An Introduction to FLAVORED Models
Measuring the Market Value of Risk Management

John A. Major, ASA

Without a consensus on a value-based theoretical framework for risk management, analysts are left hypothesizing risk-reward preferences to guide corporate strategies. Whereas the usual approach considers a two-dimensional risk vs. reward decision space, the "FLAVORED" ("optimal dividends") models considered in this chapter put both risk and reward on the same dimension: market value.  The original model dates back to de Finetti 50 years ago, but the models have seen tremendous mathematical development since then.  Only recently, however, has this research been related to the literature of corporate finance and hedging.  This chapter will show how the models fit naturally within the finance theory canon and discuss solution techniques for more sophisticated, and realistic, versions.

1. Introduction

This chapter is about quantifying the market value of risk management, forging a useable tool for practitioners by bringing together two distinct lines of research.
One the one hand, there is a particular class of models we have taken the liberty of naming de Finetti-Lévy Asset Value of Optimized Risk, Equity, and Dividends (“FLAVORED”) models.  The original (vanilla?) forms date back to actuarial science circa 50 years ago, but the intervening years have seen tremendous extension and sophistication in their development by stochastic optimization and control theorists.

On the other hand, there is the literature of corporate hedging within finance theory, also dating back about 50 years.  In particular, Froot et. al. (1993, 1998) developed a model to explain why risk management matters to financial firms, and Froot (2006) refines this to apply more specifically to insurers.

Until very recently, each of these bodies of literature showed little or no acknowledgement that the other existed.  Yet, as we shall see, they have converged to the point where a synthesis is imminent.  This chapter will create one link in that synthesis, demonstrating how a version of the Froot et. al. model can be turned into a FLAVORED model.  Moreover, the innovations in Froot (2006) can be accommodated as well.
Why are these models important?  Without a consensus on a value-based theoretical framework for risk management, analysts are left hypothesizing risk-reward prefer​ences to guide corporate strategies. In practice, this means showing managers the risk-return tradeoffs of various items on the decision menu and letting them “make the call” (Venter 2001). The models discussed in this chapter are based on a market perspective of value and not on the idea of firms having risk preferences – just a preference for higher shareholder value. Whereas the usual approach considers a two-dimensional risk vs. reward decision space, FLAVORED models put both risk and reward on the same dimension: market value.

Section 2 presents a literary history of the models, the disconnect between the two streams, and recent signs of convergence. Section 3 shows how to take the Froot et. al. costly external capital model and turn it into a FLAVORED model.  Section 4 discusses solutions and solution methods and works out a new insurance-specific example by way of a general-purpose numerical solver.  Section 5 concludes.
2. A history of FLAVORED models
The typical Dynamic Financial Analysis (DFA) model in insurance takes a form something like the following (Daykin et. al. 1994):

(Change in capital) = (profits) = (premiums) + (investment income) – (expenses) – (losses)

where some of the elements, say premiums, are assumed known (deterministic) and some, say losses, are unpredictable (stochastic).  Details include the time period over which quantities and changes are measured, whether taxes are included in expenses or are ignored, whether investment income is considered deterministic or stochastic, etc.  Management strategies are reflected in parameter choices that may alter the characteristics of both deterministic (say, a reinsurance premium) and stochastic (say, how losses are altered by reinsurance) parts of the equation.  Statistics of outcomes (risk measures, profit measures) are captured.  One or more objectives are chosen, and the analyst’s task is to figure out how the parameters could be set to achieve the objectives, or, failing a definitive solution, to offer a menu of alternatives that trade off various objectives.
2.1 Early forms of the model

In classical actuarial science, the objective was to minimize (or at least control) the probability of ruin.  De Finetti (1957) proposed changing the focus of actuarial science from ruin probability to the value of shareholder dividends.  The state equation for capital under de Finetti’s optimal dividends model can be written as:
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where W represents the capital (alternatively, “equity,” “surplus,” or “risk reserve”) of the firm at time t,  is the constant rate of inflow of funds (e.g., net premiums), X is the cumulative uncertain outflow of funds (e.g., loss payments), and D represents the accumulated dividends distributed back to the firm’s owners. With X being a random variable, this equation describes the firm’s capital as a stochastic process.  With X represented as a compound Poisson process (and no D), this is known as the Cramér-Lundberg model (Cramér 1930).
The objective here, however, involves not the minimization of ruin but the maximization of owner wealth:


[image: image2.wmf](

)

(

)

ú

û

ù

ê

ë

é

=

D

+

=

å

¥

=

-

w

W

D

r

E

w

M

t

t

t

0

0

1


where E signifies mathematical expectation and r is an appropriately chosen discount rate.  This is familiar from finance as the discounted dividends model for the value of a firm.  
The key mathematical object in this and all subsequent versions of the model is M(W), known as the M-curve.  This is the relationship between the capital of the firm (W) and the market value of the firm (M).

