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This paper presents a universal framework for pricing financial and insurance 
risks. Examples are given for pricing contingent payoffs, where the underlying 
asset or liability can be either traded or not traded. The paper also outlines an 
application of  the framework to prescribe capital allocations within insurance 
companies, and to determine fair values of  insurance liabilities. 

I N T R O D U C T I O N  

Currently there is a pressing need for a universal framework for the deter- 
mination of  the fair value of financial and insurance risks. In the insurance 
industry, this need is evident in the Society of Actuaries' "Symposium on Fair 
Value of  Liabilities", and in the Casualty Actuarial Society's "Risk Premium 
Project" and "Task Force on Fair Valuing P/C Insurance Liabilities". 

In the financial services industry, this pressing need is evidenced by the 
recent Basel Accords on regulatory risk management that require fair value, 
analogous to market prices, to be applied to all assets or liabilities, whether 
traded or not, on or off the balance sheet. In light of  all these current events, 
this paper addresses a very timely subject. 

The paper is comprised of  three parts, summarized as follows: 

Part One: The Framework introduces a new transform and correlation mea- 
sure that extends CAPM to pricing all kinds of  assets and liabilities, having any 
type of  probability distribution, whether traded or underwritten, in finance or 
insurance. This transform is just as easily applied to contingent payoffs that 
are co-monotone with their underlying assets or liabilities. 

In its simplest form, the new transform relies on a parameter called the 
"market price of  risk", extending a familiar concept in CAPM to risks with 
non-normal distributions. The "market price of  risk" can either be applied to, 
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or implied from, a distribution, in order to arrive at a "risk-adjusted price" for 
the underlying risk in question. The "market price of risk" increases continuously 
with duration, and is consistent at each horizon date between an underlying 
and its co-monotone contingent payoff. 

When the return for an underlying asset has a normal distribution, the new 
transform replicates the CAPM price for that underlying asset, and recovers 
the Black-Scholes price for options on that underlying asset. 

Part Two: Examples of Pricing Contingent Payoffs illustrates the application 
of the new framework to pricing call options on traded stocks, and to pricing 
weather derivatives. 

Part Three: Capital Allocation & Fair Values of Liabilities illustrates the appli- 
cation of the new framework to insurance company capital allocations, and 
to the determination of  fair values of insurance liabilities. In particular, it 
addresses a challenging issue concerning the long-term duration of liabilities. 
Also, the framework is equally applicable to primary insurance business and 
excess-of-loss reinsurance when calculating fair values of liabilities. 

PART ONE. THE FRAMEWORK 

Capital Asset Pricing Model 

CAPM is a set of predictions concerning equilibrium expected returns on assets. 
Classic CAPM assumes that all investors have the same one-period horizon, 
and asset returns have multivariate normal distributions. For a fixed time 
horizon, let R~ and RM be the rate-of-return for asset i and the market portfo- 
lio M, respectively. Classic CAPM asserts that 

E[Rh.l= r + fli{E[RM]-r}, 

where r is the risk-free rate-of-return and 

Cov[ Ri , RM] 
~ i - -  2 

G M 

is the beta of asset i. 

Assuming that asset returns are normally distributed and the time horizon is 
one period (e.g., one year), a key concept in financial economics is the market 
price of risk: 

2i _ E[Ri] -  r 
17 i 

In asset portfolio management, this is also called the Sharpe Ratio, after Wil- 
liam Sharpe. 
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In terms of market price of risk, CAPM can be restated as follows: 

~i E [ l ~ . l - r  C o v [ R i , R M ]  E [ R M ] - F  
= ¢7i : ¢~i ~TM (7 M -- Pi, M" t~M~ 

where Pi, M is the linear correlation coefficient between Ri and R M. In other 
words, the market price of risk for asset i is directly proportional to the cor- 
relation coefficient between asset i and the market portfolio M. 

CAPM provides powerful insight regarding the risk-return relationship, 
where only systematic risk deserves an extra risk premium in an efficient market. 
However, CAPM and the concept of  "market price of risk" were developed 
under the assumption of multivariate normal distributions for asset returns. 
CAPM has serious limitations when applied to insurance pricing when loss 
distributions are not normally distributed. In the absence of an active market 
for insurance liabilities, the underwriting beta by line of business has been dif- 
ficult to estimate. 

Option Pricing Theory 

Besides CAPM, another major financial pricing paradigm is modern option 
pricing theory, first developed by Fischer Black and Myron Scholes (1973). 

Some actuarial researchers have noted that the payoff functions of a Euro- 
pean call option and a stop-loss reinsurance contract are similar, and have pro- 
posed an "option-pricing" approach to pricing insurance risks. Unfortunately, 
the Black-Scholes formula only applies to lognormal distributions of market 
returns, whereas actuaries work with a large array of distributional forms. 

Furthermore, there are subtle differences between option pricing and actu- 
arial pricing (see Mildenhall, 2000). One way to better appreciate the differ- 
ence between "financial asset pricing" and "insurance pricing", is to recognize 
the difference in types of data available for pricing. 

Options pricing is performed in a world of Q-measure (using risk-adjusted 
probabilities), where the available data consists of observed market prices for 
related financial assets. On the other hand, actuarial pricing is conducted in 
a world of P-measure (using objective probabilities), where the available data 
consists of projected losses, whose amounts and likelihood need to be con- 
verted to a "fair value" price (see Panjer et al, 1998). 

Because of this difference, the price of an option is determined from the 
minimal cost of  setting up a hedging portfolio, whereas the price of insurance 
is based on the actuarial present value of costs, plus an additional risk pre- 
mium for correlation risk, parameter uncertainty and cost of capital. 

