma^{2}\left(\Phi_{22} - \Phi_{21}\Phi_{11}^{-1}\Phi_{12}\right)$$
process variance

$$+ (X_2 - \Phi_{21} \Phi_{11}^{-1} X_1) Var [\hat{b}] (X_2 - \Phi_{21} \Phi_{11}^{-1} X_1)'$$
parameter variance

$$Var\left[\hat{\mathbf{b}}\right] = \sigma^2 \left(\mathbf{X}_1' \Phi_{11}^{-1} \mathbf{X}_1\right)^{-1}$$

Special Case: $F = I_t$

$$\hat{\mathbf{y}}_2 = \mathbf{X}_2 \hat{\mathbf{b}}$$

$$\hat{\mathbf{b}} = (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \mathbf{y}_1$$

$$Var\left[\mathbf{y}_{2}-\hat{\mathbf{y}}_{2}\right]=\mathbf{s}^{2}\mathbf{I}_{t_{2}}+\mathbf{X}_{2}Var\left[\hat{\mathbf{b}}\right]\mathbf{X}_{2}'$$

$$Var \left[\hat{\mathbf{b}} \right] = \mathbf{s}^{2} \left(\mathbf{X}_{1}' \mathbf{X}_{1} \right)^{-1}$$

Estimator of the Variance Scale

$$\hat{\mathbf{s}}^{2} = \frac{(\mathbf{y}_{1} - \mathbf{X}_{1}\hat{\mathbf{b}})'\Phi_{11}^{-1}(\mathbf{y}_{1} - \mathbf{X}_{1}\hat{\mathbf{b}})}{t_{1} - k}$$

Generalizing the Simple Linear Model

GLM's

$$y = g^{-1}(X\beta) + e$$
, diagonal variance

 Judge, IT&PE: Covariance, Seemingly unrelated regressions (SUR). Solve:

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix} (1) + \begin{bmatrix} \mathbf{e}_1 \\ - \\ \mathbf{e}_2 \end{bmatrix}, Var \begin{bmatrix} \mathbf{e}_1 \\ - \\ \mathbf{e}_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{\sigma}_{11} & \boldsymbol{\sigma}_{12} \\ \boldsymbol{\sigma}_{21} & \boldsymbol{\sigma}_{22} \end{bmatrix}$$

It's all about Covariance

$$\hat{\mathbf{y}}_{2} = \mu_{2}(1) + \sigma_{21}\sigma_{11}^{-1}(\mathbf{y}_{1} - \mu_{1}(1))$$

$$= \mu_{2} + (\rho\sigma_{1}\sigma_{2})(\mathbf{y}_{1} - \mu_{1})/\sigma_{1}^{2}$$

$$\frac{\hat{\mathbf{y}}_{2} - \mu_{2}}{\sigma_{2}} = \rho \frac{(\mathbf{y}_{1} - \mu_{1})}{\sigma_{1}}$$

 GLM, Quarg, et al. attempt to do in the design matrix what should be done with covariance (Halliwell, *PCAS*, 1996)

Vector Means and Variances

$$\mathbf{Y}_{n\times 1} \sim \mathbf{\mu}_{n\times 1}, \, \mathbf{\Sigma}_{n\times n}$$

$$\Rightarrow \quad \mathbf{A}_{m\times n} \mathbf{Y} \sim \mathbf{A} \mathbf{\mu}_{m\times 1}, \, \mathbf{A} \mathbf{\Sigma} \mathbf{A}'_{m\times m}$$

- $A\Sigma A' \ge 0$, i.e., Σ is non-negative (or positive) definite.
- AΣA' = 0 for A≠0 indicates linear dependence within the elements of Y.

Modeling Essentials

- Proper design matrix, X (or regressors, or independent variables)
- The only random term on the right side of the equation is e, i.e., no stochastic regressors.
- How does each observation covary with the others?
 Don't assume zero off the diagonal.

Spreadsheet Examples

- Increasing complexity of the variance structures of Models 1-4
- Conjoint model (cf. Halliwell, Summer 1997
 Forum, versus Quarg, Variance, Fall 2008

Actuary Wizard

He pl ays by intuition The digit counters fall That deaf, dumb and bl ind kid Sure pl ays a mean pinball! (The Who, 1969)

He plays by intuition
The development factors fall
That deterministic actuary
Sure makes a mean judgment call!

Hmmmm. At what should actuaries be expert?