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Introductory ExampleIntroductory Example
A pilot is flying straight from X to Y.  Halfway along (s)he

realizes that (s)he’s ten miles off course.  What does (s)he

do?

X

Y
?
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Linear (Regression) ModelsLinear (Regression) Models
“Regression toward the mean” coined by Sir Francis 

Galton (1822-1911).

The real problem: Finding the Best Linear Unbiased 

Estimator (BLUE) of vector y2, vector y1 observed.

y = Xβ + e.  X is the design (regressor) matrix.  β

unknown;  e unobserved, but (the shape of) its variance 

is known.

For the proof of what follows see Halliwell [1997] 325-

336.
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The FormulationThe Formulation
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Trend ExampleTrend Example
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The BLUE SolutionThe BLUE Solution
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Special Case: Φ = ItSpecial Case: Φ = It
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Estimator of the Variance ScaleEstimator of the Variance Scale
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Remarks on the Linear ModelRemarks on the Linear Model
Actuaries need to learn the matrix algebra.

Excel OK; but statistical software is desirable.

X1 of is full column rank, Σ11 non-singular.

Linearity Theorem: 

Model is versatile.  My four papers (see References) 

describe complicated versions.

Actuaries need to learn the matrix algebra.

Excel OK; but statistical software is desirable.

X1 of is full column rank, Σ11 non-singular.

Linearity Theorem: 

Model is versatile.  My four papers (see References) 
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The Problem of Stochastic RegressorsThe Problem of Stochastic Regressors

See Judge [1988] 571ff; Pindyck and Rubinfeld [1998] 
178ff.

If X is stochastic, the BLUE of β may be biased:

See Judge [1988] 571ff; Pindyck and Rubinfeld [1998] 
178ff.

If X is stochastic, the BLUE of β may be biased:

( )
( ) ( )

( )
[ ] ( )[ ]

( )[ ] [ ] ββ

β

β

β

=′′+≠

′′+=

′′+=

+′′=

′′=

−

−

−

−

−

e

e

e

e

y

EE

EE

XXX

XXXˆ
XXX

XXXX

XXXˆ

1

1

1

1

1

β

β



12

The Clue: Regression toward the MeanThe Clue: Regression toward the Mean
To intercept or not to intercept?To intercept or not to intercept?
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What to do?What to do?

Ignore it.

Add an intercept.

Barnett and Zehnwirth [1998] 10-13, notice that the 

significance of the slope suffers.  The lagged loss may 

not be a good predictor.

Intercept should be proportional to exposure.

Explain the torsion.  Leads to a better model?
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Galton’s ExplanationGalton’s Explanation
Children's heights regress toward the mean.

Tall fathers tend to have sons shorter than themselves.
Short fathers tend to have sons taller than themselves.

Height = “genetic height” + environmental error
A son inherits his father’s genetic height:
∴ Son’s height = father’s genetic height + error.

A father’s height proxies for his genetic height.
A tall father probably is less tall genetically.
A short father probably is less short genetically.

Excellent discussion in Bulmer [1979] 218-221.
Cf. also sportsci.org/resource/stats under “Regression to Mean.”
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The Lesson for ActuariesThe Lesson for Actuaries
Loss is a function of exposure.
Losses in the design matrix, i.e., stochastic 
regressors (SR), are probably just proxies for 
exposures.  Zero loss proxies zero exposure.
The more a loss varies, the poorer it proxies.
The torsion of the regression line is the clue.
Reserving actuaries tend to ignore exposures –
some even glad not to have to “bother” with them!
SR may not even be significant.
Covariance is an alternative to SR (see later).
Stochastic regressors are nothing but trouble!
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Reserving Methods as Linear ModelsReserving Methods as Linear Models

The loss rectangle: AYi at age j
Often the upper left triangle is known; estimate 
lower right triangle.

The earlier AYs lead the way for the later AYs.

The time of each ij-cell is known – we can 
discount paid losses.
Incremental or cumulative, no problem.  (But 
variance structure of incrementals is simpler.)
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The Basic Linear ModelThe Basic Linear Model

yij incremental loss of ij-cell

aij adjustments (if needed, otherwise = 1)

xi exposure (relativity) of AYi

fj incremental factor for age j (sum constrained)

r pure premium

eij error term of ij-cell

yij incremental loss of ij-cell

aij adjustments (if needed, otherwise = 1)

xi exposure (relativity) of AYi

fj incremental factor for age j (sum constrained)

r pure premium

eij error term of ij-cell
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Familiar Reserving MethodsFamiliar Reserving Methods
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Why not Log-Transform?Why not Log-Transform?

Barnett and Zehnwirth [1998] favor it.
Advantages:

Allows for skewed distribution of ln yij.
Perhaps easier to see trends

Disadvantages:
Linearity compromised, i.e., ln(Ay) ≠ A ln(y).

ln(x ≤ 0) undefined.