Similar to the questions in ruin theory, questions here revolve around initial capital and risk management strategies, but the first question is what is the optimal dividend strategy?  De Finetti solved this in a simple case involving discrete time and discrete X values.  It amounts to a “barrier” strategy, where all excess capital above a particular level  is dividended back to the owners, but there are no dividends when capital is less than .  

Borch (1967, 1976, 1985, 1986) extended de Finetti’s model in a number of directions, but retained its discrete-time perspective.  Other researchers continued to extend optimal control theory, with applications often being to economics and finance.  Variations on the “problem of optimal dividends,” whether in a discrete or continuous setting, were solved again and again over the coming decades.  Examples include Shubik & Thompson (1959), Miyasawa (1962), Takeuchi (1962), Morill (1966), Bather (1969), Gerber (1972), Porteus (1977), Waldmann (1988), Jeanblanc-Picqué & Shiryaev (1995), Radner & Shepp (1996), Milne & Robertson (1996), Asmussen & Taksar (1997), Paulsen & Gjessing (1997), Højgaard (1997), Taksar (1998), Taksar & Zhou (1998), Højgaard & Taksar (1998a, 1998b, 1999), Taksar (2000), and Asmussen et. al. (2000). 

Typical 20th century models focused on a Brownian motion
 risk process.  See Gerber & Shiu (2004) or Major (2006a) for more historical details.
Many later papers broke away from Brownian motion, returning (with new levels of rigor and sophistica​tion) to the classical actuarial risk models. Examples include Zajic (2000), Højgaard (2002), Mnif & Sulem (2005), Azcue & Muler (2005), and Gerber & Shiu (2006).
Some papers introduced complications to the capital-generating process or constraints on firm behavior or made generalizations in other ways.  Examples include Højgaard & Taksar (2001, 2004), Cadenillas et. al. (2003), Choulli et. al. (2003), Paulsen (2003), Hipp (2003), Chen et. al. (2003), Bäuerle (2004), Guo et. al. (2004), Hubalek & Schachermayer (2004), Dickson & Waters (2004), and Decamps & Villeneuve (2005).
We may characterize a general form of these models as the de Finetti-Lévy Asset Value of Optimized Risk, Equity, and Dividends (FLAVORED) model:
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where,

· Wt represents the capital (policyholder surplus, wealth) of the firm at time t, 

· ut represents a vector of management controls,

·  represents the expected rate of change (drift) of wealth, which is a function of current wealth and the controls,

· X is a Lévy
 stochastic process representing the cumulative risks to wealth, with its distributional properties being functions of wealth and control, 

· C (resp., D) is the nondecreasing cumulative external capital (resp., dividends) supplied by (resp., paid back to) shareholders, also under management control.

Equation [1] is a stochastic differential equation (SDE), the continuous-time counterpart to a discrete time series equation.

The objective is again to maximize the market value of the firm given by the M-curve:

[image: image4.wmf](

)

(

)

ú

û

ù

ê

ë

é

=

×

+

-

=

ò

ò

¥

×

-

¥

×

-

w

W

dC

e

dD

e

E

w

M

t

t

r

t

t

r

0

0

0

1

k




[2]

where  is a loading factor representing the cost of external capital.

2.2 The disconnect with finance theory

Until the 21st century, the optimal dividends model retained a “provincial” flavor compared to mainstream finance theory.  Its roots in actuarial science and operations research made it unfamiliar to many economists and finance theorists.
 Its relationship to classical finance theory had not been explained. And its logic made it seem quaint compared to contingent claims analysis. This section describes the disconnect and discusses recent literature that addresses those issues in relation to full FLAVORED models.