A Universal Pricing Method 

Consider a financial asset or liability over a time horizon [0, 7]. Let X = Xr 
denote its future value at time t = T, with a cumulative distribution function 
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(cdf) F(x)=Pr{X< x}. In Wang (2000), the author  proposed a universal pricing 
method based on the following transform: 

F * (x) : *[~-l (F(x)) + 2], (I) 

where (1) is the standard normal cumulative distribution. The key parameter 2 
is called the market price of risk, reflecting the level of systematic risk. The 
transform (i) is now better known as the Wang, transform among financial 
engineers and risk managers. The Wang transform was partly inspired by the 
work of several prominent actuarial researchers, including Gary Venter (1991, 
1998) and Robert Butsic (1999). 

For a given asset X with cdf F(x), the Wang transform will produce a "risk- 
adjusted" cdf F*(x). The mean value under F*(x), denoted by E*[X], will define 
a risk-adjusted "fair value" of X at time T, which can be further discounted to 
time zero, using the risk-free interest rate. 

The Wang transform is fairly easy to numerically compute. Many software 
packages have both (1) and (1) -I as built-in functions. In Microsoft Excel, (1)(y) 
can be evaluated by NORMSDIST(y) and (1)-1(z) can be evaluated by NORM- 
SINV(z). 

One fortunate property of  the Wang transform is that normal  and lognor- 
mal distributions are preserved: 

• I f  F has a Normal(g ,  o 2) distribution, F* is also a normal  distribution with 
I.t* = ~ - ~,o and o* = o. 

• I f  F has a lognormal(g, o 2) distribution such that In(X) - Normal  (la, o2), F* 
is another  lognormal distribution with g* = ~t- ~o and o* = o. 

Stock prices are often modeled by lognormal distributions, which implies that 
stock returns are modeled by normal  distributions. Equivalent results can be 
obtained by applying the Wang transform either to the stock price distribution, 
or, to the stock return distribution. 

Consider an asset i on a one-period time horizon. Assume that the return R~ 
for asset i has a normal distribution with a standard deviation of  oi. Applying 
the Wang t ransform to the distr ibution of  Ri we get a r isk-adjusted rate-of- 
return: 

E *  [/~.] : E[Ri]-2a i. 

In a competitive market, the risk-adjusted return for all assets should be equal 
to the risk-free rate, r. Therefore we can infer that L = (E[R~] -r)loi, which is 
exactly the same as the market  price of  risk in classic CAPM. With ~ being 
the market  price of  risk for an asset, the Wang transform replicates the clas- 
sic CAPM. 

Unified Treatment of Assets & Liabilities 

A liability with loss variable X can be viewed as a negative asset with gain Y= 
-X, and vice versa. Mathematically, if a liability has a market price of  risk ~, 
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when treated as a negative asset, the market price of risk will be -2.  That is, 
the market price of  risk will have the same value but opposite signs, depending 
upon whether a risk vehicle is treated as an asset or liability. For a liability 
with loss variable X, the Wang transform in equation (1) has an equivalent 
representation. 

S * (x) : * [ * - l  (S(x)) + 2], (2) 

where S(x)  = 1 - F(x). 

The following operations are equivalent: 

1. Applying transform (1) with )~ to the cdf F(x) of a gain variable X, 
2. Applying transform (1) with -)~ to the cdf F(y) of the loss variable Y= -X, 

and 
3. Applying transform (2) with )~ to S(y) = 1 - F ( y )  of the loss variable Y= -X. 

Their equivalence ensures that the same price is obtained for both sides of  a 
risk transaction. 

If a loss variable has a Normal(~t,a 2) distribution, the Wang transform (2) will 
produce another normal distribution with it* = ~ -  )~a and ~* = ~. Thus, for 
a loss variable with a normal distribution, the Wang transform (2) recovers 
the traditional standard-deviation loading principle, with the parameter 
being the constant multiplier. 

A New Measures of Correlation 

According to CAPM, the market price of  risk )~ should reflect the correlation 
of  an asset with the overall market portfolio. When we generalize the concept 
of market price of risk to assets and liabilities with non-normal distributions, 
the Pearson linear correlation coefficient becomes an inadequate measure of  
correlation. Examples can be constructed such that a deterministic relation- 
ship has a Pearson correlation coefficient close to zero. Such an example was 
provided in Wang (1998): 

Consider the case where X ~ lognormal(0,1) and Y= (X) °. Despite this 
deterministic relationship, the linear correlation coefficient between X and Y 
approaches zero as ~ increases to infinity. That is, Px, r -~ 0 as ~y -~ oo. 

This also implies that correlation should not be estimated by running linear 
regression, unless all of the variables have normal distributions. 

Now we show a new way to extend the Pearson correlation coefficient to 
variables with non-normal distributions. For any pair of variables {X, Y} with 
distributions Fx and Fr, we transform them into "standard normal variables": 

U = ~-1[Fx(X) ], and V= O-X[Fr(Y)]. 
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We next define a new measure of correlation between {X, Y} as the Pearson 
linear correlation coefficient between these transformed "standard normal vari- 
ables" { U, V}: 

p ,  _ Coy(U, V) _ Cov(U, V). 
~ r  ,~(U). ~ ( ~  

Now, let us reconsider the case where X -  lognormal(0,1) and Y= (X)% Consis- 
tent with this deterministic relationship, this new measure of correlation 
between X and Y is always 1. That is, p~ r = 1 for all ¢~ values. 

Using this new measure of correlati3n we may extend classic CAPM as 
follows: 

~'i = Pi, M" 2M, 

where 2s and 2M are the respective market prices of risk in the Wang transform, 
without assuming normality. 

Pricing of Contingent Payoffs 

For an underlying risk Xand  a function h, we say that Y= h(X) is a derivative 
(or contingent payoff) of X, since the payoff of Y is a function of the outcome 
of X. If the function h is monotone, we say that Y is a co-monotone derivative 
of X. For example, a European call option is a co-monotone derivative of the 
underlying asset; in (re)insurance, an excess layer is a co-monotone derivative 
of the ground-up risk. 

