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Agenda

Deterministic methods
Statistical methods
Stochastic methods
Why stochastic reserving?

Focus on usability and ideas behind the concepts!
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Deterministic Methods

Characteristics:

 Exactly reproducible

 Yields only an expected value

 Used since: ? (for a long time…)



Slide 4Michael Bamberger, PricewaterhouseCoopers

November 2009

Chain Ladder

Notation:

i = accident year

k = development year

Di,k = incremental claim amounts

Ci,k = cumulative claim amounts

Algorithm:

1 nki

Development years

A
cc

id
en

t
ye

a
rs

1

1

n

n

kikki

kn

j
kj

kn

j
kjk CfCCCf ,1,

1
,

1
1,

ˆ  








 

k

i



Slide 5Michael Bamberger, PricewaterhouseCoopers

November 2009

Chain Ladder

Pros:

 The whole historical triangle is taken into account

 Intuitive and easy to implement

 Can easily be adjusted by changing weights of prior years

 No further external data is needed

Cons:

 Late development periods and recent accident years: little data available

 No evaluation of the quality of the reserve estimate
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Munich Chain Ladder (MCL)

• Problem: Either data from paid or from incurred triangle can be used as an
input for most of the reserving methods.

• Ultimate shouldn’t depend on whether you reserve on your paid or on your
incurred triangle.

• Goal of MCL: Close gap between paid and incurred ultimate.

• MCL doesn’t force the ultimates to be equal!

• Different approach from René Dahms (“A Loss Reserving method for
incomplete data”): projected ultimates from paid and incurred are forced to
be equal.
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Munich Chain Ladder

Pros:

 Ultimates based on paid and incurred data

 Gap between paid & incurred ultimates becomes closer

Cons:

 Implementation of MCL more difficult than CL

 No evaluation of the quality of the calculated reserves

Mack & Quarg (2004): Munich Chain Ladder - A reserving method that
reduces the gap between IBNR projections based on paid losses and
IBNR projections based on incurred losses
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Numerical example: Paid triangle
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Numerical example: Incurred triangle

Incurred
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Ultimates for different deterministic models

377'448355'953381'897350'781381'391355'530382'128350'106Total

28'69326'72229'82325'45929'54227'43229'55525'6902008

31'31427'65334'03024'28134'15925'71634'18324'1982007

27'61426'19527'62526'19927'61426'20027'61526'1901996

29'29727'83129'29727'83129'29727‘83129'29727'8311995

MCL inc.MCL paidCC inc.CC paidB-F inc.B-F paidCL inc.CLpaid
In CHF
1000

… … … … …

• “Nice” portfolio: Similar results for all methods

• MCL minimizes the gap between paid and incurred
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Statistical methods

Characteristics:

 Exactly reproducible

 Yields expected value of ultimate = first moment of distribution

 Yields prediction variance of ultimate = second moment of distribution

 Since 1990
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Statistical methods: an overview

 Deterministic models enriched with an underlying stochastic model

• Statistical Chain Ladder (Mack)

• Statistical Bornhuetter Ferguson

• Statistical Munich Chain Ladder

 Log Regression Models and GLM

• Zenwirth Models (see presentation by Spencer Gluck)

 Bayesian Models (Benktander, Cape Cod, Credibility models)

 Special case: Distributional models (Log-normal model -> SST)
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Different kind of errors

Best estimate

Random error

Random error + Parameter error =
Prediction error

Prediction error + Model error

calculable not calculable
(only backtesting)

Reserve amount
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Mack Chain Ladder

Assumptions:
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Ci,k are independent for different accident years i

Development factors are the same for all accident years

Accident year i is independent of accident year j

Future development depends only on the diagonal value

Variance is proportional to the expectation with the same factors for

all accident years
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Error calculation for Mack Chain Ladder

It is straightforward to find unbiased estimators for the parameters and :
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Error calculations for stochastic Chain Ladder

Notation:

• Estimated ultimate for accident year i (at time n):

• Theoretical best estimate based on the stochastic model:

• Sigma-Algebra with information to date:

Mean Square error of prediction of the ultimate :

C ni
ˆ

,

Prediction error = Random error + Parameter error
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Error calculations for stochastic Chain Ladder

Based on the estimators and one can give an estimator of the mean
square error of prediction:

Prediction error = Random error + Parameter error

This formula can be implemented and calculated while running Chain
Ladder => we have a measure of uncertainty for our ultimate estimation!
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Mack Chain Ladder