Modigliani & Miller (1958, 1961) is the “Newton’s Law” of finance theory.  In the absence of “friction” and in a situation of fixed investment strategy, neither capital structure, dividend policy, nor risk manage​ment affect the firm’s market value.  To the extent that such frictions (such as bankruptcy costs, agency distortions, tax effects, cost of holding capital and costly access to external capital) exist, then capital structure, dividends, and risk management can matter, but only to the extent that they serve to exacerbate or ameliorate the effects of the frictions. Modern texts on risk management (e.g., Culp 2002, Doherty 2000) explain the applica​tion of risk management, capital structure, and dividend policy in terms of the modes of violating the “M&M” assumptions.  
In particular, Doherty (1985), Froot, Scharfstein & Stein (1993), Froot & Stein (1998), and Froot (2006) develop a one-period model to illustrate how one friction – costly external capital – affects market value and how risk management can serve to increase market value.  We will return to this model in section 3.
A decade after M&M, Merton (1969, 1974) and Black & Scholes (1973) sparked the revolution in mathematical finance that continues today.  Actuaries became increasingly familiar and comfortable with “financial engineering” based on this work, but this did not help the disconnect between the optimal dividends literature and finance theory, because the optimal dividends problem does not fit the financial engineering paradigm.
Froot & Stein (1998) write: 

[The] dominant paradigm... boils down to a contingent-claims model of the sort pioneered by Merton (1974).  This type of model... assumes away exactly the sorts of imperfections that make [risk management] challenging and relevant.  Indeed, it is only appropriate if either: i) the [firm] can frictionlessly hedge all risks... or ii) the Modigliani-Miller theorem applies, so that the [firm] has no reason to care about risk management in the first place.  

Arbitrage-free pricing assumes there must be no positive NPV investment opportu​nities, but the existence of such forms the starting point of corporate finance theory. Froot & Stein continue: 

[W]e want to have a model that is squarely rooted in the objective of maximizing shareholder value in an efficient market.

This would seem to be consistent with the objectives and approach of the optimal dividends literature.  The pertinent question is this: Which M&M assump​tions are being violated and how do those violations relate to the model?

To some early authors, the obvious answer – no external finance
 – might have been too obvious to deserve mention.  To others, it is possible that the question did not even arise.  
2.3 Later models start to connect with finance theory

One of the more evident changes in the 21st century optimal dividends literature is that at least a passing mention of Modigliani & Miller has become de rigueur.  Beyond a pro-forma mention, some of these papers explicitly discuss the M&M assumptions and how the optimal dividends model violates them.

More importantly, recent papers extend the optimal dividends model to allow for external financing, that is, capital flows from the investors back into the firm, making them full FLAVORED models.  When this is allowed under M&M conditions (no cost, any amount) then the standard M&M result is obtained: the market value of the firm is the capitalized value of the expected profit flow plus the capital: M = / r + W.  Furthermore, risk management, i.e. costlessly reducing volatility of W, does not affect the market value and so is irrelevant.  With an infinite cost of external capital, the model reverts to the dividends only submodel.  With finite nonzero cost, more interesting behavior is observed.

Sethi & Taksar (2002) appears to be the first paper to extend the Brownian motion model to include external capital.  However, they stipulate certain conditions on the functions (W) and (W).  Løkka & Zervos (2005) appears to be the first paper to analyze the “standard” (constant drift and volatility) Brownian motion with costly external capital.  More extensions of those results followed, e.g., Belhaj (2004), Cai et. al. (2006), and Avram et. al. (2006).  

These papers, however, do not explain at length how their models relate to M&M violations; the ones discussed below do.

Peura (2003) addresses the optimal dividends model with the possibility of recapitalization.  It discusses the Modigliani & Miller irrelevance theorems and the literature on their violations, including an explicit discussion of the Froot et. al. costly capital model.

Blazenko et. al. (2004) model insurance firms as being “regulated” in the sense that if W < 0, then shareholders must either add (frictionless) capital at a rate k, or abandon the business; hence they distinguish economic ruin (abandon​ment) from technical ruin (financial distress).
  They derive the optimal abandonment barrier and the value of the abandonment option. In the limit as k → (, corresponding to a requirement of instantaneous makeup of the capital deficit, the usual M&M linear equation for M(W) is obtained and the value of the abandon​ment option goes to zero.  They conclude that in the presence of strong regulatory capital requirements, “the correct financial valuation methodology for management of an insurance business is discounted cash flow analysis rather than contingent claims analysis.”