Theoretically, the underlying risk X and its co-monotone derivative Y should 
have the same market price of risk, ~., simply because they have the same cor- 
relation (as shown by using our new measure of correlation) with the market 
portfolio. 

In pricing a contingent payoff Y= h(X), there are two ways of applying the 
Wang transform. 

• Method I: Apply the Wang transform to the distribution Fx of the underlying 
risk X. Then derive a risk-adjusted distribution Fy from F x using Y* = h(X*). 

• Method II: First derive its own distribution Fr for Y=h(X).  Then apply 
the Wang transform to Fr directly, using the same X as in Method I. 

Mathematically it can be shown that these two methods are equivalent. This 
important result validates using the Wang transform for risk-neutral valua- 
tions of contingent payoffs. 

Implied Z and the Effect of Duration 

For a traded asset, the market price of risk ~, can be estimated from observed 
market data. We shall now take a closer look at the implied market price of 
risk and how it varies with the time horizon under consideration. 
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Consider a continuous time model where asset prices are assumed to fol- 
low a geometric Brownian motion (GBM). Consider an individual stock, or a 
stock index, i. The asset price X/(t) satisfies the following stochastic differen- 
tial equation: 

dX,(O 
X,. (t) = Izidt + aidW~' (4) 

where d Wi is a random variable drawn from a normal distribution with mean 
equal to zero and variance equal to dt. In equation (4), gi is the expected rate 
of return for the asset, and oi is the volatility of the asset return. Let Xi(0) be 
the current asset price at time zero. For any future time T, the prospective 
stock price Xi (7) as defined in equation (4) has a lognormal distribution (see 
Hull, 1997, p. 229): 

X i (7)/X,. (0) lognormal(lz;T-0.5 o-2T, o-/2 T). (5) 

Next we apply the Wang transform to the distribution of X~ (7) in (5) and we get 

X*(T) / X i (0) - l o g n o r m a l ( p i T -  2ai,fT-O.5a~T, aZT). 

For any fixed future time T, a "no arbitrage" condition (or simply, the market 
value concept) implies that the risk-adjusted future asset price, when discounted 
by the risk-free rate, must equal the current market price. In this continuous- 
time model, the risk-free rate r needs to be compounded continuously. 
As a result, we have an implied parameter value: 

= ~ i ( T )  - ( P ' - r ) ~ T  = f T - 2 i ( 1  ). (6) 
O" i 

The implied k in (6) coincides with the market price of risk of asset i as 
defined in Hull (1997, p. 290). This implied ~, is also consistent with Robert 
Merton's inter-temporal, continuous-time CAPM (see Merton, 1973). 

It is interesting to note that the market price of risk )~ increases as the time hori- 
zon lengthens. This makes intuitive sense since the longer the time horizon, the 
greater the exposure to unforeseen changes in the overall market environment. 
This interesting result has applications in pricing long-tailed insurance where 
losses are not reported or settled until many years after the policy period expires. 

If the evolution of incurred loss resembles geometric Brownian motion, the 
parameter k should be proportional to the square root of the time period from 
policy inception to the date of loss settlement. The relationship (6) between ~. 
and duration T is very useful in calculating fair values of insurance liabilities 
(including loss reserve discounting) and optimizing capital allocations within 
an insurance company. 

Applying the Wang transform with the 9~ in equation (6), asset i has a risk- 
adjusted distribution 

X* (T) / X,. (0) - lognormal(r  T -  0.5 o -2 T, o-/2 T), 
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where both the market price of risk 2,., and the expected stock return/~i have 
dropped out from the transformed distribution F*(x). 

Recovery of the Black-Scholes Formula 

A European call option on an underlying stock (or stock index) i with a strike 
price K and exercise date T is defined by the following payoff function 

0, when X/(7) > K, 

Y = Call(K) = X/(7) - K, when X,. (T) > K. 

Being a non-decreasing function of the underlying stock price, the option pay- 
off, Call(K), is co-monotone with the terminal stock price, Xi(7); thus it has 
the same market price of risk as the underlying stock i. Therefore, the same 
as in equation (6) should be used to price the option Call(K). In other words, 
the price of a European call option is the expected payoff under the transformed 
(risk-neutral) stock price distribution F* (x), where the expected stock return 
/xi is replaced by the risk-free rate r. The resulting option price is exactly the 
same as the Black-Scholes formula. 

There is an analogy between an unlimited stop-loss cover with retention 
K, and a European call-option with strike price K. Both are co-monotone 
derivatives of the underlying 0iability or asset) variable. By applying the Wang 
transform to the stop-loss variable, we get a stop-loss premium as the expected 
stop-loss value under the transformed ground-up loss distribution. 

Likewise, the price for a European call option can be evaluated as the 
expected option payoff under the transformed (risk-neutral) distribution for 
the underlying stock price, where the expected stock-return/z,- does not appear 
in the options pricing model. Thus the Wang transform adds a new perspective 
to the well-known risk-neutral valuation methodology of options (see Cox 
and Ross, 1976). 

Equilibrium and Replication Perspectives 

Recall that CAPM provides an equilibrium perspective of asset prices in light 
of  its correlation with the market portfolio. With the equilibrium perspective, 
a call option is co-monotone with the underlying asset, thus have the same 
market price of risk. Using the same market price of risk, the Wang trans- 
form produces an option price as the expected option payoff under a trans- 
formed "risk-neutral" asset distribution where the expected rate-of-return is 
equal to the risk-free rate-of-return. 

On the other hand, modern finance presents the Black-Scholes formula 
via a replication perspective. The replication approach relies on the ability to 
create a continuous riskless hedge. If asset prices change in small amounts, 
it is possible to simultaneously buy an option and sell a quantity of the 
underlying asset, so that the combined portfolio has no risk. Note that the 
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instantaneous hedge is possible only because the option is a co-monotone deriv- 
ative of the underlying asset. 

