M

CAMAR SPRING 2013 MEETING MAY 30, 2013

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

MADISON CONSULTING GROUP, INC. Leslie R. Marlo, FCAS, MAAA

1

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Discussion Outline

1. Introduction

2. Modeling

- Approach
- Model Fit
- Data

3. Examples

- **Profitability Analysis**
- Loss Reserving

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Introduction

How Did I Get Here???

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Introduction

- A Word on Statistical Packages
 - JMP/SAS
 - **R**
 - Others?

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Modeling

- Approach
 - Start with first principles
 - Linear Models vs. Generalized Linear Models

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Modeling – How Well Does the Model Fit?

•
$$\mathbf{R}^2 = \mathbf{1} - \frac{\text{Sum of Squares (errors)}}{\text{Sum of Squares (total)}}$$

- Measures amount of variability explained by the model relative to the total variability
- Useful for aggregated data, not so much when looking at granular data

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Modeling – How Well Does the Model Fit?

 Bayesian Information Criterion (BIC) = k * ln(n) - 2 * ln(L)

where:

L = maximum of likelihood function of the model

k = number of parameters including intercept

n = number of observations

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Modeling – How Well Does the Model Fit?

 Akaike Information Criterion (AIC) = 2 * k - 2 * ln(L)

where:

L = maximum of likelihood function of the model

k = number of parameters including intercept

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Modeling – How Well Does the Model Fit?

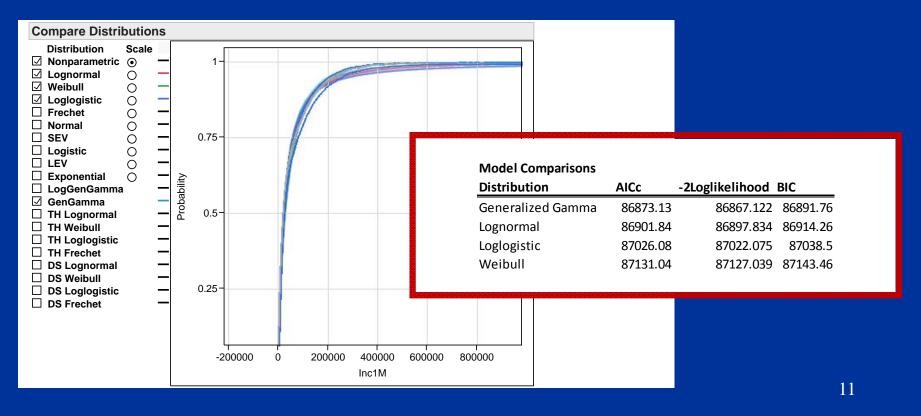
- BIC and AIC do not tell you if model is a good fit in the absolute but do tell you tradeoff between fit and complexity
- Both penalize for using too many parameters
- Want lowest value out of a set of models

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Modeling – How Well Does the Model Fit?

• Deviance = -2 * $[\ln(p(y|\hat{\theta}_{o})) - \ln(p(y|\hat{\theta}_{s}))]$ \uparrow Tested Perfect

Model


Perfect Model

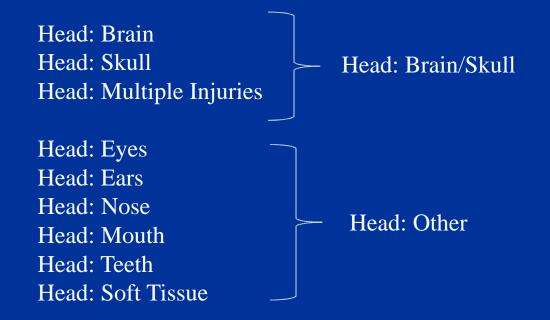
• Want lowest value here as well

MC S

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

• Example: Reported Indemnity Severity Limited to \$1M

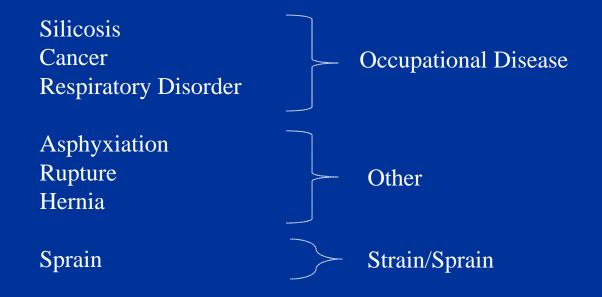
EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE


Modeling – Data Considerations

- Exclude \$0 claims
- Consider whether to cap losses
- Granularity likely provides too much detail, e.g.
 - Age at time of accident
 - Injured body part
 - Nature of injury

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Modeling – Data Considerations


• Example: Workers Compensation Injured Body Part

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Modeling – Data Considerations

• Example: Workers Compensation Nature of Injury

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Profitability Analysis

- The Scenario:
 - Fairly new commercial lines writer experiencing rapid growth
 - Company trying to determine "true" profitability of commercial auto trucking exposure

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Profitability Analysis

- The Challenge:
 - Limited data

- The Response:
 - Management information to help strategic decisions about the book