Rochet & Villeneuve (2004) analyze distinct and simultaneous possibilities for “hedging” (against Brownian motion) and “insuring” (against a Poisson risk with constant severity) along with two forms of costly external financing.  They write:

[W]hen liquidity management and risk management decisions are endogenized simultaneously, the theoretical impact of profitability and leverage is non monotonic…. Moreover when insurance decisions are explicitly modeled, we find that the optimal patterns of hedging and insurance decisions by firms are exactly opposite: cash poor firms should hedge but not insure, whereas the opposite is true for cash rich firms…. This may explain the mixed findings of empirical studies on corporate demand for hedging and insurance….

3. Froot et. al. and FLAVORED models

This section discusses the model of Froot et. al. (1993, 1998) and shows how it can be adapted to become a FLAVORED model.  An expanded discussion can be found in Major (2006b).
3.1 A simplified FROOT model

At time t = 0, the firm chooses how much liquid capital, K, to hold.  There is a cost of holding capital, however; additional funds K must be paid on the side.  K is the firm’s initial wealth, W0.  Between time 0 and time 1, business operations result in either an increase or decrease of W according to W =  + Z, where Z is a unit normal (Gaussian) random variable.  At time t = 1, the firm may invest an amount I in an opportunity whose net present value is M(I) - I.

The quantity I  may be less than or equal to W1 = W0+W,  or it may be greater than W1, in which case the difference must be made up from external funds e = I - W1 with associated funding cost C(e).  Assume that M(0) = 0.  The net (of initial capital) market value of the firm is given by
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There are two questions: 

1. What is the optimal value of K to maximize the expectation of the net market value of the firm?

2. Is there an advantage to replacing the stochastic W with a certainty equivalent W = ?

First, let us consider the frictionless situation, when the cost of holding capital, , and the cost of external funds, C(e), are both zero.  The net market value of the firm is then M(I) - e - K = M(I) - I + W1 - K = M(I) - I + K + W - K = M(I) - I  + W.  Therefore the answer to #1 is: subject to constraints, the choice of initial capital K does not matter – only the choice of I.  The expectation of the final market value is given by M(I) - I  + E[W] = M(I) - I  + , so the answer to #2 is: risk management does not matter, either.

This is a version of the Modigliani & Miller world, where neither capital structure nor risk management matter to the value of the firm.  What is important is making the right investment decision to gain the maximum available NPV: M(I) – I.

In the case of costly capital, the analysis is not so simple.  First, Froot et. al. assume that the investment gross return M(I) is concave, giving the NPV of M(I) – I a single local and global max​imum at some specific I.  Furthermore, they assume C(e) is convex.  In assuming smoothness of M(I) and C(e), they are able to derive first-order conditions for optimality and analyze the comparative statics.  Rather than repeat their analysis, we turn our attention to a very special case.

3.2 A going-concern Froot model

Instead of the Froot model with an arbitrary terminal investment opportunity M(I), consider that the time 1 investment is to continue operations.  For concreteness, let us start by encapsulating the random  W “business operations” into a physical asset – a magic coin box.  Consider the following version of the problem:

You have a magic coin box that can hold up to Wmax dollars in coins.  Every fixed time interval, some coins randomly appear or disappear according toW =  + Z.  If the box already holds Wmax and more coins appear, the new coins are ejected and you keep them.  (Call these dividends )  But once the box runs out of coins, it vanishes in a puff of smoke.

Say also that these random transitions are uncorrelated with any financial markets.  Currently, the box has W0 = K in it and will transition at the end of the next time interval.  What is the fair market value,
 M, of this device?

Our concern here is not to solve the problem, but to elucidate its structure.  We will, however, note some solution features.
A basic pricing principle is that the expected return of an asset has to equal the appropriate risk-adjusted hurdle rate.  Whether given by CAPM (Merton 1973), APT (Ross 1976), or something else, the fact that the transitions are uncorrelated with financial markets means that the appropriate hurdle rate is the risk-free rate, which we will denote r.

