From First Gear to Full Torque: Auto Insurance in the Era of Autonomous Vehicles

Crash Course in Vehicle Technology and Driverless Car

July 20, 2018
Presentation Overview

1. First Gear: Early Adoption
 - Self driving features in today’s vehicles and planned production

2. Acceleration: Estimated Impact
 - Long term scenario testing indicates loss costs may plummet

 - Potential impact on insurers’ books of business and the consumer marketplace for insurance
First Gear: Early Adoption

Self driving features in today’s vehicles and planned production
FIRST GEAR

Key Elements for Transformation

A variety of forces will be responsible for the foundational transformation across the driving ecosystem

- Technologies already exists
- Convergence and enhancement lead next wave
- Robust pipeline of new vehicles / capabilities
- Incremental advancements + leap frog full-autonomy plays
- Scale of operations drop costs over time
- Technology works in existing infrastructure
- Potential for ‘smart’ infrastructure (V2I) to complement vehicle-to-vehicle (V2V) communications

- 'Black box' driving data highly valuable
- Who owns the data – incentives, public good, etc...
- Integrity, storage, analytics and security critical
- Leader states setting first round of rules
- NHTSA key factor in mandating technology – position papers and comment letters

- Car-sharing is a standard option for urban drivers
- Potential end of two car household
- More you know, the more likely you are to adopt
- Flexible value proposition tailored to individuals
- Focus on consumer education and awareness
- Driving risk will follow vehicle operator – driver to technology
- Hybrid environment of combined vehicle decisions will take time to sort
- Technology works in existing infrastructure
- Potential for ‘smart’ infrastructure (V2I) to complement vehicle-to-vehicle (V2V) communications
Phases of Transformation

No one has a crystal ball to predict the future pace of change. As we synthesized our initial analyses, we envision there to be four potential incremental changes to the transformation over the next 25 years, with the foundation laid for a “new normal” within a decade.

First Gear

“Training Wheels”
- Introduction to autonomous vehicles as manufacturers roll out some of the underlying technology
- High-tech companies express interest in fast-tracking production of fully autonomous vehicles
- SAE Phase 1

“First Gear”
- In 2017, partial driver substitution technology is introduced. A broader set of consumers experience this technology, witnessing firsthand its safety and soundness
- This helps shift market perceptions. Potential mandate from NHTSA for V2V communications
- SAE Phase 2

“Acceleration”
- Five years from now, fully autonomous all-speed vehicles become more common
- V2V capabilities are likely to be embedded in all new vehicles and the increase in scale drives down costs, making the technology accessible to a larger segment of consumers
- SAE Phase 4

“Full Speed”
- In 2025, a broad-based transformation begins. All new vehicles have autonomous capabilities and existing vehicles are potentially retrofitted
- Over the next 25 years, integrated driving emerges, a web of information is flowing between vehicles and infrastructure tightens. A “new normal” is realized by 2050
- SAE Phase 5
Model phases in adoption of automation over the next 15 years

Phase 1 – Driver Assistance
- Rear Camera (RC)
- Rear Parking Sensors (RPS)
- Lane Detection Warning (LDW)
- Blind Spot Detection (BSD)
- Cross Traffic Alert (CTA)
- Forward Collision Warning (FCW)
- Lane Keep Assist (LKA)
- Automatic Emergency Braking (AEB)
- Adaptive Cruise Control (ACC)

Phase 2 – Partial Automation
(Tesla Autopilot, Mercedes Drive Pilot, Cadillac Super Cruise, Etc…)
- Rear Camera (RC)
- Rear Parking Sensors (RPS)
- Lane Detection Warning (LDW)
- Blind Spot Detection (BSD)
- Cross Traffic Alert (CTA)
- Forward Collision Warning (FCW)
- Lane Keep Assist (LKA)
- Automatic Emergency Braking (AEB)
- Adaptive Cruise Control (ACC)