Something Better: Simulation with non-normal error 
terms (robust estimation, Judge [1998], ch. 22)

Barnett and Zehnwirth [1998] favor it.
Advantages:

Allows for skewed distribution of ln yij.
Perhaps easier to see trends

Disadvantages:
Linearity compromised, i.e., ln(Ay) ≠ A ln(y).

ln(x ≤ 0) undefined.

Something Better: Simulation with non-normal error 
terms (robust estimation, Judge [1998], ch. 22)

ijjiij rfx ey +++= lnlnlnln
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The Ultimate QuestionThe Ultimate Question

Last column of rectangle is ultimate increment.
There may be no observation in last column:

Exogenous information for late parameters  fj or fjβ.
Forces the actuary to reveal hidden assumptions.
See Halliwell [1996b] 10-13 and [1998] 79. 

Risky to extrapolate a pattern.  It is the hiding, 
not the making, of assumptions that ruins the 
actuary’s credibility.  Be aware and explicit.
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There may be no observation in last column:
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Linear TransformationsLinear Transformations

Results:        and                
Interesting quantities are normally linear:

AY totals and grand totals
Present values 

Powerful theorems (Halliwell [1997] 303f):

The present-value matrix is diagonal in the 
discount factors.
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Transformed ObservationsTransformed Observations
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Use the BLUE formulas on slide 7.
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Example in ExcelExample in Excel
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CovarianceCovariance

An example like the introductory one:
From Halliwell [1996a], 436f and 446f.
Prior expected loss is $100; reaches ultimate at age 2.  
Incremental losses have same mean and variance.
The loss at age 1 has been observed as $60.
Ultimate loss: $120 CL, $110 BF, $100 Prior Hypothesis.

Use covariance, not the loss at age 1, to do 
what the CL method purports to do.

An example like the introductory one:
From Halliwell [1996a], 436f and 446f.
Prior expected loss is $100; reaches ultimate at age 2.  
Incremental losses have same mean and variance.
The loss at age 1 has been observed as $60.
Ultimate loss: $120 CL, $110 BF, $100 Prior Hypothesis.

Use covariance, not the loss at age 1, to do 
what the CL method purports to do.
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Generalized Linear ModelGeneralized Linear Model
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ConclusionConclusion
Typical loss reserving methods:

are primitive linear statistical models
originated in a bygone deterministic era
underutilize the data

Linear statistical models:
are BLUE
obviate stochastic regressors with covariance
have desirable linear properties, especially for 
present-valuing
fully utilize the data
are versatile, of limitless form
force the actuary to clarify assumptions

Typical loss reserving methods:
are primitive linear statistical models
originated in a bygone deterministic era
underutilize the data

Linear statistical models:
are BLUE
obviate stochastic regressors with covariance
have desirable linear properties, especially for 
present-valuing
fully utilize the data
are versatile, of limitless form
force the actuary to clarify assumptions



27

ReferencesReferences
Barnett, Glen, and Ben Zehnwirth, “Best Estimates for Reserves,”

PCAS LXXXVII (2000), 245-321.
Bulmer, M.G., Principles of Statistics, Dover, 1979.
Halliwell, Leigh J., “Loss Prediction by Generalized Least Squares, 

PCAS LXXXIII (1996), 436-489.
“ , “Statistical and Financial Aspects of Self-Insurance Funding,”
Alternative Markets / Self Insurance, 1996, 1-46.
“ , “Conjoint Prediction of Paid and Incurred Losses,” Summer 
1997 Forum, 241-379.
“ , “Statistical Models and Credibility,” Winter 1998 Forum, 61-
152.

Judge, George G., et al., Introduction to the Theory and Practice of 
Econometrics, Second Edition, Wiley, 1988.

Pindyck, Robert S., and Daniel L. Rubinfeld, Econometric Models and 
Economic Forecasts, Fourth Edition, Irwin/McGraw-Hill, 1998.

Venter, Gary G., “Testing the Assumptions of Age-to-Age Factors,”
PCAS LXXXV (1998), 807-847.

Barnett, Glen, and Ben Zehnwirth, “Best Estimates for Reserves,”
PCAS LXXXVII (2000), 245-321.

Bulmer, M.G., Principles of Statistics, Dover, 1979.
Halliwell, Leigh J., “Loss Prediction by Generalized Least Squares, 

PCAS LXXXIII (1996), 436-489.
“ , “Statistical and Financial Aspects of Self-Insurance Funding,”
Alternative Markets / Self Insurance, 1996, 1-46.
“ , “Conjoint Prediction of Paid and Incurred Losses,” Summer 
1997 Forum, 241-379.
“ , “Statistical Models and Credibility,” Winter 1998 Forum, 61-
152.

Judge, George G., et al., Introduction to the Theory and Practice of 
Econometrics, Second Edition, Wiley, 1988.

Pindyck, Robert S., and Daniel L. Rubinfeld, Econometric Models and 
Economic Forecasts, Fourth Edition, Irwin/McGraw-Hill, 1998.

Venter, Gary G., “Testing the Assumptions of Age-to-Age Factors,”
PCAS LXXXV (1998), 807-847.


		2006-09-14T09:08:58-0400
	Leigh J. Halliwell
	I am the author of this document