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Profitability Analysis

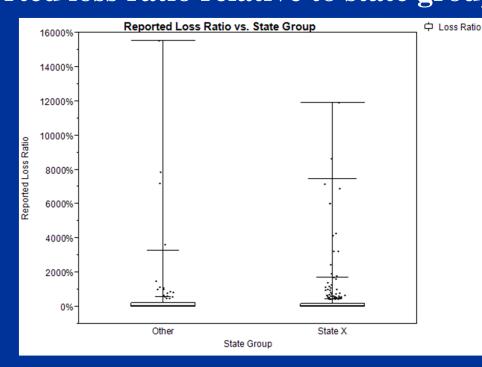
- Ability to link policy and claims run data
- Define model to predict loss ratio based on individual characteristics → none were good fits



• Examine impact of characteristics to provide at least high level information on the book

ightarrow

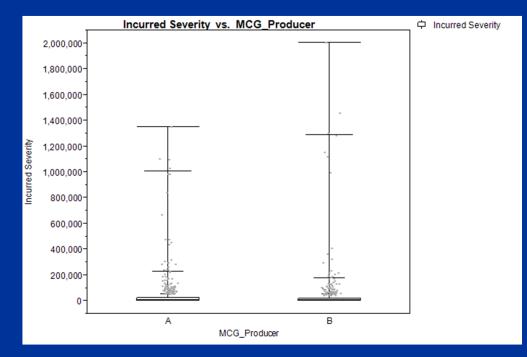
EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE


Examples – Profitability Analysis Average severity relative to state grouping

ightarrow

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Profitability Analysis Reported loss ratio relative to state grouping

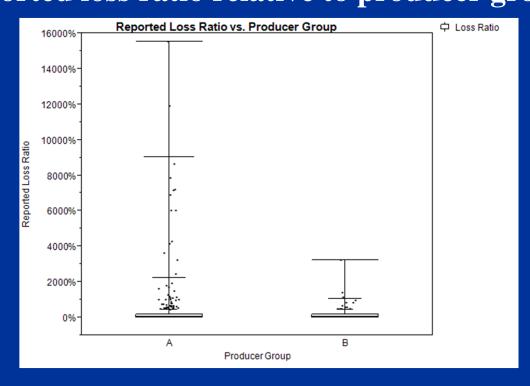


Although State X severities are more variable, pricing appears to be better (if still not so good).

ightarrow

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Profitability Analysis Average severity relative to producer grouping



20

ightarrow

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Profitability Analysis Reported loss ratio relative to producer grouping

Producer B group (smaller producers) have much more stable results.

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Profitability Analysis

- Observations:
 - Poor model fits may be due to not having appropriate / enough claims characteristics
 - High level information on state and producer groupings could be compiled without use of statistical packages, but software provides efficiencies and a means for communicating the results.

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Loss Reserving

- The Scenario:
 - Workers compensation writer, recently expanding in new states
 - Historically very strong case reserving
 - Numerous operational changes in last few years → changing case reserve adequacy and settlement rates?

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Loss Reserving

- The Challenge:
 - Divergent methodology results
 - Berquist-Sherman applications relatively high

- The Response:
 - A "new" perspective on Frequency/Severity

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Loss Reserving

- Based on individual claims runs, define a model to predict claim severity based on the historical claims characteristics
- Indemnity only, non-\$0 claims

Accident Year

Gender

	Industr
Body Part	
	Nature

State

Age at Injury

Injury Code

of Injury

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Loss Reserving

• Final Model: GLM Gamma with log link function

log(Expected Severity) = α + (β_1 * Acc. Year) + β_2 + β_3 + β_4 + β_5 + β_6 + β_7

where:

 α = intercept

β = parameters for each claims characteristic
Accident Year, Injury Code, Nature of Injury, Body Part,
Age, Gender, Industry

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Loss Reserving Sample Output from R

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
Intercept	-76.916310	15.667280	-4.909	9.46E-07	
AY	0.044366	0.007802	5.687	1.38E-08	
InjCdPP	-0.495832	0.323430	-1.533	0.125337	
InjCdPTD	2.165105	1.131679	1.913	0.055789	
InjCdTT	-0.909945	0.303503	-2.998	0.002731	
NatureBurn	-0.854137	0.410225	-2.082	0.037389	
NatureFracture	-0.939986	0.302350	-3.109	0.001889	
NatureStrain/Sprain	-1.531418	0.301480	-5.080	3.94E-07	
PartHead_Brain/Skull	1.997440	0.267083	7.479	8.99E-14	
PartMultiple	1.189996	0.121157	9.822	< 2E-16	
AgeMid2	0.137531	0.052541	2.618	0.008885	
AgeOld	-0.465194	0.229164	-2.030	0.042420	
AgeYoung	-0.458560	0.073918	-6.204	6.02E-10	

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Examples – Loss Reserving

- **Observations:**
 - Multiple models tested
 - State was not considered significant
 - Gender and Industry were added in subsequently to improve results
 - Method = sum of predicted severities for known claims + IBNR provision using average predicted severity
 - Method result validated Berquist-Sherman results

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Discussion / Questions

EXAMINING LOSS TRENDS USING STATISTICAL MODELING: A BEGINNER'S PERSPECTIVE

Thank You!

leslie.marlo@madisoninc.com Madison Consulting Group