Phase 3 – High Automation
- Lane Keep Assist (LKA)
- Automatic Emergency Braking (AEB)
- Cross Traffic Alert (CTA)
- Forward Collision Warning (FCW)
- Lane Detection Warning (LDW)
- Rear Camera (RC)

Phase 4 – Full Automation
- Lane Keep Assist (LKA)
- Automatic Emergency Braking (AEB)
- Cross Traffic Alert (CTA)
- Forward Collision Warning (FCW)
- Lane Detection Warning (LDW)
- Rear Camera (RC)

Autonomy Description:

- **Phase 1 – Driver Assistance**
 - Equivalent to SAE Level 1 Autonomy
 - Vehicle is controlled by Driver but features assist driver performance

- **Phase 2 – Partial Automation**
 - Similar to SAE Level 2 Autonomy
 - Vehicle has limited automated functions; Driver must be engaged

- **Phase 3 – High Automation**
 - Combination of SAE Level 3 and 4
 - Vehicle has full automated functions; Driver may override

- **Phase 4 – Full Automation**
 - Equivalent to SAE Level 5
 - Vehicle has full automated functions in all situations

Source(s): NHTSA, SAE
Company announcements to date indicate that autonomous vehicles being developed aggressively with plans to launch post-2020

AV Launch Timeline

<table>
<thead>
<tr>
<th>2015-16</th>
<th>2017-19</th>
<th>2020</th>
<th>2021-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015: Tesla Auto Pilot available</td>
<td>2017: A8 with AI traffic jam pilot (SAE level 3) to handle traffic up to 37.3 mph</td>
<td>2020: Next gen of Leaf to have autonomous features</td>
<td>2019-21: Partnered with Uber to provide 24,000 XC90 SUV with AV technology</td>
</tr>
<tr>
<td>2016: NuTonomy begins pilot of self-driving vehicle in Singapore</td>
<td>2017: Self-driving features to be made available in new E-Class</td>
<td>2020: Lexus to self-drive on highways, RoboTaxi for Olympics</td>
<td>2021: Plans to mass-produce AVs and partner with ride-sharing companies</td>
</tr>
<tr>
<td>2018: Launch of fully AV in the Phoenix area in partnership with FCA</td>
<td>2020: Expected launch of level 4 Audi’s self-driving car</td>
<td>2021: Plans to launch fully AV fleet commercially to compete with Uber and Lyft</td>
<td>2021: Plans to launch fully AVs (the Sedric) electric cars, vans, and trucks</td>
</tr>
<tr>
<td>2019: Plan to launch car with full self-driving capabilities</td>
<td>2020: Launch of fully AV fleet commercially to compete with Uber and Lyft</td>
<td>2021: Plans to launch fully AVs (the Sedric) electric cars, vans, and trucks</td>
<td>2024: Announced in 2014 that JLR was 10 yrs from a fully AV</td>
</tr>
</tbody>
</table>

Key:
- **Semi-autonomous models**
- **Fully autonomous models**

© 2018 KPMG LLP, a Delaware limited liability partnership and the U.S. member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative (“KPMG International”), a Swiss entity. All rights reserved.
Traditional OEMs and mobility providers are rushing in with investment to accelerate AV development