Emanuel Derman (1996), who had worked closely with Fischer Black, com- 
mented that "Deep inside, Fischer seemed to rely on the equilibrium approach 
of the capital asset pricing model as the source for his intuition about options 
pricing. I believe this is the way the Black-Scholes equation was originally 
derived, although the first derivation of the options pricing formula in the 
Black-Scholes article is based on valuation by replication." 

The Wang transform takes the equilibrium perspective of CAPM, and 
yet is able to reproduce the Black-Scholes price for options on underlying 
assets with lognormal distributions. The Wang transform thus formalizes an 
intrinsic relationship between CAPM and the Black-Scholes formula, along 
the lines of Fischer Black's reported insights. 

Adjust for Parameter Uncertainty 

The foregoing theory on the Wang transform assumes that the true underlying 
probability distribution is known without ambiguity, which is rarely the case 
in real life applications. 

Consider the classic sampling theory in statistics. Assume that we have k 
independent observations from a given population with a Normal(g,~ 2) dis- 
tribution. Note that g and ~ are not directly observable, we can at best esti- 
mate g and ~ by the sample mean/~ and sample standard deviation #. As a 
result, when we make probability assessments regarding a future outcome, we 
effectively need to use a Student-t distribution. 

The Student-t distribution with k degrees-of-freedom has a density 

1 [  f ( t ; k ) - ~ 2 ~  ~ 1+ , - o o < t <  0% 

where 
~ r ( ( k + l ) / 2 )  

ck = " F(k/2) 

Following the sampling theory that uses a Student-t distribution in place of a 
normal distribution, we suggest the following technique of adjusting for para- 
meter uncertainty: 

F * (x) = Q ( ~-I ( F(x) ) ), (7) 

where Q has a Student-t distribution with k degrees-of-freedom. Note that in 
equation (7), no restriction is imposed on the underlying distribution F(x). 

It may be arguable whether the adjustment in equation (7) represents 
a more objective view of the risk's probability distribution, or represents a 
form of profit loading. Regardless of how it is perceived, empirical evidences 
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often suggest that market prices do often contain an adjustment for parameter 
uncertainty. 

Let F(x) be the estimated probability distribution, before adjustment for 
parameter uncertainty. The combination of parameter uncertainty adjustment 
in equation (7) and pure risk adjustment using the Wang transform in equation 
(1) yields the following two-factor model: 

F*(y)=Q(*-I(F(y))+ 2), (8) 

where Q has a Student-t distribution with k degrees-of-freedom. 
In a recent empirical study, Wang (2002a) reported that the two-factor model 

(8) provides excellent fit to the CAT-bond and corporate bond yield spreads 
studied by Lane (2001). Without  the Student-t  adjustment,  the one-factor 
Wang transform (1) would not be able to explain the yield spreads in the Cat- 
bond and corporate bond data. 

As an alternative method of adjusting for parameter uncertainty, we can 
modify the best-estimate cdf F(x) as follows: 

F*(x)=O[b'@-l(F(x))], (9) 

where the multiplicative factor b is a positive-valued function of F(x). In gen- 
eral, the b-values should be no greater than 1 for both assets and liabilities, 
indicating that the best-estimate volatility is being amplified. 

The composite of transforms (9) and (1), incorporating both systematic 
risk and parameter uncertainty, produces a two-factor model: 

F* (x) = rb[b. *-l (F(x)) + 2]. (10) 

Consider the special case when b is a constant and F(x) is a lognormal distri- 
bution. The transform (10) amplifies the volatility parameter by a factor 1/b, 
after a location shift by )~, along the lines suggested by Butsic (1999). Gary 
Venter, in a private communication, has also informed the author that John 
Major had fitted transform (10) with constant b to empirically observed prop- 
erty CAT treaty prices. 

Note that the Student-t adjustment in equation (8) can also be written in terms 
of the b-function in equation (10): 

F*(x) = Q[*-l(F(x))+ 21 = * [ b .  @-'(F(x))+ 2]. (l l)  

With Q being a Student-t  distribution in (11), the implied b-function has a 
"hump" shape over the interval 0 < F(x)< 1, with the highest b-value in the 
middle when F(x) = 1/2, and smaller b-values at the tails when F(x) approaches 
to 0 or 1. This effectively gives higher adjustment at the extreme tails, like for 
deep out-of-money contingent claims, or way beyond-a-horizon-date claim 
settlements, where markets are illiquid, benchmark data sparse, negotiations 
difficult, and the cost of keeping capital reserves is high. 
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Extrapolation of Tail Probabilities 

Using equation (8) or (10) to adjust for parameter uncertainty does not always 
work in all situations. For instance, an insurance contract might offer a $100M 
limit, with no data indicating historical losses greater than $50M, even after 
trending. 

In such a case, tail probabilities for losses greater than 50M need to be extra- 
polated from the estimated probabilities for losses below 50M. Extreme value 
theory may be a useful technique for the extrapolation (see Embrechts, et al, 
1997). The Wang transform can be applied to the extrapolated tail probabilities. 

Portfolio Management 

Portfolio management involves active selections (deletions) of  the most (least) 
profitable business in relation to its incremental risk to the existing portfolio. 
We can measure the incremental risk by applying the Wang transform to the 
aggregate portfolio profit/loss distributions, before and after a risk is being 
added. The Wang transform can also be used by a portfolio manager to iden- 
tify good/bad risks by comparing their respectively implied lambdas (Sharpe 
Ratios) with their own benchmarks for risk/return tradeoff. 

Final Remarks on Part One 

So far we have introduced the Wang transform as an extension to CAPM and 
the Black-Scholes formula. In a follow-up paper, Wang (2002b) extends BuN- 
mann's (1980) equilibrium-pricing model and derives the Wang transform from 
a set of  assumptions on the behaviors of market participants. 

In Part Two and Part Three of  this paper we will discuss applications of  
the Wang transform in pricing options, weather derivatives, insurance and in 
capital allocation. 

