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Primary Causes of US Non-Life Insurance Insolvencies

Primary Causes of P&C Company Impairments
(1969-2002)

All Other, 9.8%

Impairment of

an Affiliate, 3.7% — Deficient Loss

— Reserves, 37.2%

Reinsurance Failure, 3.7% ~

All Significant Change, 5.0%

/

Catastrophic Losses, 6.9% / | e Rapid Growth, 17.3%

0,
Overstated Assets, 7.8% Alleged Fraud, 8.5%

The A.M. Best findings are consistent with those in “Failed Promises: Insurance Company
Insolvencies,” a 1990 U.S. Congressional. That report attributed insurer failures to under-reserving,

underpricing, insufficiently supervised delegation of underwriting authority, rapid expansion, reckless
management and abuse of reinsurance.
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US Industry RBC Requirements
Source: NAIC

In Millions of USD

No Explicit 100 YearEQ & 250 YearEQ &

Cat Charge 100 Wind 100 Wind

Amount (%) Amount (%) Amount (%)
Insurance Affiliates RO 49825  (15%) 52,950 (13%) 52,950 (12%)
Fixed Income R1 8650  (3%) 8514 (2%) 8514 (2%)
Equity Investments R2 95576  (28%) 95423 (23%) 95423 (22%)
Credit R3 13675  (4%) 13,675 (3%) 13,675 (3%)
Reserve R4 106,208  (31%) 106,208 (25%) 106,208 (25%)
Premium R5 67,574 (20%) 62,079 (15%) 62,079 (14%)
Earthquake R6 0 (0%) 28687  (7T%) 40,855 (10%)
Hurricance R7 0 (0%) 49006 (12%) 49,006 (11%)
Required Capital 208,706 219, 454 221976
Actual Capital 826,627 826,627 826,627
Required / Actual Capital 3.96 377 3.72

Required Capital = R0 + (R17 + R2? + R3°+ R4 + R5% + R6* + R79)"*
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Capital Requirements in Japan
Japan FSA Solvency Margin Ratio Calculations (FY 2014)

Category

Insurance Risk

3rd Sector (Medical)
Interest Rate Risk
Investment Risk

Risk Management Control

Cat Risk

R1

R3
R4
R&
R&

Company A

Amount (%)

1,627

256
8,603
262

2,604

(12%)
(0%)
(2%)

(64%)
(2%)

(20%)

Company B

Amount (%)
1,767 (20%)
0 (0%)
233 (3%)
5121 (57%)
176 (2%)
1,678 (19%)

Company C

Amount (%)

1,153

184
6,140
181

1,580

(12%)
(0%)
(2%)

(66%)
(2%)

(17%)

In Millions of of USD (1 USD = 100 JFY)

Company D

Amount (%)

985
0

94
2,273
78
553

(25%)
(0%)
(2%)

(57%)
(2%)

(14%)

Individual or Organization

Japan Trustee Services Bank, Ltd.
(Trust Account)

Moxley & Co

The Master Trust Bank of Japan, Ltd.
(Trust Account)

State Street Bank and Trust Company
505223

Meiji Yasuda Life Insurance Company

State Street Bank and Trust Company

Number of
shares held
(thousands)

104,755

83,045

70,922

52,503

51,199

43,820

Tokio Marine & Nichido Fire Insurance
Co., Ltd.

42,553

The Bank of Tokyo-Mitsubishi UF],
Ltd.

Nippon Life Insurance Company

36,686

27,066

Mitsui Sumitomo Insurance Co., Ltd.

25,739

Company A

Company B

Company C

Company D

Required Capital 11,873 7,482 8,189 3,194 30,749
Actual Capital 44 626 26,833 28,679 12,856 110,995
Required / Actual Capital 3.76 3.58 3.26 402 3.61

Required Capital = ((R1 + R2)* + (R3+ R4)*)"* + R5 + R6



Capital Model

Reserve Risk

Incoming
Reserve

Reserves

on new

Risk Business
Attritional
Losses
Underwriting RlSk \ Sir’utélgéilon /

Probability Market Risk

— |l > —— Default
Risk
Catastrophe Risk / \ \

Catastrophic
Event

Large Loss
Volatility

Operational
Risk

Other Risks

Strategic
Reinsurance Risk

Risk

« Underwriting and reserve risk typically done by line of business.
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Building in Correlation

» For Catastrophe losses, the catastrophe models take care of this.

