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Infrastructure Capabilities

° Moore’s law (1965)
— Number of transjsters on a chip double about every two years

CPU Transistor Counts 1971-2008 & Moore’s Law
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* Faster, Better, Cheaper



Infrastructure Capabilities > "¢
°* Improvements in infrastructure capabilities
— Increasing computing power

— Declining cost of storage and memory

— Advances In parallel and distributed computing
* E.g., Grid computing

— Emerging capabilities
* Floating data centers

* Cloud computing
— Hosted data mining

* Eftc.



GRID Computing
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Floating Data Centers

* Google Patent Filing
-~ Wave-powered
— Water-cooled
— Wind turbines

* International Data
Security (IDS)
— San Francisco based
— Refurbished cargo-ships




Cloud Computing

Infrastructure as a | “&/l\fm)
Service (laaS) ' ) ,
— Scalable | /
— Virtualized

Cloud computing services usually provide common business
applications online that are accessed from a , While the
and are stored on the servers.


http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Data

Avalilability and Access to Data

* 487 Exabytes (10'8) data created in 2008
— Expected to grow to 2,500 Exabytes by 2012*
— In book-form@would stretch to Pluto and back

— Publj IR GVETINENRD sources
— Spiflit lENSPUrces
°* Addressed rious CAS meetings

— Albeitt, limited"to census/geography data

* Source "Digital Universe" report published by International Data Corp. (IDC)



Avalilability and Access to Data

°* Multi-media, rich detail
— Text
— Voice
— Video
— Sensor-data (RFID, GPS, etc.)

* Progressive’'s MyRate
— Small device that records speed and time (but not location)

— Progressive can determine what time of day you tend to
drive, how many miles you average and how aggressively
you drive



Algorithms and Tools

°* Convergence of quantitative disciplines —

— Statistics, Machine learning, Econometrics, Actuarial
science, etc.

°* Result —a diy@sse array of algorithms for data
manip UIEHEIMeEIEN analysis, and modeling
— EfficieniZiEigifiishic

* DisgVEIMIGHBINEERUES/transformations
* |dentify intefgetions

* Bin/group variables

* Perform variable reduction/selection

* Visualize data, etc.



Algorithms and Tools
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* Emerging methodologies

Text mining

Ensemble computing

Image recognition — OCR, handwriting, pictures, etc.
Speech/voice recognition

Video analysis, etc.

* Importantly, tools available in the market

Data Analysis and Modeling

* R (public domain)

* Data mining workbenches (SAS, SPSS, Statistica, etc.)
Visualization

* SAS/Graph, R, ArcView, etc.




The Stars are Aligned!
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Business value via
predictive analytics




RiskAnalyzer® Homeowners

* Goal

— Produce highly-refined
prediction of Loss Costs for
HO risks using multivariate
modeling techniques

* Model Structure

— Loss Cost =
Frequency * Severity

— Frequency

— probability of loss
modeled with logistic
regression

i Severity 5 Miles

— GLM with a log link and
Gamma error
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Modeling at a Granular Level @
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Decompose HO losses and model by peril

to produce “tighter” models
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AOI Relativities by Peril
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* Significant variation by peril
* Source of lift
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Explore Detailed Data (2,

° North American Regional Reanalysis (NARR)
— “Best/most accurate North American weather and climate dataset”

* Data Range — 1979 — 2007
 Granularity — 32 x 32 km grid
8 daily readings (every 3 hrs)

— Accumulated precipitation

— Air temperature at 2 meters

— Rain

- Wind

— Relative humidity

— Snow depth
— etc.

e Data Size ~ 150 GB


http://www.emc.ncep.noaa.gov/mmb/rreanl/

Derive Novel Data Features (@

°* Temperature
— Mean
— Max deviation from mean
— # consecutive days below freezing, etc.

* Wind
— # days with High wind, etc.

°* Precipitation
— # days with severe precipitation
— # days without precipitation, etc.

° Interactions
— Days without precipitation, high temperature, and high wind, etc.

* 2 person-years of effort
* 80+ derived predictors

16



Visual Data Analysis (VDA)

- Explore - PYA.PYA_RAW_DATA
File Edit View Actions Window
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Positive coefficient in
Wind Frequency
model

Using SAS/Graph

value []-1.05--1.01 []-1.01--0.99 []-0.99--0.99 []-0.99 - -0.98 []-0.98 - -0.97 [ -0.97 - -0.91 [ -0.91 - -0.79
[ -0.79--065 [ -065--052 [l -052--034 ] -034--026 [ -0.26--0.20 [ -0.20--0.13 [ -0.13- 1.20
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Enable Serendipitous Discoveries @

eather & Elevation FIRE | LIGHT | WIND | HAIL | WW | LIAB / THEFT
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Ellen Cohn. “Weather and Crime”. The British Journal of Criminology 30:51-64 (1990)
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Exploit Novel Technologies

1 |
. . Theft /
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Most Claims systems do not distinguish
weather from non-weather water losses

~ Text Mining to the rescue!