<table>
<thead>
<tr>
<th>New Entrants: Tech Companies</th>
<th>Traditional OEMs</th>
</tr>
</thead>
</table>
| **Waymo**
Owned by Alphabet, it launched public trials for fully autonomous ride-hailing service in Phoenix using Pacifica mini-vans sourced from its partner Fiat Chrysler
Developing an open-source autonomous driving platform (Apollo) involving over 50 partners across hardware, software and cloud data services (key companies include Ford, Daimler, Nvidia, Intel, Velodyne)
Apple began its self-driving car project (Project Titan) in 2014 and recently announced its revised strategy to focus on autonomous software to be developed for carmakers. It plans to test autonomous shuttles in Palo Alto by sourcing vehicles elsewhere | **Invested $180M to form a JV with Mobvoi; Announced partnership with Mobileye to leverage its real-time mapping service into its vehicles by 2018**
Partnered with Transdev to develop AV for public transportation in France and announced roll out 40 AVs by 2022
Partnered with BMW and Intel in Aug 2017 to develop AVs
Committed $1B over the next 5 years in a JV with Argo AI to develop AI for AVs and aim to launch fully AV by 2021
Acquired Cruise Automation for $1B to obtain software talent and accelerate AV technology development
Holds over 900 patents related to autonomy and have partnered with Bosch to bring level 4 AVs within five years
Plans to commercialize self-driving cars by 2020 and invest ~$1.7B to develop autonomous driving technologies in the next 5 years
Announced partnership with Google’s Waymo in Dec 2016 to develop self-driving technologies and plans to launch level 4 AV by 2020 and level 5 AV by 2025 |
| **Baidu**
Partnered with Volvo in Nov 2017 for 24,000 cars to turn them into self-driving cars using their proprietary technology; launched public trials of fully AV in Dec 2016 | **Partnered with Drive.ai to provide self-driving rides in San Francisco**
Launched a new self-driving division in Jul 2017 to develop its own autonomous technology; Partnered with Drive.ai to provide self-driving rides in San Francisco
Note(s): Miles driven with Tesla’s semi-autonomous feature
Current Impact - ADAS efficacy from various sources

<table>
<thead>
<tr>
<th>ADAS Technology</th>
<th>Collision Type</th>
<th>Source</th>
<th>Reduction Estimate</th>
<th>Estimate Method</th>
<th>Weather</th>
<th>Geography</th>
<th>Speed</th>
<th>Sample Size</th>
<th>OEM Diversity</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear Camera</td>
<td>Rear</td>
<td>IIHS</td>
<td>17%</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear Camera</td>
<td>Rear</td>
<td>AAA</td>
<td>30%</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Lane Detection Warning System</td>
<td>All</td>
<td>IIHS</td>
<td>11%</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Lane Detection Warning System</td>
<td>All</td>
<td>NCBI</td>
<td>23%</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Detection Warning System</td>
<td>All</td>
<td>EUROPA</td>
<td>33%</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Detection Warning System</td>
<td>All</td>
<td>AAA</td>
<td>3%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Blind Spot Detection</td>
<td>Side</td>
<td>IIHS</td>
<td>14%</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blind Spot Detection</td>
<td>Side</td>
<td>EUROPA</td>
<td>33%</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross Traffic Alert</td>
<td>Side</td>
<td>IIHS</td>
<td>13%</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Cross Traffic Alert</td>
<td>Side</td>
<td>Consumer Reports</td>
<td>31%</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross Traffic Alert</td>
<td>Side</td>
<td>SAE</td>
<td>39%</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross Traffic Alert</td>
<td>Side</td>
<td>IIHS</td>
<td>2%</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend

- **Estimate Method**
 - ✓ Collision Data
 - ✓ Simulation
 - × Survey / Other

- **Other**
 - ✓ Inclusive / Favorable
 - × Limited / Unfavorable

Note(s): Missing assessment indicates no information was provided. Assumes collision data assessment of random sample incorporates weather, geography and OEMs
Current Impact - ADAS efficacy from various sources