« Economic scenario files are used to model the asset risk and can include
Inflation indexes for wages, medical costs, construction costs, etc.

— Higher or lower than expected inflation can be used to adjust future
payments up or down

— These indexes can be used to correlate assets and liabilities

» For non-catastrophe losses, correlation is typically modelled using
copulas, indexes, and inflation.
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Introduction to Copulas

» Copulas are used to generate correlated random deviates

» Copulas can be used to correlate:
— two or more losses caused from the same event
— aggregates losses
— claim count distributions
— loss reserves
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The Names

* Right Tailed
— Frank Light
— Normal
- T
— Gumbel
— HRT (Heavy Right Tail) Heavy

« Left Tailed
— Flipped Gumbel
— Flipped HRT (Clayton)
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Sample Data

Snow/Hail/Flood Historical Losses
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Running a Simulation Model

« To simulated losses, you generate a random number, u, and then find the
corresponding loss value using F-1(u), where F(x) is the cumulative
distribution function of x.

* For example, if u=0.83, the corresponding loss would be roughly 90,000.

v v

0 a0k 100K, 140K, 200K, 260K 300k
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Running a Simulation Model

 When you have two losses that are correlated, you generate two random
numbers, u and v, that are correlated. For example, u=.83 and v=.88.

 You then calculated F-1(u) and G-1(v) where F(x) and G(x) are the two
cumulative loss distributions.

» The correlated pair of random numbers are generated using copulas.
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Six Copulas with the Same Correlation

Nomnal Copula Frark Copula HRT Copua

E -

E -

BEEEE
RIBEE B

E

BB -

v
BEEEEE

The above copulas all have the same level of positive correlation as measured by Kendall’s tau and
shows the effect of choosing different copulas
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Normal Copula with different Parameters, “a”
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random number, p = random number, v uses the formula below
NORMDIST(NORMINV(u,0,1)*a + NORMINV(p,0,1)*(1-a"2)"0.5,0,1,1)
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HRT Copula with tail Parameters, “a”
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random number, p = random number, v uses the formula below

1- { 1- ( 1- u)—1/a +[(1_p) (1-U) 1+1/a]—1/(a+1)}—a
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Visually Comparing Fits to Data

 Visually — hard to compare “Side-by-Side”

 Visual Solution: Left Right Tail Concentration Functions that graph the
coordinates of (z, LR(z)) where

LR(z) = (z<=.5)*Pr(v<z|u<v) + (z>.5)*Pr(v>z|u>z)

LR(z) = (z<=.5)*Pr(v<z,u<z)/z + (z>.5)*Pr(v>zu>z)/(1-z)



Understanding Left Right (LR) Graphs
Correlated data

For 100% correlated data LR function = 100%
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Understanding LR Graphs

Uncorrelated data

For uncorrelated dataL(z) =zand R(z) =1-z
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Fitting a Copula

Left / Right (LR) Graph
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Comparing Copula Fits

LR(z)
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Indexes

* An index be used to correlate many different lines of business
* An index can be applied to claim count distributions (contagion)
* An index can be used to correlate severity distributions

* An index can be used to aggregate losses

— Such as a lognormal, with a mean of 1 and cv of 5% that applies to
multiple lines of business

— Such as applying one index to two or more severity distributions

* An index can be used to correlate premiums
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Frequency Correlation

« If you mix a Poisson distribution with a mean, A, by a Gamma distribution with a
mean=1 and variance, c, the resulting distribution is equivalent to a Negative
Binomial with a mean of A and a variance to mean ratio of 1 + cA

— The Gamma distribution can be shared across multiple Poisson distributions. In
this case, the new frequencies coefficient of variations are:

— The CV’s are CV\ = J Vhytec = J(CV n)° + C

— And the correlation between the two frequency distributions is:

1 1 ¢
Py, = | —_“ PNiN; =
1752 1+C/1N1 1+C/1N2 \/1//1]\] +C\/1//1N +C
1 2

— ¢ is sometime referred to as a contagion.