The return is the sum of cash dispensed and capital gain, i.e. change in market value.  So the requirement, which must be satisfied at any time t, is:
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This can be rewritten as a recursive equation:  
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   [3]
or expanded into extensive form:
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but they all say the same thing (assuming the infinite series converges).  
What if, instead of the random transitions, W was exactly equal to the expected value  (assuming  ≥ 0) with certainty, every time?  Would it be worth more?  It depends.  That perpetuity is worth / r.  If  is large,  is small, and W is near Wmax, it might be better to take the 50% chance of a large payoff instead of an -small certain stream.
So far, what we have described is a fixed, but not necessarily optimal, dividends policy.  What if, in the brief moment after a transition occurs, we could open the box and remove some money?  Would it ever be advantageous to do so?  What is the best way?  Such a possibility extends the problem to one of optimal dividends.
What if we had the option of adding money?  Starting at W=Wmax, the box will survive for another cycle with probability 1-q = (Wmax/).  Consider the following strategy:  If  W < 0, we replenish; if W > 0, we pocket the proceeds.  If the discount rate is correct and q is approximately zero,
 we should be indifferent to this dividend stream, its certainty equivalent stream, or selling the box for the capitalized value of those streams. The magic box now lives in the Modigliani & Miller world where risk management does not matter.

What if an extra cost of  > 0 were incurred every time we added a coin to the box?  That is, we expend 1+ in order to increase W by 1.  How would this change our strategy?  Clearly, the odds have shifted and risk management matters now.
Notice how we have retained the essential structure of the Froot model.  At time t = 0, we want to initialize the box with the optimal amount of funds K.  Between time 0 and 1, a random process affects the wealth, W.  At time t = 1, we have the option of adding funds (at a cost) to the box, and we want to do so in a way that maximizes the net value of the box (plus dividends, less our out-of-pocket) at that time.

What if we were not restricted to affecting the box at unit time intervals – after all, many small changes could be happening within each interval.  We could consider the dynamics over arbitrary small intervals t.  The possibility of overlapping (t, t+t) intervals makes the concept of the Z variables a bit difficult to formalize, so, instead, we use the random variable Bt to represent the cumulative sum of distinct random changes.
  We can write the random transitions as:

[image: image9.wmf](

)

t

t

t

t

t

t

t

t

B

t

B

B

t

W

W

W

D

×

+

D

×

=

-

×

+

D

×

=

-

=

D

D

+

D

+

s

m

s

m


We can use the same idea to track the accumulated amount of money that has been dispensed by or removed from the box up to time t, Dt, and the accumulated amount of money that has been added to the box, Ct.  Then the state equation for W can be written:
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[4]
The essential question is the same – given an initial amount of money in the box, W0, what is the market value of the box?  For any particular dividend (D) and capitali​zation (C) strategy, the answer is given by the extensive form valuation formula:
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[5]

where now we have used a continuous force of interest r instead of a finite-period interest rate.  If external financing is too expensive to use at all, Ct will always be zero and the second term in brackets will be super​fluous.  The goal, then, is to craft the optimal dividends and recapitalization strategies so as to maximize this expected value; that, then, is the market value.  Equation [4] is still analogous to the Froot model dynamics for W, and equation [5] is still representative of the market value of a going concern with costly external capital.  Bankruptcy cost manifests itself in the restriction that D and C remain zero after W hits zero.

By allowing the time step t → 0, we finally arrive at a version of the full FLAVORED model as repre​sen​ted by equations [1] and [2].  
4. Evaluating risk management with FLAVORED models
Froot (2006) augments the one-period model discussed in section 3 with several key elements specific to insurance firms: “The first feature is that customers – especially retail policyholders – face contractual performance risks…. Customers are thought to be more risk averse to these product performance issues than are bondholders.”  This insight can be incorporated into the general FLAVORED model by making the  and X elements of the stochastic differential equation [1] be dependent on the current value of capital, W.  This leads to versions of the problem that have not been solved analytically. They can, however, be solved numerically. In doing so, not only can optimal risk management strategies be determined, but their (market) value to the firm can be calculated as well. 

This section reviews solutions for some simpler versions of the problem as well as a more realistic state-dependent version.

4.1 The vanilla model

Gerber and Shiu (2004) define the capital process as follows:
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where  and  are constants, B is a standard Brownian motion, and dividend distribu​tion D itself is the only control. They show that the optimal strategy is to distribute immediately all capital above a “barrier” point . When W is less than , no dividends are distributed. The barrier point can be interpreted as the optimal level of capital for the firm: if capital is above that, excess amounts are returned to the shareholder immediately; below that, all profits are retained until such time as it is reached.