<table>
<thead>
<tr>
<th>ADAS Technology</th>
<th>Collision Type</th>
<th>Source</th>
<th>Reduction Estimate</th>
<th>Estimate Method</th>
<th>Weather</th>
<th>Geography</th>
<th>Speed</th>
<th>Sample Size</th>
<th>OEM Diversity</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Collision Warning</td>
<td>Rear</td>
<td>IIHS</td>
<td>27%</td>
<td>✓ ✓ ✓ x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>DOT</td>
<td>27%</td>
<td>✓ ✓ ✓ ✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>IIHS</td>
<td>23%</td>
<td>✓ ✓ ✓ ✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>NCBI</td>
<td>67%</td>
<td>x ✓ ✓ ✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>AAA</td>
<td>10%</td>
<td>✓ ✓ ✓ x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Automatic Emergency Braking</td>
<td>Rear</td>
<td>IIHS</td>
<td>50%</td>
<td>✓ ✓ ✓ x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>DOT</td>
<td>43%</td>
<td>✓ ✓ ✓ ✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>IIHS</td>
<td>40%</td>
<td>✓ ✓ ✓ x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>IIHS</td>
<td>17%</td>
<td>✓ ✓ ✓ x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>EU NCAP</td>
<td>38%</td>
<td>✓ ✓ ✓ x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Adaptive Cruise Control</td>
<td>Rear</td>
<td>Academic</td>
<td>10%</td>
<td>✓ ✓ ✓ x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>AAA</td>
<td>17%</td>
<td>x ✓ ✓ ✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Legend
- ✓: Inclusive / Favorable
- x: Limited / Unfavorable
- **Estimate Method**
 - Collision Data
 - Simulation
 - Survey / Other
- **Other**
 - Inclusive / Favorable
 - Limited / Unfavorable

Note(s): Missing assessment indicates no information was provided. Assumes collision data assessment of random sample incorporates weather, geography and OEMs, select sources/studies shown for AEB.
Federal as well as State governments in the US have taken measures to enact legislations in favor of autonomous vehicles

Autonomous Vehicles Legislations – Federal and State

At the national level, the SELF DRIVE Act, if passed, would authorize the deployment and regulation of autonomous vehicles on the road over the next few years years

<table>
<thead>
<tr>
<th>Federal Legislation and Policy</th>
<th>Provision</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELF DRIVE Act (Yet to be passed by Senate)</td>
<td>Allows each autonomous car maker to put up to 25,000 autonomous vehicles on the road in the first year. Over the three years, the cap would rise to 100,000 vehicles annually. Also exempts automakers from having to meet some existing safety standards if they can prove a new design is safe.</td>
</tr>
<tr>
<td>Federal Automated Vehicles Policy</td>
<td>Reduces a 15-point safety assessment before putting test vehicles on the road to a 12-point voluntary assessment, asking automakers to consider things like cybersecurity, crash protection, how the vehicle interacts with occupants and the backup plans if the vehicle encounters a problem.</td>
</tr>
</tbody>
</table>

... while 21 states, such as the following, have also passed legislations over the last few years to encourage the development, testing and deployment of fully-autonomous vehicles

<table>
<thead>
<tr>
<th>State</th>
<th>Provision</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>Allows testing and deployment of autonomous vehicle on state roads without a human operator</td>
</tr>
<tr>
<td>Nevada</td>
<td>Allows for testing and operation of fully-autonomous vehicles; also authorizes commercial use of fully autonomous vehicles</td>
</tr>
<tr>
<td>Washington</td>
<td>Executive order signed by the Governor in June 2017, establishing an autonomous vehicle work group and directing state agencies to support the safe testing and operation of autonomous vehicles on Washington’s public roads</td>
</tr>
<tr>
<td>Florida</td>
<td>Allows operation of autonomous vehicles on public roads and eliminates requirements related to the testing of autonomous vehicles and the presence of a driver in the vehicle</td>
</tr>
<tr>
<td>Michigan</td>
<td>Allows fully autonomous vehicles, including those without drivers and steering wheels, to begin using public roadways</td>
</tr>
<tr>
<td>Arizona</td>
<td>Executive order signed by the Governor in August 2015, permitting several agencies to take adequate steps to aid testing and operation of automated vehicles on public roads in the state</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Executive order signed by the Governor in October 2016 to promote the testing and deployment of autonomous vehicles, by creating a working group on autonomous vehicles</td>
</tr>
</tbody>
</table>

Note(s): SELF DRIVE Act - Safety Ensuring Lives Future Deployment and Research in Vehicle Evolution Act
Source(s): Reuters, NCSL Website, The Verge, The Columbian Website, Computerworld Website, US DoT, NHTSA
Lyft’s Point of View on Autonomous Technology Roll Out

Lyft says robots will drive most of its cars in five years

Expect to see semi-autonomous vehicles driving on fixed routes by 2017 in a subscription model.