—

Correlating two claim count distributions using shared contagion

« Contagion parameter ¢ = 0.20
* Loss Cause 1 has a Poisson distribution with frequency of 2
« Loss Cause 2 has a Poisson distribution with frequency of 10

Loss Cause 1 Loss Cause 2 Combined

Mean §2.0027 $9.9976 $12.0003 : ;
= 1 6607 5 4605 i New variance to mean ratios should be
cv 83375231 % 54.658342 % 53141295 % — LossCausel: 1+02x2 =14
Minimum $0.0000 $0.0000 $0,0000 . —

— + —
Maxirmurm £14.0000 49,0000 £58.0000 Loss Cause 2: 1+0.2x10=3.0
Samples 100000 100000 100000
Mon-Zero Probability 81,564000 % 09,61.2000 % 00 794000 %
Variance C2.7879729244_C9_ 29.86106428]8

_ || = |2X2 [ 2X D s pay
PNuN: = 1T ey, |1+ Ay, Pra= Ty oaxz (T+2x10— """

40.67 — 2.79 — 29.86
5y ) = — 43.94%
P12 24/2.79 % 29.86 Q

24
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How Correlated are Two Frequency Distributions that share the
same Contagion?

— If the frequency of one of the distributions is zero, then the correlation is zero

— As the frequency of one of the distributions gets close to zero, the correlation
gets smaller.
— As the frequency increases the correlation increases.

— Resulting Correlation
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Example of a Severity Mixing

« An index can be applied to the severity distribution or the aggregate
distribution (called a mixing distribution)

* For the mixing index, M, assume it follows a lognormal distribution with
mean = 1 and variance of m

» The resulting CV of the mixed distribution is

CVis = J (CVs* + m + CVs*m)

26
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Correlation Resulting from a Shared Mixing Distribution
Severity / Aggregate Correlation

The correlation is:

m

Ps,,s, =
\/CV251(1 +m) + m\/CVZSZ(l +m)+m

If you divide the top and bottom by (1 + m) you get the following

(Fm)

_ (1+m)

Ps,,s, = : - ; -
\/CV 51+(1+m)\/CV 52+(1+m)

This looks like the contagion correlation with ¢ = ((1Tm))

27
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Example Correlation Resulting from a Shared Mixing Distribution
Impact of increasing the Aggregate CV

* For a fixed mixing parameter, m (mean of 1, variance of m)
— Correlation decreases as the CV of the severity distributions increase.

m
p (1+m)
S1.52
S (1+m) S2 " (1+4+m)
m 0.1
Cvl

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
CVv2 0% 100.00% 94.92% 83.33% 70.89% 60.19% 51.64% 44.90% 39.56% 35.27% 31.77% 28.87%
10% 94.92% 90.09% 79.10% 67.28% 57.13% 49.01% 42.62% 37.55% 33.47% 30.15% 27.40%
20% 83.33% 79.10% 69.44% 59.07% 50.16% 43.03% 37.42% 32.97% 29.39% 26.47% 24.06%
30% 70.89% 67.28% 59.07% 50.25% 42.67% 36.61% 31.83% 28.04% 25.00% 22.52% 20.46%
40% 60.19% 57.13% 50.16% 42.67% 36.23% 31.08% 27.03% 23.81% 21.23% 19.12% 17.38%
50% 51.64% 49.01% 43.03% 36.61% 31.08% 26.67% 23.19% 20.43% 18.21% 16.40% 14.91%
60% 44.90% 42.62% 37.42% 31.83% 27.03% 23.19% 20.16% 17.76% 15.84% 14.26% 12.96%
70% 39.56% 37.55% 32.97% 28.04% 23.81% 20.43% 17.76% 15.65% 13.95% 12.57% 11.42%
80% 35.27% 33.47% 29.39% 25.00% 21.23% 18.21% 15.84% 13.95% 12.44% 11.20% 10.18%
90% 31.77% 30.15% 26.47% 22.52% 19.12% 16.40% 14.26% 12.57% 11.20% 10.09% 9.17%
100% 28.87% 27.40% 24.06% 20.46% 17.38% 14.91% 12.96% 11.42% 10.18% 9.17% 8.33%

28
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Stochastic Reserving

» Goal of Stochastic Reserving
— Reserve should not be just a point estimation
— Stochastic reserving provides a predictive distribution

— Useful in capital modeling, reserve adequacy analysis, and loss reserve
margins

Projected IBNR Distribution

3E-08 Median Carried IBNR is
is 82M 82.7TM

2.5E-08 W Mean is
83N

65 Percentile
2E-08 is 88M

1.5E-08

1E-08

25,000, 000 irs_ooq 000
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Popular Methods

 Various stochastic reserving methods and authors
— Mack
— Bootstrapping (England and Verrall)
— Generalized Linear Modeling (GLM)
— Merz - Withrich
— Rehman - Klugman
— Roger Hayne
— Daniel Murphy
— Gary Venter
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Mack

« Mack method is one of the most commonly used stochastic reserving
methods.