PART TWO. EXAMPLES OF PRICING CONTINGENT PAYOFFS 

A contingent payoff is a contractual agreement between counter-parties, 
whose payment trigger and amount are determined by observed outcomes of 
the underlying variable. A contingent payoff is a more general type of finan- 
cial instrument than an option, since the underlying variable can include 
non-traded assets or liabilities, statistical indices, or even physical events. 
Most underlying variables do not follow a lognormal distribution, making the 
Black-Scholes formula inappropriate for benchmark pricing. In contrast, the 
Wang transform is applicable to any distributional form, and can be used as 
a universal method for pricing all kinds of contingent payoffs. 

Example 1. Pricing of Options 

Asset pricing is based on anticipated future price movements. Historical returns 
may or may not be a good indicator of future price movement. For illustration 
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purposes, we assume the availability of a robust stock price projection model 
utilizing historical price data and other available information. Such a stock 
price projection may be based on a GARCH model with due considerations 
to mean-reversion and other economic factors. For our illustration, such a 
model has produced the following sample of outcomes with equal probability 
weights. 

The underlying is a stock index with a current price of $1326.03. Our model 
has produced 20 outcomes (partially based on 5-year history of quarterly 
returns): 

1218.71, 1309.51, 1287.08, 1352.47, 1518.84, 1239.06, 1415.00, 1387.64, 
1602.70, 1189.37, 1364.62, 1505.44, 1358.41, 1419.09, 1550.21, 1355.32, 
1429.04, 1359.02, 1377.62, 1363.84. 

The stock index return has a mean of 4.08% and a standard deviation of 8.07%. 
Assuming that the 3-month risk-free rate is 1.5%. The empirical "Sharpe Ratio" 
for the 3-month time-horizon is 0.32 = (4.08% - 1.5%) / 8.07%. 

We want to price a 3-month European call option on this stock with a strike 
price of $1375. Apply the Wang transform to the sample stock index distribu- 
tion. By using the empirical Sharpe Ratio ~, = 0.32 we do not recover the current 
stock price, since the sample distribution deviates from a lognormal distribution. 
We first solve for ~ = 0.342 by matching the current stock price of $1326.03. 
Using the resulting risk-adjusted probabilities, we obtain an expected payoff of  
25.35 for the 3-month European call option with strike price $1375. After risk- 
free discounting, we get an option price of $24.98. 

Further explanation of the computational steps is given in Appendix 1. 

Some comments: 

• The market price of risk, as calculated by (E[R] - r) / or, is precise only when 
the underlying asset has a normal distribution. The Wang transform, on the 
other hand, can iterate a precise market price of risk for underlying assets 
or liabilities with any type of distribution. 

• With the Wang transform, we can take advantage of a good price projection 
model incorporating stochastic volatilities for the underlying asset. 

Example 2. Pricing of Weather Derivatives 

For most weather derivatives, a payoff is contingent upon the number of observed 
Heating-Degree-Days (HDD) for the winter months, or Cooling-Degree- 
Days (CDD) for the summer months, multiplied by some notional amount. The 
underlying variables of weather derivatives, namely HDDs and CDDs, are not 
traded assets by themselves. This is in contrast to equity derivatives, where the 
underlying stock is usually a traded asset. To price a weather derivative, an equi- 
librium approach is necessary. 

In winter months, extreme cold weather drives up the cost for heating. The 
1999 U.S. energy crisis had boosted the demand for call options on HDDs, in 
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an attempt to hedge against rising heating costs. The writers of  such options 
need to set aside capital to fund potential payouts. Option-buyers are expected 
to pay a risk premium to compensate for the cost of  capital for the option- 
writers. 

We give an example of using the Wang transform to price weather derivatives. 
Here we use Chicago Mercantile Exchange Weather Data - Monthly Aggregate 
from 1/1/1979 to 1/1/2001. 

Table 1 is the aggregate HDDs  for months of  December observed at the 
Chicago O'Hare Station. Note that there are a total of 22 observations with a 
mean of  1154.7 and a standard deviation of  193.4. 

TABLE 1 

MONTHLY AGGREGATE DATA FOR CHICAGO O'HARE STATION, 1979-2000 

Date Dec-79 Dec-80 Dec-81 Dec-82 Dec-83 Dec-84 

HDD 972.5 1147.0 1244.0 901.0 1573.0 1055.0 

Date Dec-87 Dec-88 Dec-89 Dec-90 Dec-91 Dec-92 

HDD 1018.5 1155.0 1474.5 1129.5 1077.5 1129.5 

Date Dec-95 Dec-96 Dec-97 Dec-98 Dec-99 Dec-00 

HDD 1199.5 1156.0 1040.0 940.5 1090.5 1517.5 

Dec-85 Dec-86 

1488.0 1065.5 

Dec-93 Dec-94 

1090.5 938.5 

Assume a notional amount of  $1 for each HDD, and consider a call option 
on Dec-2001-HDDs with a strike price of 1350. The payoff function can be 
expressed mathematically as max(HDD-1350 ,  0). In order to apply the Wang 
transform, we first sort the annual December HDDs  in an ascending order 
and assign objective probabilities. Here we use historical data without adjusting 
for on-going trends or cycles of  weather conditions. In real life applications 
such trends and cycles need to be considered. 

The key to the application of the Wang transform boils down to the selec- 
tion of the lambda value. Noting that the underlying HDDs  themselves are not 
traded assets, there is no price available for of the underlying to infer a lambda 
value. Nevertheless, option writers may have a benchmark "Sharpe Ratio" 
to target for. For illustration, we assume a benchmark Sharpe Ratio of  ~ = 
0.25. In order to generate a positive risk premium, we can apply the trans- 
form in (1) with ~, = - 0.25. Or equivalently we can apply the transform in (2) 
with ~ = 0.25. 

For the strike level of 1350 Dec-2001-HDDs, the call option has an expected 
payoff of 29.68 Dec-2001-HDDs, using objective probabilities. However, the "fair 
value" of  the option is 42.70 Dec-2001-HDDs, using transformed probabilities 
and before any risk-free discounting. 