Announced shortly after GM’s investment in 2016

Autonomous Lyft fleets now available:

- San Francisco – Sep 2017
- Boston – Dec 2017
- Las Vegas – March 2018

Others:

- Uber
 - Still investigating Tempe fatality but had been operating in Pittsburg, San Francisco, Toronto, and Tempe since as early as 2015

- Waymo
 - Phoenix – April 2017
Acceleration: Estimated Impact

Long term scenario testing indicates loss costs may plummet
Actuarial Analysis

Working closely with our automotive team and leveraging their extensive research, KPMG’s Actuarial Team developed models to translate the technology and market changes in order to demonstrate the potential impact on auto insurer performance.
KPMG developed a model to test the potential effects of Autonomous vehicles on the auto insurance marketplace. The first assumption of the model mapped the cumulative effect of the four phases of advancing technology (per the baseline scenario) on the stock of total cars. By 2028, cars with some degree of automated controls could account for over half of those in use and nearly all vehicles by 2050.

Adoption Assumptions

- The baseline scenario uses reasonable assumptions based on reviews of industry literature around introduction timelines and capabilities of new phases, and turnover of the car park.
- Note the change in car stock takes place as vehicles are retired and replaced.
 - It could accelerate if there is a:
 - Surge in demand for the new capability
 - Government mandate
 - Widespread retro-fitting

Source: KPMG LLP actuarial analysis
Given the new safety technology in autonomous vehicles, the KPMG Actuarial Team predicts a potential 90% reduction in accident frequency by 2050, which is the largest driver of loss reduction.
The KPMG Actuarial Team modeled severity broadly in line with inflationary trends. There are, however, a variety of different potential scenarios that could have a significant impact on severity over time.
Safer vehicles could result in total auto insurance industry losses decreasing by 60% by 2050 with commercial and product liability accounting for a larger portion of the loss pie.
Automated Vehicle Technology is Making Driving Safer...Today

Crash avoidance features which underpin autonomous vehicle safety technology are already improving the safety profile of vehicles...

...furthermore, according to recent findings(1), more than 700,000 police-reported rear-end crashes in 2013 could have been avoided if the vehicles involved were equipped with autobrake technology

Note: (1) Study analyzes police-reported rear-end crashes in 27 states during 2010-2014 involving Acura, Honda, Mercedes-Benz, Subaru and Volvo vehicles with forward collision warning (“warning”) and autonomous emergency breaking (“autobrake”) vs. the same models without the optional technology; (2) City Safety” represents Volvo’s low-speed autobrake system. The test was conducted by comparing two Volvo models with City Safety vs. other vehicles without front crash prevention technology; and (3) Study examines Honda’s camera-based and radar-based forward collision and lane departure warning systems for vehicles equipped with these features vs. vehicles without them, bucketed by driver age group. Source: IIHS’s research papers ‘Effectiveness of Forward Collision Warning Systems with and without Autonomous Emergency Braking in Reducing Police-Reported Crash Rates’ and ‘Effectiveness of Volvo’s City Safety Low-Speed Autonomous Emergency Braking System in Reducing Police-Reported Crash Rates’ and IIHS’s ‘Status Report, Vol. 51, No.1, January 2016’
While personal and commercial auto insurance represents the whole loss pie in 2017, products liability insurance will play a greater role in the future as the vehicles themselves make more driving decisions.

Potential Business Mix Composition

Note: (1) Based on KPMG LLP actuarial analysis
By removing the driver from Mobility Services, EV AV MaaS will become the lowest-cost mode of private transportation.