— Based on chain-ladder Method

— Easy to implement

— No distribution generated

— Assumes accident years (AY) are independent
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Bootstrapping

» Bootstrapping method is a very versatile model for estimating reserve
distribution

— No distributional assumption

— Level of skewness in the data is automatically reflected

— More complex to build

— A deep understanding of underlying model and data is required
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GLM

 GLM method is a flexible generalization of ordinary linear regression
— Allows various distribution assumptions from exponential family
— Able to view trends in three different directions
— Requires manual adjustments after initial fitting
— Has more flexibility in reserve mean selection
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Merz - Wuthrich

« Merz — Wiuthrich method produces one year reserve risk

— Definition: The variance of difference between expected ultimate losses
attimetandt+1

— Based on chain — ladder model assumptions
— Useful for Solvency Il
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Rehman - Klugman

 Rehman — Klugman method produces reserve risk based on ultimate loss
triangle instead of paid/incurred loss triangle

— Assume age-to-age ratios of estimated ultimates follow lognormal
distribution

— Consider correlation in development year (DY) direction
— Not able to normalize each AY by exposure size
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Practical Expectations from Stochastic Reserving

« Expectations of Stochastic Reserving Results from a Practical Reserving
Actuary

— Stochastic mean should be close to deterministic mean
- Otherwise stochastic distribution is not reliable

— CV should be stable from year to year when there is no significant
change in the business nature

— CV should decrease as loss data mature
- Backtesting with calendar year data removed
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Practical Expectations from Stochastic Reserving

« Expectations of Stochastic Reserving Results from a Practical Reserving
Actuary

— Stochastic mean should be close to deterministic mean
- Otherwise stochastic distribution is not reliable

— CV should be stable from year to year when there is no significant
change in the business nature

— CV should decrease as loss data mature
- Backtesting with calendar year data removed
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Backtesting

Loss Triangle

AY/DY 1 2 3 4 5 6 7| 8 9 10 11 12 13 14

2001 19,303,998 41,715,012 29,374,058  11,835301 13,061,422 13,048,744 13,036,421 13,024,451 13,012,834 13,001,568 12,990,653 12,980,088 12,969,873 12,960,005
2002 59,626,420, 128,774,467 90,676,813 100,044,603 110,411,411 110,305,867 110,203,317 110,103,753 110,007,166 109,913,549 109,822,895 109,735,196 109,650,445
2003 3,165,898 6,834,223 13,180,672 14,542,236 16,048,990 16,033,878 16,019,201 16,004,957 15,991,146 15,977,766 15,964,816 15,952,296

O rl g I n al 2004 1,019,259 6,021,750, 11,613,405 12,812,964 14,140,428 14,127,254 14,114,463  14,102,054| 14,090,026 14,078,378 14,067,108
2005 4,569,334 26,995,449 52,062,955 = 57,440,425 63,391,256 63,332,775 63,276,008, 63,220,952 63,167,602 63,115,954

L OS S 2006 19,167,417 113,240,163 218,393,728 240,950,468 265,912,203 265,669,299 265,433,585 265,205,042 264,983,651

TI’I an g I e 2007 2,704,564, 15,977,804 30,816,164 33,999,200 37,521,629 37,487,640 37,454,666 37,422,702
2008 2,096,923 12,392,068 23,901,097 26,370,276 29,102,776 29,076,566 29,051,142
2009 8,224,572 48,606,168 93,749,306 103,436,501 114,156,977 114,054,393
2010 1,692,907, 10,005,388 19,298,004 21,292,853 23,500,559
2011 6,897,527 40,720,852 78,616,961 86,739,070
2012 8,426,937 49,750,011 96,048,939

One
Calendar
Year
Removed
Loss
Triangle

Loss Triangle

AY/DY

2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012

1]
19,303,998
59,626,420

3,165,898
1,019,259
4,569,334
19,167,417
2,704,564
2,096,923
8,224,572
1,692,907
6,897,527
8,426,937