With a lambda value of 0.25, call options with different strike prices can 
be evaluated and compared (see Table 2). 
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TABLE 2 

OPTION PRICES AT VARIOUS STRIKE LEVELS 

Strike 1250 1300 1350 1400 1450 1500 

Exp. Payoff $47.86 $38.77 $29.68 $20.59 $11.50 $4.11 
Price $ 68.21 $ 55.45 $ 42.70 $ 29 .94 $17.18 $ 6.59 
Loading 43% 43% 44% 45% 49% 60% 

PART THREE. CAPITAL ALLOCATION & FAIR VALUES OF LIABILITIES 

Next we discuss an application of the Wang transform to insurance capital 
allocation and to the calculation of  fair values of liabilities. Consider an insur- 
ance company writing multiple lines of business. Assume that we already know 
the overall economic capital for the company, or alternatively, we have derived 
a total required economic capital for the company based on industry bench- 
marks. Our goal is to allocate the cost of  capital to different lines-of-business 
and individual contracts. Given the long-tailed nature of insurance payment 
patterns, insurers are required to continuously hold capital to support the 
reserve liabilities. One critical issue is how to appropriately reflect the duration 
of insurance liabilities. 

There are diverse opinions on how to quantify the cost of capital for long- 
tailed business. Some actuaries suggest that capital needs to be committed in 
each year in proportion to all remaining unpaid losses, without consideration 
of  the diversification effect among development years. The other extreme of 
opinion is that only a one-time allocation is needed in the first year to account 
for the uncertainties associated with the present value of reserves. They have 
dramatically different implications on pricing and present a challenging issue 
associated with insurance capital allocation (see Venter, 2002). Most actuaries 
would agree that there are diversification benefits between development years; 
the key questions is how to quantify them. The rest of  the paper is devoted to 
tackling this issue using the pricing framework in Part One. 

Available Data 

We first consider ground-up or primary business only. We shall use the following 
data: 

• Based on historical accident-year ultimate loss ratios, we have estimates of 
the loss ratio volatility for each line of  business, denoted by OAr. 

• We have estimates of the loss payment pattern for each line of business, with 
an average duration, denoted by DGU. Let R(t) be the portion of  losses 
remaining unpaid by time t. We have DGU = fo~R(t)dt. 
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Assumptions for the Evolution of Losses 

1. The best-estimate of  remaining unpaid losses evolves with the passage of 
time as more information becomes available. During each time period (e.g. 
one-year), the revised estimates of  loss reserve may go up or go down, with 
a random nature. 

2. There are two opposing arguments regarding the relative uncertainty of  the 
remaining reserve: (a) it should increase with time as more risky claims are 
settled later; (b) it should decrease with time as more information becomes 
available. Here we assume that the relative uncertainty (coefficient of vari- 
ation) of remaining reserves remains constant over time. See Philbrick (1994) 
for further discussion of this issue. 

3. Based on the above considerations, we assume a geometric Brownian motion 
process for the loss reserve evolution over time. Assuming that the instan- 
taneous per annum volatility is a constant ~1, we have 

2 = f00 ~ 2 a Ay a 1 • R( t )dt  = a~.  Dav.  

Thus we can estimate the per-year volatility as 

O A y 

° 1 =  D~GG U " 

In practice, the geometric Brownian motion assumption can be relaxed to more 
accurately reflect the true process for loss reserve evolution. For instance, the 
instantaneous volatility cy(t) may change with time. For property risks, ~(t) 
may be higher for the pricing risk (when 0 < t < 1) than the reserving risk (when 
t > 1), as new information will emerge during the contract period regarding 
catastrophe activities. For casualty risks, ~(t) may be higher for IBNR reserves 
than that for case reserves. For a changing G(t), an average per annum volatility 
can be calculated by 

foo~ (t) R (t) dt 

~1-- foo~R(t)dt 

Although the mentioned refinements can be incorporated in the calibration of  
the insurance company capital allocation, here we will restrict ourselves to the 
geometric Brownian motion assumption with ~(t) = ~Yl. 

Risk Measure and Cost of Capital 

We define a risk-measure to approximate the cost of capital commitment, based 
on the following assumptions: 

(a) For a given line of business, the cost of  capital per-year is proportional to 
the underlying per-year volatility cyl, which is estimated from industry data. 
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(b) According to the multi-period CAPM, the market price of risk increases 
with the time horizon. Let parameter )~1 be the per-year "market price of 
risk". The multi-period CAPM says that the market price of risk for time 
horizon T is: 2 r = 21 • ,/~. Intuitively this makes sense. For liability insur- 
ance, the longer the duration, the higher the uncertainty, especially with 
respect to judicial changes and court rulings. 

(c) For a given line of business, the cost of capital is proportional to the "mar- 
ket price of risk" for the underlying business. 

(d) With risk differences by lines of business being reflected in different val- 
ues of el, we target the same Sharpe Ratio L 1 per annum for all lines of 
business. This is because the total amount of insurance capital is used to 
support all insurance contracts and is legally indivisible. This is in contrast 
to the case for an asset portfolio where each asset is earmarked with a 
specific amount of capital. 

For each $1 of expected loss for a line of business with per-annum volatility (Yl 
and average duration of D~u, the total risk measure for ground-up insurance 
coverage is: 

21.0-1. DGu = 21 flAY D~G U DGU=21"0-Ay'D¢/-~GUGUGU=2GU'0-AY' 

where 26u = 21 • D~G v. 

Pricing Ground-up Insurance Contracts 

For a given line of business, to calculate the insurance premium for each $1 
ground-up expected loss, we will do the following: 

(1) Calculate the discount factor PVGu(1): Use market risk-free interest rate 
and the ground-up loss payment pattern. 

