
Big Data
Rethink Algos and Architecture

Scott Marsh
Manager R&D

Personal Lines Auto Pricing

Agenda

• History
• Map Reduce
• Algorithms

History

• Google talks about their solutions to their problems
– Map Reduce: http://research.google.com/archive/mapreduce.html

– Google File System: http://research.google.com/archive/gfs.html

– Big Table: http://research.google.com/archive/bigtable.html

• Yahoo says “Me too! Let’s Share!”
– Reimplements in Java and Open Sources the code
– Calls it Hadoop – Named after a stuffed elephant
– Two components: HDFS & MR

• Facebook and others start building on top of HDFS/MR
– Write a SQL to MR compiler on Hadoop called HIVE

3

Why HDFS

• Annualized Failure rate of a hard drive? ~3%
• How many machines? 4,500
• How many hard drives per machine? 4
• How many total hard drives? 18,000
• How many hard drives do I expect to lose per year? 540

– Per week? ~10
• Houston we have a problem! Have to plan to lose data every

day!

4

How to reduce the probability of failure?

• Replication to the rescue
• HDFS implements a default replication factor for data of 3X
• Even with a large cluster the probability of failure of 3 nodes within

the timeframe that it take Hadoop to re-replicate is very low.
• It is left as an exercise to the reader:

Assuming it takes Hadoop 1 minute to recognize and re-replicate
the missing data to a new node what is the annualized probability
of data loss? Assume the cluster has the same characteristics as
the original Yahoo cluster.

• Bottom line: Replication fixes data loss worries at the software level

5

HDFS Architecture

6

Name Node

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

/home/foo/bar.txt ……….1024MB

Block1
Block 2
Block 3
…
Block 8

/home/foo/bar.txt is broken into 128MB blocks

B1

B1

B1

B2B2

B2

B3

B3

B3

B4

B4

B4

B5B5

B5

B6 B6

B6

B7

B7

B7

B8 B8

B8

Rack 1 Rack 2

MapReduce

7

Node 1

Mapper

Node 2

Mapper

Node 3

Mapper

Node 1

Reducer

Node 2

Reducer

Node 3

Reducer

Map

Shuffle

Reduce

Map Reduce More Concretely

• Mappers receive local data
• The mapping function is the same function for each piece of

data it receives
• The output is a set of tuples <key, value>
• These <k,v> pairs are shuffled across the network s.t. all of the

<k,v> pairs with the same key are received by the same reducer
• The reducer then runs a function over the set of <k,v> pairs also

emits a new set of <k,v> pairs which are then stored on HDFS
on the local node

8

Is your head spinning, did I just speak in Greek?

Map Reduce an Example (Wordcount)

9

<k1, {Baa baa black sheep
Have you any wool?
Yes sir, yes sir}>

<k1, {Three bags full
One for my master
And one for my dame}>

<k2, {And one for the little boy
That lives down the lane}>

<baa,1> <baa,1> <black,1>
<sheep,1> <have,1> <you,1>
<any,1> <wool,1> <yes,1>
<sir,1> <yes,1> <sir,1>

<three,1> <bags,1> <full,1>
<one,1> <for,1> <my,1>
<master,1> <and,1> <one,1>
<for,1> <my,1> <dame,1>

Function(<key, val>) = string split -> lowercase -> emit <word, 1>Map

<and,1> <one,1> <for,1>
<the,1> <little,1> <boy,1>
<that,1> <lives,1> <down,1>
<the,1> <lane,1>

<baa,1>
<baa,1>

<the,1>
<the,1>

<one,1>
<one,1>
<one,1>

Shuffle

Reduce

… etc…
Function(<key, val>) = for all keys sum(val) emit <word, sum(val)>

<baa,2> <the,2> <one,3>… … etc

Why Should I Care About MapReduce?

• Why should I want to constrain myself to a narrow programming
pattern of Maps and Reduces?

10

• It takes too long to bring the data to the program, so flip the
paradigm, bring the program to the data!

• Data locality is important! Move the computation close to where
the data is stored.

Single
Machine Cluster

Storage Raid 0 SSD HDD
of Machines 1 50
of Drives /
Machine 1 8
Total Drives 1 400
Cost / GB Storage Expensive Cheap
Throughput GB/s 0.8 16
Time to Read 10TB 210 Min 10 Min

What do I get if I am willing to adopt Map Reduce?

11

“Programs written in this functional style are automatically
parallelized and executed on a large cluster of commodity
machines. The run-time system takes care of the details of
partitioning the input data, scheduling the program’s execution
across a set of machines, handling machine failures, and managing
the required inter-machine communication. This allows
programmers without any experience with parallel and distributed
systems to easily utilize the resources of a large distributed system.”

-Jeffrey Dean and Sanjay Ghemawat

I don’t know, this still sounds too hard!

• Hadoop and MR are just the “operating system” not the
ecosystem

• I know SQL, I don’t want to learn Java to write job on Hadoop
– Ah, HIVE is a SQL to Map Reduce Compiler

• I already know Python, R, Insert your favorite language here
– Ah, Let me introduce you to the Streaming Interface

12

The ecosystem is BIG and it is changing fast

• Buzz Words
– YARN (I got a bunch of stuff to run on this cluster, how do I keep

the kids in the back seat from punching each other)
– Spark (More liberal programming construction / stays in memory)
– Tez (Why do I keep writing this stuff to disk just to read it in the next

phase)
– MLLIB (Let’s predict stuff!)
– HBASE (NOSQL)

13

Map Reduce versus Tez

14

Real World Use Case

• NY Times
• Archive of images of every page of every issues of the

newspaper between 1851–1980
• 4TB raw data
• Wanted to convert to PDFs
• 100 Node Hadoop Cluster in 24 hours
• Generated 1.5TB of PDF output

15

I want to learn more, where to I go next

• Download a VM (both the major commercial Hadoop vendors
have a prepackage machine image you can run)

• Read “The Definitive Guide to Hadoop”
• Download the Airlines Dataset, learn how to process it with

HIVE*

16

* http://randyzwitch.com/big-data-hadoop-amazon-ec2-cloudera-part-1/

Questions

17