2
41,715,012
128,774,467
6,834,223
6,021,750
26,995,449
113,240,163
15,977,804
12,392,068
48,606,168
10,005,388
40,720,852
49,750,011

3
29,374,058
90,676,813
13,180,672
11,613,405
52,062,955

218,393,728
30,816,164
23,901,097
93,749,306
19,298,004
78,616,961

4 5 6 7| 8 9 10 11 12 13 14

11,835301 13,061,422 13,048,744 13,036,421 13,024,451 13,012,834 13,001,568 12,990,653 12,980,088 12,969,873
100,044,603 110,411,411 110,305,867 110,203,317 110,103,753 110,007,166 109,913,549 109,822,895 109,735,196

14,542,236, 16,048,990 16,033,878, 16,015,201 16,004,957 15,991,146 15,977,766 15,964,816

12,812,964 14,140,428 14,127,254 14,114,463 14,102,054 14,090,026 14,078 378

57,440,425, 63,391,256 63,332,775 63,276,008 63,220,952 63,167,602
240,950,468 265,912,203 265,669,299 265,433,585 265,205,042

33,999,200, 37,521,629 37,487,640 37,454,666

26,370,276 29,102,776 29,076,566

103,436,501 114,156,977

21,292,853
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Backtesting Results

Total

1939
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
201
2012

Mean Ultimate Losses

Standard Deviation

Actuarial Original 1YRremoved 2YRremoved Original 1YRremoved 2YRremoved
1,385,631 1,385,631 1,385,631 1,385,631 0 0 0
1,632,333 1,632,332 1,632,332 1,632,332 93,156 94,252 96,777
1,888,505 1,888,505 1,888,505 1,888,505 1M2177 113,766 117,202
2.417.283 2.417.283 2.417.283 2.417.283 144,678 146,827 151,507
3,343,009 3,343,009 3,343,009 3,343,009 194,887 198,098 205,022
4,305,538 4,301,237 4,301,237 4,380,954 263,387 268 167 280,845
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Practical Limitation

« There is no one method that works in all of the situations. No perfect
method!

— Mack (Late Claim Development)

— Bootstrapping (Over-skewed Loss Distribution)

— GLM (Tail Factor & Recent AYs’ Trends)

— Merz — Withrich (One Year Risk vs. Ultimate Risk)
— Rehman — Klugman (Covariance Calculation)
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Practical Limitation - Mack

 Practical Challenges—Iarge latent claim dev
— Personal Auto Liability
— 2 large claims happened in the second last dev period

ANIDY 1 2 3 4 b B 7 B 9 10 11 12
1900 3,199 4473 4,768 5,319 5,603 5,618 6,144 6,148 6,161 6,158 7,524 7,624
1901 3,309 4,007 4,637 4,901 4,991 5,016 5,013 6,260 5,259 5,259 6,266
1902 3,604 4,316 5,168 5,828 6,377 6,605 6,602 5,499 6,497 6,497
1903 3,670 4,631 4,759 4,821 4,916 5,139 5137 5137 5,144
1904 3,789 4,448 4,874 5,119 5,360 h,355 41 b412
1905 3,73 5,550 6,591 6,953 7,012 7,004 7,038
1906 3,336 3,869 4,877 4,980 5,775 5,807
1907 2,59 3,975 5173 5,657 5,750
1908 2,964 3,756 4114 4,381
1909 2773 3,966 4,892
1910 3,065 4,169
1911 3,193
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Practical Limitation - Mack

 Practical Challenges—Iarge latent claim dev
— Low probability of reemergence

— Mack method recognizes those 2 large claims in loss development factor
calculation, which produces huge mean and variance estimation of this
line’s reserve.

— Estimated CV of reserve is close to 1
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Practical Limitation - Mack

 Practical Challenges—Iarge latent claim dev
— Solution: GLM is one solution

— GLM allows actuaries to avoid adding those 2 claims in trends
calculation, but still consider them in the total error calculation

— GLM produces reasonable mean and variance
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Practical Limitation - Bootstrapping

 Practical Challenges — Over-Skewed Loss Distribution

— Bootstrapping chain-ladder produces CV close to 10 for the D&O loss
triangle below