(2) Apply risk loading to derive a pure premium: 

PV6u(1) . {1 + 210-1OGu } . (12) 

The factor ~1 in (12) should be calibrated from "total portfolio re-balancing" 
based on a target return-on-equity (TROE). In other words, for the aggregate 
insurance portfolio, the ratio of "the total risk load plus investment return" 
to the total economic capital should produce a target return-on-equity. The 
total allocated capital over the lifetime of this $1 liability is 

210" 1DGv(1 + r) / ( T R O E -  r), 

For year j, the allocated capital is 

210-1P j (1 + r) / ( T R O E -  r), 

where Pj is the expected percentage of losses to be paid within year j. 
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(3) Load for expenses: suppose the total expense factor is 0, we can load the 
pure premium by a factor of 1 /(1 -0) .  

(4) Knowing the amount  of allocated capital, we can calculate the actual 
return-on-equity (ROE) for any given quoted premium rate. 

Remark: Assume that the ground-up accident-year loss ratio follows a Brown- 
ian motion process with a total volatility trAy. Formula (12) is an approximation 
to the resulting premium using the Wang transform with 2Gv = 21 D¢/~Gv. Thus, 
for ground-up business, our risk load (and capital allocation) methodology is 
shown to be an approximate result of the Wang transform. 

Pricing Excess-of-Loss Insurance Contracts 

For excess business, we need more data than for ground-up (or primary) business. 
In addition to the required data for ground-up business, we need the following: 

• A severity curve based on industry data or theoretical loss distributions; 
• Loss payment pattern for the excess cover with an average duration DxoL, 

which is generally longer than the ground-up payment duration. 

From the perspective of a top-down approach, this involves an allocation of 
overall risk load to various layers. We apply the Wang transform, with adjust- 
ment  for parameter uncertainty, to the severity curve to derive risk load rela- 
tivity by layer. (An example of calculating relative risk loading by layer can be 
found in Wang, 2000). If we fix our base layer as (0, 1M], we can calculate a 
relativity factor for any layer (a,b] as follows: 

relative loading_for layer(a,b ] 
layer_ relativity = relative~oading_for_base_layer 

In comparison with pricing primary insurance, we price excess-of-loss layers 
differently as follows: 

(1) Calculate the discount factor PVxoL(1) using excess-layer loss payment 
pattern. 

(2) Apply risk loading to get a pure premium: 

P Vxo L (1). {1 + 21 O"1 DxoL" (layer_relativity)}. 

The total allocated capital over the lifetime of this $1 liability is 

2 lO" 1DxoL(layer_relativity)(1 + r) / ( T R O E -  r), 

For year j, the allocated capital is 

21o-l(layer_relativity)P j (1 + r ) / ( T R O E -  r), 

where Pj is the expected percentage of excess-layer losses to be paid in yearj.  
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Remarks: 

• In most cases we suggest the use of the top-down approach, which utilizes 
industry data by line of business (loss volatility, severity curve, loss payment 
pattern). The top-down approach is based on the principle of CAPM. In other 
words, with the top-down approach, only non-diversifiable risks for the 
industry are priced into the contracts. Bault (1995) argued why industry data, 
rather than individual company data, should be used for pricing purposes. 

• For property catastrophe (CAT) covers, modern CAT modeling techniques 
often use a "bottom-up" perspective. Given geographic concentration and 
amount of insurance data, commercial CAT models can provide us with 
a final loss exceedance curve for any given CAT coverage. This final loss 
exceedance curve already takes into account the potential frequency and 
severity of CAT events, as well as the correlation (concentration) of the book 
of business. Ideally, pricing of CAT covers should be based on such "bot- 
tom-up" information. The Wang transform, with adjustment for parameter 
uncertainty, can be applied directly to the loss exceedance curve for the CAT 
cover. 

• The outlined approach is based on the pricing framework using the Wang 
transform. For pricing ground-up business, the Wang transform extends 
the classic CAPM in that the parameter L can now be calibrated from over- 
all industry capital requirements. For pricing excess-of-loss layers, the Wang 
transform implies risk-load relativity by layer, in parallel to the Black-Scholes 
formula for pricing options. For both primary and excess layers, the Wang 
transform prescribes a method to account for the duration of liabilities. 

Loss Reserve Discounting 

Consider the loss reserve liability for a given line of business. The pricing 
approach can be equally applied to valuation of reserve liabilities. It should 
be kept in mind that the reserving risk, in terms of ~y (t), may differ from the 
pricing risk. Here we provide an alternative (and more direct) approach to the 
discount of loss reserves. 

Again we assume that the loss reserve evolution follows a geometric Brown- 
ian motion. For $1 loss reserve liability, the incurred losses at time T has a 
distribution 

X(T) ~ logormal( pT-  O.5a~ T,~x2T). 

Assume that the risk-free rate is a constant r. The present value of the incurred 
losses has a distribution: 

X(T) e x p ( - r T ) -  logormal((p-r)T-O.5a(T,a~T). 

Let Xl be the market price of risk for this line of business with one-year time 
horizon. For time horizon T, the market price of risk should be 21 ~/T. Apply- 
ing the Wang transform to the distribution for the discounted reserves, we get 
another lognormal distribution: 
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X* ( T ) e x p ( - r T ) -  logormal ( ( / t -  r + ~I~I)T-O.5(~?T~c:T2T). (13) 

From relation (13) we infer that applying the Wang transform is equivalent to 
using the following discount rate: 

i = r - 21a 1. (14) 

In relation to equation (14) we make the following observations: 

• The discount rate in equation (14) is the mirror formula of CAPM for assets. 
It is also in line with a reserve-discount formula proposed by Butsic (1988) 
and D'Arcy (1988). 

• The per annum volatility ~ for product liability should be higher than that 
for worker's compensation. As a result, a lower discount rate should be used 
for product liabilities. 

• For Worker's Compensation lifetime-pension cases, the per annum volatility 
~ should be negligible and the discount rate should be close to the risk-free 
rate. 