Transportation Cost in $ per mile

<table>
<thead>
<tr>
<th></th>
<th>Average Uber</th>
<th>2015 AAA Estimate</th>
<th>2030 Fleet EV AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 AAA Estimate</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030 Fleet EV AV</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By 2030 AV MaaS will be cheaper per mile than most personal vehicles

Note(s): Average Uber cost per mile for 5 mile / 20 min. trip in top 10 largest US cities; 2015 AAA estimate assumes 15K miles/year, 2030 Fleet EV AV assumes 110K miles/year.

Source(s): AAA, NHTSA, Business Insider, Uber, KPMG Analysis.
Market Implications: Preparing for the Future

Potential impact on insurers’ books of business and the consumer marketplace for insurance
Currently, there is significant skepticism among insurance leaders about the potential for autonomous vehicles to transform the industry - few insurers have taken action, most likely because many believe the change will happen far into the future, if at all.

- Significant impact on business after 2025: 84%
- Not ready for autonomous vehicles: 74%
- Little or no understanding of autonomous vehicles: 68%
- No budget allocated for preparation for autonomous vehicles: 23%
- Developed a strategic plan: 10%

Source: KPMG LLP’s 2015 Automobile Insurance in the Era of Autonomous Vehicles Survey Results
MARKET IMPLICATIONS

Insurer Excess Capital

The good news is that personal auto insurers have lots of capital, giving them significant financial flexibility. The bad news is that this large capital cushion may also give many a false sense of security.

Capital Position of Top 15 Personal Auto Insurers’ Overall P&C Businesses\(^{(1)}\)

<table>
<thead>
<tr>
<th>Year</th>
<th>Required Capital and Surplus ($ billions)</th>
<th>Excess Capital ($ billions)</th>
<th>Total P&C Net Premium Written / Total Capital & Surplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>112.2</td>
<td>99.1</td>
<td>0.92x</td>
</tr>
<tr>
<td>2007</td>
<td>111.7</td>
<td>102.9</td>
<td>0.87x</td>
</tr>
<tr>
<td>2008</td>
<td>111.2</td>
<td>107.9</td>
<td>1.02x</td>
</tr>
<tr>
<td>2009</td>
<td>108.4</td>
<td>137.5</td>
<td>0.88x</td>
</tr>
<tr>
<td>2010</td>
<td>111.0</td>
<td>172.4</td>
<td>0.78x</td>
</tr>
<tr>
<td>2011</td>
<td>115.1</td>
<td>166.9</td>
<td>0.62x</td>
</tr>
<tr>
<td>2012</td>
<td>120.2</td>
<td>184.2</td>
<td>0.79x</td>
</tr>
<tr>
<td>2013</td>
<td>125.1</td>
<td>223.4</td>
<td>0.72x</td>
</tr>
<tr>
<td>2014</td>
<td>131.9</td>
<td>224.9</td>
<td>0.74x</td>
</tr>
<tr>
<td>2015</td>
<td>138.2</td>
<td>216.5</td>
<td>0.78x</td>
</tr>
</tbody>
</table>

Note: (1) 2015 statutory P&C insurance data aggregated for the top 15 writers of private passenger auto direct premium written, based on SNL groups / unaffiliated companies. Required capital was calculated by dividing total P&C NPW by two given an assumed NPW / capital & surplus ratio of 2:1. Excess capital is then calculated by subtracting required capital and surplus from total capital & surplus of the top 15 personal auto insurers on an aggregate basis. Source: SNL Financial.
Auto insurance
Claim frequency will fall, ultimately leading to lower premiums

Life and annuities
Mortality tables will be impacted – road traffic accidents leading cause of death for ages 15 to 34

Workers’ compensation
6% of claims costs arise from auto accidents

Source: KPMG LLP actuarial analysis and US Centers for Disease Control and Prevention (2010)
The Consumer, the Autonomous Vehicle and Insurance

From safety to saving money on insurance dollars spent, autonomous vehicles have the potential to positively impact consumers in a variety of different ways, although associated risks of this new technology also must be considered.