AY/DY 1 2 3 4 5 ] 7 a8 9 10 11 12
1900 97 4,974 13,242 9,269 9,654 18,015 17,980 16,850 16,840 16,841 16,706 16,706
19301 980 5,635 13,108 10,425 9,914 7,992 7,992 7,991 7,970 7,971 8,091
1902 628 22,282 29,083 39,559 45,828 48,182 60,920 60,858 60,858 62,421
1%03 1,852 17,540 51,549 57,417 60,211 97,983 97,332 97,713 80,366
1904 10,144 28,404 30,611 38,209 63,015 59,884 59,946 56,120
1%05 6,539 47,918 74,266 77,827 125,302 123,730 137,666
1906 23,995 70,670 150,215 152,032 151,312 152,992
1307 8,243 51,259 70,450 83,498 106,331
1908 16,851 52,722 86,783 100,701
1309 10,9458 43,225 58,153
1910 11,892 46,385
1911 5,3%6
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Practical Limitation - GLM

 Practical Challenges — Tail Factor & Recent AYs’ Trends
— Loss triangle is not a standardized data set for regression

ANIDY 1 2 3 4 b B 7 B 9
1900 1,750 2,445 2,608 2,909 3,010 3,018 3,361 3,363 3,370 3,368 3,368
1901 1,810 2,230 2,837 2,681 2,730 2,744 2,742 3,424 3,424 3,424 3,428

1902 1,917 2,361 2,827 3,188 3,488 3,658 3,657 3,655 3,654 b4
1903 2,007 2478 2,603 2,637 2,689 2,811 2,810 2,810 2,814

1904 2,073 2,433 2,666 2,800 2,932 2,929 2,960 2,961

1905 2,041 3,036 3,605 3,803 3,836 3,831 3,850

1906 1,825 2117 2,668 2,724 3,159 3,176

1907 1,417 2,174 2,830 3,094 3,145

2,397
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Practical Limitation - GLM

 Practical Challenges — Tail Factor & Recent AYs’ Trends
— Due to limited data and regression mechanism, late DY's’ trends (tail
factor) and recent AYs' trends are often not treated as significantly
different from previous years
— With GLM model, actuaries are not easy to insert a different opinion
other than what the data says
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Practical Limitation - Merz - Wuthrich

 Practical Challenges — One Year Reserve Risk vs. Ultimate Reserve Risk

— The one year reserve risk from Merz — Wuthrich method is often very
close to the ultimate reserve risk from Mack method

— In many cases, one year paid out loss is 30% to 70% of total reserve,
but one year reserve risk is more than 90% of ultimate reserve risk
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Practical Limitation - Merz - Wuthrich

 Practical Challenges — One Year Reserve Risk vs. Ultimate Reserve Risk

— In the following example, Merz - Withrich one year CV is about 97% of
Mack ultimate CV

— GLM and bootstrapping are other possible solutions for one year risk

AY/DY 1 2 3 4 5 ] 7 a 9 10 11 12 13 14
1900 16,203 16,528 16,678 16,653 16,676 16,689 16,683 16,703 16,705 16,704 16,708
1901 120,921 138,722 142,266 138,540 138,555 138,519 138,523 138,551 138,566 138,563 138,577
1902 9,573 16,670 18,300 19,739 20,304 20,719 20,668 20,675 20,675 20,724 20,741

1903 511 9,288 13,701 16,677 18,498 18,926 18,934 18,937 19,608 19,761 19,761
1904 11,465 55,340 64,381 68,802 69,535 69,965 71,345 71,433 71,514 71,515
1905 7,882 170,323 265,191 294,006 365445 374,159 374,672 376,826 377,842

19306 6,873 17,911 40,803 45,503 43,134 48,638 50,045 50,119

1907 2,680 11,699 32,012 38,474 39,012 39,726 39,767

1908 9,115 73,797 118,041 140,587 143,091 144,788

1909 2,353 12,286 23,437 28,123 30,502

1910 26,596 52,333 62,343 69,859

1911 28,704 63,937 84,829

1912 3,919 19,656

1913 10,021
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Practical Limitation - Rehman - Klugman

 Practical Challenges — Covariance Calculation

— One step of Rehman — Klugman method is to calculate covariance
matrix by DY

— However, loss triangle is not a standard data set to calculate covariance
matrix

AY/DY 1 2 3 4 5
1300 53,812 53,807 53,807 53,881 53,931
1901 45,021 45,031 49031 459031
1%02 71,691 71,187 71,187
1903 71,858 70,853
1304 57,980
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Practical Limitation - Rehman - Klugman