Figure 1 shows the M-curve resulting from  = 0.5,  = 1 and r = 6%.  The resulting barrier is  = 3.8. Note that for W > , the M-curve is linear with slope 1. One might expect the slope to be less than one as a consequence of “frictional cost” of holding capital above , but there is none in this model because if the firm ever finds itself in that situation, it immediately dividends all excess back to the shareholders. As W → 0, the M-curve also approaches zero. At the barrier, the value of M is the present value of a perpetuity at the rate of drift, M = / r = 8.33. The barrier amount W =  can be interpreted as the amount of risk capital necessary to support that perpetuity. Note that the excess of M over W is not the perpetuity value. For W ( , the excess of market value over cash, M-W, is equal to / r- , the perpetuity value less the required capital.  
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Figure 1: M-curve (firm value) from Brownian motion and dividends only

In figure 1, an additional straight line is drawn above the M-curve.  This represents the value of the firm under Modigliani & Miller conditions.  With W = 0, the value is the perpetuity, and for greater W, the value increases dollar for dollar.  The dotted extension to the left represents a situation discussed in Blazenko et. al. (2004).  If the firm were allowed to exist in a state of technical insolvency long enough for investors to add funds to bring W back into the positive range, investors would be willing to do so as long as the current W were not less than –/ r.  Thus the M&M straight line extends all the way to the horizontal axis.

4.2 Proportional reinsurance

Bather (1969) took the step of introducing no-load proportional (quota-share) reinsurance in the control vector. The SDE becomes:
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   [6]
where 0 ≤ U(w) ≤ 1 is the fraction of the risk to retain.

The optimal dividend strategy is essentially the same as in section 4.1 (with a slight downward shift in the location of the barrier  to 3.3). The optimal reinsurance strategy involves a second barrier,  = 1.4, above which all risk is retained (U = 1). For W < , U(W) is linear in W down to U(0) = 0. Figure 2 compares the M-curve for this problem to the dividends-only version.  It is interesting to note that the availability of reinsurance raises the value of the firm, even when W >  and it is not being used.
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Figure 2. M-curve from Brownian motion, dividends, and proportional reinsurance

4.3 A ratings cliff problem

So far, the drift term  has not depended explicitly on wealth W. A key feature of Froot’s (2006) model is that it does. This section presents the numerical solution of a FLAVORED model where it does as well, and also illustrates how to handle constant background growth by changing to an inflation-adjusted numéraire.  Consider the following example: 
The economy is currently undergoing 4% inflation with a 5% risk-free interest rate. The firm has book value (capital) of $10bn and expected one-year inflation-adjusted growth in book value of $1bn if it maintains its rating. The standard deviation of this real profit is also $1bn and is assumed to be distributed as a normal (Brownian motion). The firm can cede a proportion of its business to a reinsurer at no net cost, but even if it ceded all of it, it would still have $100mm in operating expenses. Management estimates that if book value were to go below $7bn, it would experience a ratings downgrade that would force it to experience real per annum losses of $500mm.
  External financing is out of the question.

Questions: 

1. What is the optimal level of capital; does the firm need more or is it overcapitalized? 

2. Should it cede some business to the reinsurer, and if so, how much? 

3. How does the market value of the firm respond to changes in its capital? 

4. Does the availability of risk transfer bring value to the firm, and if so, how much?

The corresponding FLAVORED model is as follows. The governing SDE is equation [6] with  = 1 (billion), W0 = 10, b = 0.1, and 
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The valuation rate is the real interest rate, r = 0.01.  Note that the net profit of $1b (resp, –$500mm) is the algebraic sum of  = 1.1 (resp –0.4) and -b = -0.1.

This results in qualitatively different behavior of the solution from what was seen above, even without risk transfer. Figure 3 shows the optimal dividends. This indicates two zones where dividends should be paid. The “typical” zone, where W > 7, corresponds to the strategy we saw in both previous examples: there is a threshold, in this case 12 or 12.5, beyond which all excess capital should be immediately distributed back to the shareholder. However, there is a second zone: below capital of about 2.3, all capital should also be immediately distributed back to the shareholder, leaving the firm with zero, and, therefore, going out of business.

The answer to question 1, then, is that the firm, currently at $10bn, is undercapitalized. The optimal level is just over $12bn (with risk transfer; closer to 12.5 without) – in real terms. Next year, the target would be 4% higher in nominal dollars. Capital above this level should be dividended back, but for now, profits should be retained.
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Figure 3: Optimal dividends

Figure 4 shows the optimal risk transfer strategy. This, too, shows more zones than previous graphs. For W > 7, the optimal control U behaves analogously to the previous constant- example. There is a high-W zone in which risk transfer is not conducted. As W gets lower and approaches the value 7, less of the risk is retained, as before. 