• With this outlined approach, the key parameter ;L~ can be (and should be) 
calibrated from aggregate industry capital allocations for each sector of under- 
written business. This is in contrast to the traditional CAPM method where 
underwriting beta is derived from running linear regressions of equity prices 
of insurance firms. The "cost-of-capital" calibration of L1 should be more 
robust than the traditional estimation of underwriting beta. 

Final Comments of Part Three 

Most of the applications shown are equally applicable to banks and other finan- 
cial institutions. 

Our approach is mainly a top-down approach, which is consistent with 
CAPM. The top-down approach uses industry aggregate data, rather than 
relying solely on individual risk distributions. The top-down approach also 
eliminates any possible inconsistencies related to the treatment of frequency/ 
severity (see Venter, 1998). 

In the CAS White Paper on Fair Valuing Property/Casualty Insurance 
Liabilities, several methods of estimating risk adjustments are surveyed and 
compared. The White Paper discussed the advantages and disadvantages of 
the "Distribution Transform Method", including the PH-transform method. 
The Wang transform can overcome most of the disadvantages listed in the White 
Paper: 

• As shown earlier, the Wang transform can be used for producing prices or 
risk loads on primary business. In fact, under some common assumptions, 
the Wang transform reproduces the CAPM method and the Risk-Adjusted 
Discounting Method, which have both been used in pricing primary business. 

• Unlike other transforms including the PH-transform, the Wang transform 
builds directly upon CAPM and Black-Scholes Theory. 
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In the Wang transform, the parameter  - "market  price o f  risk" - has been 
a familiar concept  to financial economists. The market  price o f  risk can be 
calibrated from industry capital requirements. This calibration is more 
robust than historical estimates of  the "underwrit ing beta". 
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APPENDIX 1. COMPUTATIONAL STEPS FOR EXAMPLE 1 OF PART T w o  

Detailed steps of the option-pricing example are shown in Table 3. We provide 
further explanations below: 

• Column 1. Sort the sample of projected outcomes in ascending order. 
• Column 2. Assign objective probabilities f(x) = 1/20 to each projected out- 

come x. 
• Column 3. Add up the individual objective probabilities f(x) to yield a series 

of cumulative probabilities F(x). 
• Column 4. Using the empirical Sharpe Ratio (0.32) as a "starter" lambda 

value, apply the Wang transform to the cumulative probabilities F(x), to 
yield F * (x). 

• Column 5. De-cumulate the transformed probabilities F* (x) to recover f* (x). 
Evaluate the mean value of this projected sample using probability weights 
f* (x). If the discounted mean value is greater (or less) than the current 
market value, adjust upward (or downward) the lambda value. Repeat the 
process of columns 4-5 until the discounted mean value matches the cur- 
rent market price. In this example, the "starter" lambda value of 0.320 has 
been tweaked to 0.342, in order to match the current price of $1326.03. The 
values of F* (x) and f* (x) shown in columns 4 and 5 are thus the final trans- 
formed probabilities using ~ = 0.342. Now we proceed to columns 6-8. 

• Column 6. For a given strike price ($1375 in this example), calculate the 
option payoff for each projected future price for the stock. That is, y(x) = 
max ( x -  1375, 0). 

• Column 7. Calculate the expected payoff by multiplying the values of the 
option payoff function in Column 6 by the objective probabilities in Col- 
umn 2. In this example, the resulting expected payoff is $41.53 before dis- 
counting, and $40.93 after discounting. 

• Column 8. Calculate the risk-adjusted payoff using the transformed distri- 
bution. We do that by multiplying Column (5) by Column (6). The resulting 
option price is $25.35 before discounting, and $24.98 after discounting. 
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TABLE 3 

PRICING OF CALL-OPTION USING THE WANG TRANSFORM (~L = 0.342) 

I1) (2) (3) (4) (5) (6) (7) (8) 

Sorted Objective Transformed 

Sample Probability Probability 

Contingent Weighted Risk 

Payoff Value Adjusted 

x fix) F(x) F*(x) f*(x) y(x) f(x) y(x) f*(x) y(x) 

1,189.37 0.05000 0.05000 0.0963 0.0963 

1,218.71 0.05000 0.10000 0.1737 0.0774 - -  - -  - -  

1,239.06 0.05000 0.15000 0.2437 0.0700 - -  - -  - -  

1,287.08 0.05000 0.20000 0.3087 0.0650 

1,309.51 0.05000 0.25000 0.3698 0.0611 - -  - -  - -  

1,352.47 0.05000 0.30000 0.4276 0.0579 - -  - -  - -  

1,355.32 0.05000 0.35000 0.4827 0.0551 

1,358.41 0.05000 0.40000 0.5353 0.0526 - -  - -  - -  

1,359.02 0.05000 0.45000 0.5856 0.0503 - -  - -  

1,363.84 0.05000 0.50000 0.6338 0.0482 - -  - -  - -  

1,364.62 0.05000 0.55000 0.6800 0.0462 

1,377.62 0.05000 0.60000 0.7242 0.0442 2.62 0.13 0.12 

1,387.64 0.05000 0.65000 0.7665 0.0423 12.64 0.63 0.53 

1,415.00 0.05000 0.70000 0.8069 0.0404 40.00 2.00 1.62 

1,419.09 0.05000 0.75000 0.8453 0.0384 44.09 2.20 1.69 

1,429.04 0.05000 0.80000 0.8817 0.0364 54.04 2.70 1.97 

1,505.44 0.05000 0.85000 0.9160 0.0342 130.44 6.52 4.47 

1,518.84 0.05000 0.90000 0.9478 0.0318 143.84 7.19 4.57 

1,550.21 0.05000 0.95000 0.9765 0.0288 175.21 8.76 5.04 

1,602.70 0.05000 1.00000 1.0000 0.0235 227.70 11.38 5.34 

Values 

Expected 1,380.15 1,346.07 41.53 25.35 

Discounted 1,359.60 1,326.03 40.91 24.98 