 Practical Challenges — Covariance Calculation

— The inconsistency in covariance calculation may result in negative
variance

— The loss triangle below produces negative variance for AY 1908
cumulative LDF

AY/DY 1 2 3 4 5 5] 7 8 9 10 11 12
1900 55,153 55,305 53,948 53,185 52,472 52,817 53,812 53,807 53,807 53,881 53,981
1301 57,018 56,217 48,828 49970 45,9339 45,913 45,021 49,031 49,031 49,031 49,031
1902 66,2535 61,413 63,238 74,397 69,387 69,453 69,632 71,691 71,187 71,187
1303 65,956 68,998 69,519 7TL261 71,722 76,211 77,237 71,858 70,853
1904 62,982 63,192 61404 60,215 59416 58,467 57,251 57,980
1%05 63,217 71,5356 70,593 69,314 659,570 68,985 68,753
1906 61,734 60,609 59,700 59444 59,162 59,223
1307 38,788 393,588 38,504 35,011 33,739
1908 46,858 48,348 51,103 51,212
1308 30,177 31,790 30,434
1910 33,899 33,679
1911 48,675
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Applications of Stochastic Reserving

Reserve Adequacy Assessment
— Required in some countries’ statutory report

Reserve Risk for Capital Modeling
— Reserve risk accounts for a significant portion of overall insurance risk

Loss Reserve Margins
— 75% level required in some countries like Australia and Malaysia

Estimate of One-Year change in loss reserves

Risk Aggregation
— Unsolved problem: correlation of reserve risk



—

Correlation of Reserve Risk

» Causes of Correlation of Reserve Risk
— Inflation Risk
— Claim Management Change
— Legislative Risk
— Clash Risk
— Reserving Cycle
— More...
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Quantification of Reserve Risk Correlation

 In most of the capital models, reserve risk correlation is determined by
expert opinion
— None (e.g. p=0%)
— Low (e.g. p=25%)
— Medium (e.g. p=50%)
— High (e.g. p=75%)
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Quantification of Reserve Risk Correlation

« How to quantify reserve risk correlation from loss data?
— Historical Booked Reserve Change
— Paid/Incurred Loss Triangle
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Quantification of Reserve Risk Correlation

 Historical Booked Reserve Change

— Booked Reserve Change = (Booked Reserve - Paid Loss in next 12
months — Remaining Reserve after 12 months)/ Booked Reserve

— Easy to calculate
— Require 10+ years experience
— Cannot reflect business nature/claim management change promptly
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Quantification of Reserve Risk Correlation

« Paid/Incurred Loss Triangle
— Reserving Model Residuals Correlation

- Loss Triangle A + €1vs. Loss Triangle A + €2;

- Assume that there is a reserving model X can model A with zero
residuals

— GLM Model Trends Correlation
- How to combine AY/DY/CY trends correlations?

- Same loss triangles & different model settings may result in
significantly different correlations

— Implied Reserve Risk Correlation
- Model loss triangle A, Band A + B
- May not be suitable for different LOBs
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Disclaimer

The data and analysis provided by Guy Carpenter herein or in connection herewith are provided “as is”, without
warranty of any kind whether express or implied. The analysis is based upon data provided by the company or
obtained from external sources, the accuracy of which has not been independently verified by Guy Carpenter.
Neither Guy Carpenter, its affiliates nor their officers, directors, agents, modelers, or subcontractors
(collectively, “Providers”) guarantee or warrant the correctness, completeness, currentness, merchantability, or
fithess for a particular purpose of such data and analysis. The data and analysis is intended to be used solely
for the purpose of the company internal evaluation and the company shall not disclose the analysis to any third
party, except its reinsurers, auditors, rating agencies and regulators, without Guy Carpenter’s prior written
consent. In the event that the company discloses the data and analysis or any portion thereof, to any
permissible third party, the company shall adopt the data and analysis as its own. In no event will any Provider
be liable for loss of profits or any other indirect, special, incidental and/or consequential damage of any kind
howsoever incurred or designated, arising from any use of the data and analysis provided herein or in
connection herewith.

‘Statements or analysis concerning or incorporating tax, accounting or legal matters should be understood to be
general observations or applications based solely on our experience as reinsurance brokers and risk
consultants and may not be relied upon as tax, accounting or legal advice, which we are not authorized to
provide. All such matters should be reviewed with the client's own qualified advisors in these areas.
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