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Introductory Example
A pilot is flying straight from X to Y. Halfway along (s)he
realizes that (s)he’s ten miles off course. What does (s)he

do?




Linear (Regression) Models

“Regression toward the mean” coined by Sir Francis
Galton (1822-1911).

The real problem: Finding the Best Linear Unbiased

Estimator (BLUE) of vector y,, vector y, observed.

y = XB + e. X is the design (regressor) matrix. f3
unknown; e unobserved, but (the shape of) its variance

IS known.

For the proof of what follows see Halliwell [1997] 325-
336.



The Formulation
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Trend Example
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The BLUE Solution
92 = Xzﬁ +(I)21(I)1‘11(y1 — X1ﬁ)
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Process variance
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Special Case: @ = |,

X,B

Yo

B=(X;%, "X}y,

Var [Y2 _92]: Gzltz + X, Var [ﬁ]X’Z

Var [B]= o2(x; X, )"



Estimator of the Variance Scale
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Remarks on the Linear Model

Actuaries need to learn the matrix algebra.
Excel OK; but statistical software Is desirable.

X, of is full column rank, X,; non-singular.

/N X
Linearity Theorem: AY, = AY,

Model is versatile. My four papers (see References)

describe complicated versions.
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The Problem of Stochastic Regressors

e See Judge [1988] 571ff; Pindyck and Rubinfeld [1998]
178ff.

e |f X Is stochastic, the BLUE of B may be biased:

B = (X'X)'X'y
= (X'X)'X'(Xp +¢e)
= B + (X'X ) 'X'e
elB]= 5 + EJ(x ' x )yixe]
+ B+ ElXXY'x E[e]= s
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I'ne Clue: Regression toward the Mean

10 Intercept or not to Intercept?
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What to do?

e Ignore It.

e Add an intercept.

o Barnett and Zehnwirth [1998] 10-13, notice that the
significance of the slope suffers. The lagged loss may

not be a good predictor.

 Intercept should be proportional to exposure.

e EXxplain the torsion. Leads to a better model?
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Galton’s Explanation
e Children's heights regress toward the mean.

o [all fathers tend to have sons shorter than themselves.

o Short fathers tend to have sons taller than themselves.

e Height = “genetic height” + environmental error

e A son inherits his father’'s genetic height:
.. Son’s height = father's genetic height + error.
e A father’s height proxies for his genetic height.

o« A tall father probably is less tall genetically.
o A short father probably is less short genetically.

e Excellent discussion in Bulmer [1979] 218-221.

Cf. also sportsci.org/resource/stats under “Regression to Mean.”
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The Lesson for Actuaries

e Loss Is a function of exposure.

e Losses In the design matrix, I.e., stochastic
regressors (SR), are probably just proxies for
exposures. Zero loss proxies zero exposure.

e The more a loss varies, the poorer it proxies.
e The torsion of the regression line Is the clue.

e Reserving actuaries tend to ignore exposures —
some even glad not to have to “bother” with them!

e SR may not even be significant.

e Covariance Is an alternative to SR (see later).

e Stochastic regressors are nothing but trouble!
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Reserving Methods as Linear Models

e The loss rectangle: AY; at age |

e Often the upper left triangle Is known; estimate
lower right triangle.

e The earlier AYs lead the way for the later AYs.

e The time of each ij-cell is known — we can
discount paid losses.

e Incremental or cumulative, no problem. (But
variance structure of incrementals is simpler.)
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The Basic Linear Model

y; =a% f.r+e, ij =1
J

y;; Incremental loss of 1j-cell

a;; adjustments (if needed, otherwise = 1)

X; exposure (relativity) of AY;

f; Incremental factor for age J (sum constrained)
I pure premium

e;; error term of 1j-cell
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Familiar Reserving Methods

Y = (X)B)+e

y; =(fNxr)+e, quasiChain Ladder
= x.fjr)(l )+e,; Bornhuetter - Ferguson

Yi —( |
Yij = (Xi fj )(r)+ €} Stanard - Buhlmann
Yij = (Xi )(fjr)+ e; Additive

BF estimates zero parameters.

BF, SB, and Additive constitute a progression.
The four other permutations are less interesting.
No stochastic regressors
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Why not Log-Transform?

Iny; =Inx +Inf, +Inr+eg,

e Barnett and Zehnwirth [1998] favor it.

e Advantages:
o Allows for skewed distribution of In ;.
o Perhaps easier to see trends

e Disadvantages:
o Linearity compromised, i.e., In(Ay) # A In(y).
e In(x <0) undefined.

e Something Better: Simulation with non-normal error
terms (robust estimation, Judge [1998], ch. 22)
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The Ultimate Question

e Last column of rectangle is ultimate increment.

e There may be no observation in last column:
« Exogenous information for late parameters f; or f;f3.

« Forces the actuary to reveal hidden assumptions.
o See Halliwell [1996b] 10-13 and [1998] 79.

e Risky to extrapolate a pattern. It is the hiding,
not the making, of assumptions that ruins the
actuary’s credibility. Be aware and explicit.
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Linear Transformations

e Results: Y, and Var [y , =Y, ]
e Interesting quantities are normally linear:
o AY totals and grand totals

o Present values
e Powerful theorems (

E[AY,.

Halliwell [1997] 303f):
= AE [9 2 ]

Var [AY2 _Ayz:

e The present-value
discount factors.

= AVar [ 2 92]A’
matrix Is diagonal Iin the
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Transformed Observations

__A_y_1__ _ _A_)(_l_ ,B‘I‘ _A_el |
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If Al exists, then the estimation is unaffected.
Use the BLUE formulas on slide 7.



=xXample In Excel




Covariance

e An example like the introductory one:

o From Halliwell [1996a], 436f and 446f.

o Prior expected loss is $100; reaches ultimate at age 2.
Incremental losses have same mean and variance.

o The loss at age 1 has been observed as $60.
o Ultimate loss: $120 CL, $110 BF, $100 Prior Hypothesis.

e Use covariance, not the loss at age 1, to do
what the CL method purports to do.
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Generalized Linear Model

y

ARt

y, =(0.5-100)1) + (po? 152 ) (60— (0.5-100)(1))
=50+10p

Varly, -y, |= (1— 0° )02

Result: p =1 CL, p =0 BF, p =-1 Prior Hypothesis
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Conclusion

e Typical loss reserving methods:
o are primitive linear statistical models
o Originated in a bygone deterministic era
o underutilize the data

e Linear statistical models:
e are BLUE
e Obviate stochastic regressors with covariance

e have desirable linear properties, especially for
present-valuing

e fully utilize the data
e are versatile, of limitless form

e force the actuary to clarify assumptions
26
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