Pros:

 Can easily be adjusted by changing weights of prior years

 No external data is needed

 Uncertainty of ultimate can be estimated by error calculations

 Symmetric prediction intervals can be determined

Cons:

 Error estimations require further implementation work

 Can only calculate a second moment => quantiles can’t be determined

Mack (1993): Distribution-Free Calculation of the Standard Error
of Chain Ladder Reserve Estimates
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Mack chain ladder – Error calculations for paid data

0.56%1'9570.61%2'1360.83%2'898350'105Total

4.14%1'0641.37%3534.36%1'12125'6892008

3.25%7871.17%2833.46%83624'1982007

0.36%1000.28%770.45%12628'0271997

0.16%410.15%400.22%5726'1901996

in % of
Ult.

Rand.
error

in % of
Ult.

Estim.
error

in % of
Ult.

Pred.
errorUltimate

In CHF
1000

… … … … …
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Stochastic methods

Characteristics:

 Monte Carlo simulation

 not reproducible (only asymptotically)

 yields full distribution of ultimate

 First appeared in 1979, main improvements since 1999



Slide 22Michael Bamberger, PricewaterhouseCoopers

November 2009

Stochastic methods: an overview

 Bootstrapping methods

• Chain Ladder Bootstrap

• Non-parametric bootstrap

• Parametric bootstrap

 Markov Chain Monte Carlo methods

• Metropolis Hastings

• Gibbs

 Scenario generation
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Chain Ladder bootstrap
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Chain Ladder bootstrap

2 3
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Chain Ladder Bootstrap
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Mack chain ladder – Chain Ladder Bootstrap

1.30%4'551350'0100.83%2'898350'105Total

7.21%1'85625'7424.36%1'12125'6892008

5.20%1'25424'1063.46%83624'1982007

4.10%1'14828'0150.45%12628'0271997

4.27%1'11626'1640.22%5726'1891996

in % of
Ult.Pred. errorBS Ult.

in % of
Ult.Pred. errorMack Ult.

Paid
triangle

… … …
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Chain Ladder Bootstrap

Pros:

 We obtain the empirical distribution of the ultimate

 We can calculate average, median and all other quantiles

 Asymmetric prediction intervals can be determined

 Easy to implement

 Yields empirical distribution for other figures (e.g. claim development)

Cons:

 The results strongly depend on how you define your residuals. There
are a lot of different approaches – which one to choose?

England & Verrall (1999): Analytic and bootstrap estimates of prediction
errors in claims reserving.
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Prediction intervals for the total Ultimate

In general: 95% prediction interval is of interest.

 Statistical models: Standard error of prediction can be used. For Mack
Chain Ladder we use the following approach:

 Stochastic models: The empirical distribution of the total ultimate can be
used. For the Chain Ladder Bootstrap we would have:
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Prediction Intervals - comparison

340'000'000 345'000'000 350'000'000 355'000'000 360'000'000 365'000'000

95% conf.int. Bootstrap

95% conf.int. Mack CL

Bootstrap reserve

CL reserve
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More sophisticated stochastic methods I

 Multiline Bootstrap

• So far: Only the reserve for one line of business calculated

• Goal: Empirical aggregate reserve distribution of several LoBs

• Multiline Bootstrap accounts for dependencies between different LoBs

• Idea: Simultaneous resampling of residuals

Kirschner, Kerley & Isaacs (2002): Two approaches to calculating correlated
reserve indications across multiple lines of business.
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More sophisticated stochastic methods II

 Scenario generation

• So far: Assumption that inflation behaves in the future as in the past.
What if this assumption is wrong?

• In models based on scenario generation, different economic scenarios
(regulars and extremes) are considered

Stephen D’Arcy, Alfred Au, Liang Zhang (2007): Property-Liability Insurance
Loss Reserve Ranges Based on Economic Value (online-calculation
available)



Slide 32Michael Bamberger, PricewaterhouseCoopers

November 2009

Scenario generation

Base Case: Current inflation rate 3.5%, inflation volatility 2%
High Inflation: Current inflation rate 8%, inflation volatility 5%

Mean 1’064’400, Stdev 25’300
Mean 1’137’900, Stdev 76’100
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Why stochastic Reserving?

 Solvency II

 IFRS 4 Phase 2

 Pricing

 Analysts

 Rating Agencies

 M&A
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Reserving methods – a landscape

Added value
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Stochastic Reserving is not more precise,

but it determines its own precision.