New behavior emerges for W < 7. For W between the lower dividend barrier and 7, full risk is again re​tained. This behavior we may interpret as “hoping for the best” or “betting the farm.” In zones where dividending takes place, the value of U is technically undefined.

The answer to question 2, then, is that the firm should not transfer risk at this time. If capital goes below $8.8bn, cessions should start, maxing out at 61% (39% retained) at the $7bn cliff. Below the cliff, the mathematically optimal solution is to retain all business and hope for improving fortunes to enable a ratings upgrade. If capital decreases to $2.3bn, as noted before, the firm should go out of business.
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Figure 4: Optimal risk retention

Figure 5 shows the M-curves. For W > 7, familiar features are seen. The curves rise steeply, then level off to 1-for-1 straight lines above the high dividend barrier of W=12 or 12.5. For W < 7, the value in the “hope for the best” zone curves downward to meet the 1-for-1 value line in the “go out of business” zone.

The answer to question 3, then, is that around the current $10bn in capital, every new dollar in capital increases firm value by about $1.20 (with risk transfer; $1.30 without). For lower levels of capital, the rate of market value change accel​erates until it reaches a ratio of over 55:1 at the ratings cliff.

The difference in M-curves is shown in figure 6. This answers question 4: Availability of risk transfer adds $243mm (0.3% of firm value or 2.4% of capital) to the firm currently, but would be worth as much as $5bn (6.8%, resp., 71.4%) if the firm were at the ratings cliff.
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Figure 5: M-curves for ratings downgrade problem
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Figure 6: Value of risk transfer

These examples had in common a Brownian motion risk variable X.  More realistic modeling of insurance operations, especially where catastrophe insurance is concerned, require jump diffusions or Lévy processes. These include Brownian motion and compound Poisson processes as special cases.  With jumps, the model can represent the effect of excess of loss (XOL) reinsurance. For more about Lévy processes, see Schoutens (2003) and Cont & Tankov (2004).
4.4 Solution methodology

This section discusses various approaches to solving FLAVORED models.

To solve the model analytically, as in sections 4.1 and 4.2, one typically refers to the Hamilton-Jacobi-Bellman (HJB) equation (Yong and Zhou 1999, Øksendal and Sulem 2005).  As is typical with partial differential equations, the solution method involves careful scrutiny of the boundary behavior of M and optimal U, divining their essential properties, correctly guessing their analytical forms, and then teasing out specific values for all the parameters and coefficients.

It is instructive to consider how one might approach the problem via Monte Carlo simulation. 

Given particular risk transfer and dividend/capitalization strategies, one may estimate the resulting firm value by simulating sample paths of W starting with a particular initial W0. Each sample path would be taken out to its first insolvency or to a length of time sufficiently long so that the discounted perpetuity of profits past that point is negligible in present value. Given enough sample paths, the expected value of the present value of dividends can be estimated by averaging. 

Then another strategy would need to be tried, and another, until an apparently optimal strategy is found. Numerous techniques for improving the efficiency of simulation (e.g., importance sampling) and optimization (e.g., parameter search methods operating on a fixed set of sample paths) could be applied. The limitation posed by the fact that the simulations started with only one specific W0 might be mitigated by taking some early time points, with different W values, as effective starting points, rather than rerunning the entire process again for different W0.

While this approach could work, its principal weakness is the fact that the control strategies being sought are functions and therefore require a high dimension to represent numerically. A reasonable number of basis functions (e.g., Tchebychev polynomials) might be considered for a parameterization of the function space, but the success of such an approach would depend on the nature of the (unknown) solutions to the particular model in question.

The proprietary numerical solver used in section 4.3 is based on dynamic programming (Bellman 1954). The capabilities of the solver are quite general in that any relationship (W,u) and any conditional distribution of X on W and u, that can be represented in tabular or algorithmic form, may be used (subject to finiteness restrictions).