Text Mining for “Cause of Loss”

°* Rich information buried in unstructured data,
such as loss descriptions or adjuster notes

— Challenge — typos, abbreviations, poor structure, etc.
° Text mining loss descriptions

EAKING FR ICE MAKER IN BAR WEATHER RELATED

AFTER HEAVY DOWNPOUR, INSURED'S
NOTICED WATER DAMAGE TO CEILING
AND WALLS IN DEN
NON-WEATHER

FREEZE DAMAGE TO SWIMMING POOL _‘ RELATED

FREEZER DEFROSTED AND DID WATE
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Tighter and Relevant Predictors
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Water Weather - Frequency
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Premium Audit Overview

Issued premium based on estimated payroll or sales

Review policyholder’s records and operations

— Determine the correct premium based on actual experience
(accurate risk exposures)

— Policyholder contractually obligated to comply

AP — Additional premium —insured => carrier
RP — Return premium — carrier = insured

Premium Audit Process

— Physical Audit — On-site/location audit by a person
— Phone Audit — Audit via phone

— Mail Audit — Form sent to Insured to complete and return
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Building a WC Premium Audit Model ‘

° Type of Problem

— Classification vs Value-Prediction

— Few “reliable” audits to model actual dollar results
* Modeled as athree class problem

— Returned Premium: audit result < $0

— Low Additional Premium: $0 < audit result < $625*

— High Additional Premium : audit result = $625

* Aligns with potential business strategies

Model Prediction Business Strategy

Returned Premium Mail Audit
Low AP Telephone Audit
High AP Physical Audit

* |llustrative break-even cost of a physical audit



Consider Diverse Data

Macro. Dun & BLS Data .
:Er]((:j(i)ggtrgrlg Bradstreet Sources Claritas Data
Interest Rates = Credit Rating === Bysiness Structure = Avg Hourly Earning Data —Age
Money Supply=- Financial Solvency =4=Employees = Employment Cost Index =—Ethnicity
Producer Inflation == : Suits==t= Sgles = Injury and lliness Data = Income
Consumer Inflation J Judgments == Past Due Payment ~ Local Area Employment Stats — Home Value
Liens =d= Credit Lines mp Survey — Marital Status
= Education
= Employment

Aggregate US GDP
GDP by State
GDP by Industry

edical Facility Data
arket Stance Data
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Use a “Toolkit” of Algorithms

!_Eﬂlh |.~1.~ "B"
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o|% o
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Decision Tree
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Source — SAS Institute



Use Multiple Algorithms

Enterprise Miner - Donations
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Explore “Ensemble” Models 9,

 Several modeling techniques explored
— Multinominal Logistic Regression
— CART Decision Tree, Boosted Trees, Random Forests
— Support Vector Machines (SVM)
— Neural Networks

* Best model — Ensemble of Logistic and Tree
— Where predictions match, high confidence it is correct

— Where predictions do not match select model/prediction with the
higher confidence

Overall prediction
—>

Ensemhble

Decision Tree
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Where can Analytics be Applied?

| Marketing Analytics
e Strategic Market Dev.

e Target Mkt
¢ Niche identification

e Channel Optimization
e Segmentation & LTV
® Product Innovation
¢ |deation support
e Customer Optimization
e Segmentation & LTV
Analytics o Targeted Marketing

Insurance Campaigns

) ¢ Acquisition
Lifecycle e X-sell/Up-sell

 etc.

Operations Analytics

¢ Claims
e Subrogation
e Fraud
e Litigation
* IME
o etc.
* Premium Inadequacy
* Premium Audit WC/GL Operations
e CovAITV (PL)
e Loss Control
e Attrition Scoring

* etc...

Marketing
Analytics

Actuarial Analytics U/W & _| U/W Analytics
Actuarial * Risk Understanding
* New Binning for factors Analytics e Causes of Loss

e U/W sweet-spots
¢ Risk Qualification rules

* Novel Rating Factors
* Novel Pricing Models
e Enhancing Reserving Models

* Risk Scoring Models

e Risk Tiering/Subsidy Models
e Renewal Scoring

e etc.

* New Product/Coverage Pricing
e etc.
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In Sum...

* “Perfect storm” created by advances in
— Infrastructure capabilities
— Data availability and access
— Methodologies and Tools

* ...has opened up tremendous opportunities for
Analytical solutions within P&C

° If not doing so already, exploit the
timing, leverage the opportunities,
and create successes!
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Thank yout

Karthik Balakrishnan
kbalakrishnan@iso.com
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