Considerations

- Cost of vehicle
- Cyber threats
- Privacy issues
- Ownership of data
- Access to mobility (urban areas most likely to benefit)

Potential Benefits

- Safer vehicles = less auto related deaths and injuries
- Autonomous mobility-on-demand and cost effective, tailored means of transportation
- Greater access to mobility for urban youth, the disabled, the elderly and other segments of the population
- Lower premiums most likely to benefit those utilizing autonomous vehicles more
- Pricing transparency if included in sticker price
- Insurance industry disruptions – job impact
- Lower losses lead to lower premiums
- The “new” two car family – now one car family supplemented by mobility-on-demand – lower overall insurance (and vehicle) spend
The OEM Advantage - Data and the Customer Relationship

Ultimately, the original equipment manufacturers ("OEMs") have the ability to not only control the data, but also the customer relationship, thereby dramatically altering the traditional auto insurance model.

Illustrative Process of Buying Automotive Insurance

Today

- **OEM (Vehicle Manufacturer)**
- **Customer**
- **Digital / Agent**
- **Insurance Company**

Driving Data Flow:
- From OEM to Customer
- From Customer to Digital / Agent
- From Digital / Agent to Insurance Company

The Future

- **OEM (Vehicle Manufacturer and Insurance Company)**
- **Customer**
- **Insurance Company**

Driving Data Flow:
- From OEM to Customer
- From Customer to Digital / Agent
- From Digital / Agent to Insurance Company
- Customer Relationship
- Flow of Driving Data
Potential Business Models

The (re)entrance of OEMs into insurance could take a variety of forms

Illustrative Future State Business Models

<table>
<thead>
<tr>
<th>Entity</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
<th>Scenario D</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEMs</td>
<td>• Provide driving and vehicle data to insurers</td>
<td>• Become distributor of insurance for a selected set of carriers</td>
<td>• Act as an insurance company with many functions outsourced</td>
<td>• Become a fully integrated insurance company</td>
</tr>
<tr>
<td>Strategic Angle</td>
<td>• Telemetry data</td>
<td>• Brand, customer connectivity</td>
<td>• Product advantage</td>
<td>• Product advantage</td>
</tr>
<tr>
<td>Revenue Model</td>
<td>• Fees</td>
<td>• Commissions</td>
<td>• Underwriting profit and investment income (annuity)</td>
<td>• Underwriting profit and investment income (annuity)</td>
</tr>
<tr>
<td>Insurer</td>
<td>• License data from OEMs to underwrite policies</td>
<td>• Form alliances with OEMs</td>
<td>• Serve as third-party administrators - for example, current insurers could process the claims of the OEMs</td>
<td>• Transform business model to compete with new entrants</td>
</tr>
</tbody>
</table>

© 2018 KPMG LLP, a Delaware limited liability partnership and the U.S. member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative ("KPMG International"), a Swiss entity. All rights reserved.
Preparing for the Future - Auto Insurance Considerations

1. Acknowledge that the Autonomous Vehicle Transformation is Real
2. Understand Exposure
3. Evaluate Business Strategy / Consider Diversification Options
4. Identify and Monitor Leading Indicators
5. Prepare Operations
6. Understand Cost Structures
7. Align with Other Insurers and Form Partnerships
Questions
<table>
<thead>
<tr>
<th>Name</th>
<th>Nate Loughin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Manger, Actuarial and Insurance Risk</td>
</tr>
<tr>
<td>Office</td>
<td>+1 610 230 2068</td>
</tr>
<tr>
<td>Email</td>
<td>nloughin@kpmg.com</td>
</tr>
</tbody>
</table>
Some or all of the services described herein may not be permissible for KPMG audit clients and their affiliates.