By considering the nature of an optimal solution as it relates to the objective function, one is led to a version of the so-called optimality equation, also known as Bellman’s equation:
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This equation must hold if M is the solution to the optimal control problem. Intuitively, it says that the value of the firm at time t is equal to the net of capital to be raised or dividends about to be given back to the shareholder in the next infinitesimal period of time plus the discounted expected value of the firm at the end of that time, given that optimal control is always exercised.  Note the similarity between this equation and the recursive valuation equation [3].
Regarding the right hand side of the equation as an operator on a proposed M, it is evident that the solution for the optimal M is a fixed point of this operator. Relaxation methods can find that fixed point, solving for the optimal controls (U, C, D) and the value (M). See Kushner and Dupuis (2001) for details.  
The solver was implemented in C++.  For the problem of section 4.3, functions M, U, and C were rendered on a 100-element grid and time was discretized at dt = 0.01. Typical run times were around 10 minutes on a 1GHz pentium desktop.
5. Conclusion

This chapter first reviewed the history of the “optimal dividends” problem and FLAVORED models introduced by de Finetti and developed by many others working in the fields of actuarial science and stochastic optimization.  These models were seen to represent the market value of a firm as the expected value of discounted dividends (which is consistent with M&M), when dividend policy and risk management strategy are optimized to maximize that expectation (which is consistent with violating M&M assumptions).  Recent literature explaining the relation to M&M, in particular the role of external capital and bankruptcy cost, was reviewed.  

Most of the FLAVORED models appearing in the literature do not include the addition of outside capital; this absence corresponds to prohibitively costly external capital in the Froot model.  Versions of the model that do include external capital exhibit economically sensible behavior, and, in the limit where outside capital is frictionless, reproduce the Modigliani & Miller irrelevancy of risk management and dividend policy.  We saw how the Froot et. al. model of the value of risk management can be reconfigured to represent the market value of a going con​cern, and how a continuous-time version of that is a FLAVORED model.

The chapter also presented the FLAVORED model in its general form.  While advances continue in the search for analytical solutions to particular versions of this model, it is unlikely that a closed form solution to the generic model will be found.  For this reason, numerical solution techniques will be essential for the practitioner.  Pre​vious​ly solved FLAVORED models were discussed, and a more realistic (less tractable) version was solved via a numerical dynamic programming solver.

In solving the models, not only were optimal risk management strategies determined, but their effect on market value was calculated as well.
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� Senior Vice President, Instrat® division, Guy Carpenter & Co., Inc.  The author wishes to express his gratitude for numerous discussions with and suggestions by Gary Venter and Kenneth Froot.  Of course, all errors are his own.


� See section 3.2 for a definition.


� A Lévy process generalizes Brownian motion and compound Poisson processes, including the two, and mixtures thereof, as special cases.


� Basically, replace the differential d symbol with the discrete first-difference symbol .  See Itô (1951) for a more formal treatment.


� Google Scholar (� HYPERLINK "http://scholar.google.com" ��http://scholar.google.com�) shows at most 55 citations for a paper in the literature reviewed here, and only four others with over 35 citations.  In comparison, Froot et. al. (1993) shows 450 citations, Modigliani & Miller (1958) shows 1,552,  and Black & Scholes (1973) shows 5,110.


� Peura (2003), notes another source of friction embedded in the early models: “…indirect or opportunity cost of bankruptcy.  This is the value lost due to irreversible discontinuation of operations which are fundamentally profitable on average.  We can add direct bankruptcy costs to the model with little added difficulty.”  (The boundary condition becomes M(0) = -K instead of M(0) = 0.)


� Without loss of generality, the capital constraint defining distress can be placed anywhere, e.g., at some barrier  > 0, which is more realistic in terms of how insurance regulation and ratings are conducted.


� Assume its sales value as a scientific or entertainment novelty is zero!


� It should be noted that this model also incorporates a severe degree of “bankruptcy cost,” another source of capital market friction and violation of M&M assumptions.  In the typical corporate finance context, the assets of the firm consist of plant and equipment as well as the good will arising from customer and supplier relationships.  When a firm goes bankrupt, it typically does not see its factories disappear in a puff of smoke!


� That is, Bt+t-Bt is distributed as a normal with mean zero and variance t.  This is known as Brownian motion or a Weiner process.


� In nominal dollar terms, this is only a $100mm loss. The assumption here is that if the firm did not lower prices, it would lose business and enter a death spiral, so it is better to fight to retain market share and hope for improved underwriting results to enable it to regain its rating.


� Conclusions regarding W below the ratings barrier should not be taken too seriously; there are likely to be other ratings boundaries and effects, e.g., ratings agencies care about risk management, and the model does not adequately represent the value of the firm in runoff or as a candidate to be sold. Also, possible recap�ital�ization has been assumed away.
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