SEVERE CONVECTIVE STORM MODELING

Clare Salustro

Manager, Model Product Management

A RECENT SURVEY

What peril concerns you on a day-to-day basis?

Has your company made changes to your severe weather ratemaking methodology in the last 3 years?

In your opinion, what is the biggest threat regarding climate change?

A RECENT SURVEY

#1: SCS #2: Flood #3: Hurricane

> SCS, Flood, and Storm Surge/ Hurricane

~80% yes!

RISK OVERVIEW

Loss

Accounts for 1/3 of all US peril AAL (~11 billion USD)

Historical Losses

Several events in last 15 years exceed \$2 billion in loss

- 3 events in 2011
- 2 so far in 2013

Risk

High risk to aggregate covers, auto lines, and large single location risks Eats at profit, as most risk is retained

Challenges

Event frequency not well captured in statistical data
SCS annual losses can be volatile/
non-stable

Source: PCS

©2013 Risk Management Solutions, Inc.

OUTLINE

- Intro to the RMS Severe Convective Storm model
- Applications and considerations
- Resilient risk management

SEVERE CONVECTIVE STORM MODELING

FOUR PERILS OF SEVERE CONVECTIVE STORMS

Hail

- Most frequent of SCS perils
- Auto and Residential lines most at risk
- Smaller damage ratios, over large areas

Tornadoes

- Rarest of the SCS perils
- Highest damage ratios

Straight-line winds

- Largest footprints of SCS perils
- Treefall an issue for residential and auto

Lightning

- Frequent, but least damaging
- Losses to electrical equipment (power surge)

FRAMEWORK FOR SCS MODELING

EVENT GENERATION

CHALLENGE: DEFINE THE PERIL

CHALLENGE: DEFINE THE PERIL

- Tornadoes are #1 driver for loss of life
 - 324 deaths in April 2011 outbreak
 - Last death due to hail in US was 12 years ago; ~1,000 deaths due to tornadoes in same period
- Hail storms are #1 driver for insurance loss.
 - Aggregate loss: hail is dominant, 60% of all claims
 - Tail loss: hail & tornado are ≈ 40%

CHALLENGE: BIASED HISTORICAL RECORDS

Records and Observations (PCS) are limited to and biased by observation location and damage.

Cat Models can provide physically-based frequency and severity distributions with complete coverage.

SCS EVENT GENERATION

Simulate stochastic years of atmospheric conditions

- Resample events from the North American Regional Reanalysis (NARR)
 - Reanalysis data from 1979-2005
- Create "stochastic" years
 - 3-day blocks within 3 month periods
 - Over 27 years of data
 - Preserve seasonality
 - Preserve temporal and spatial correlations

SCS EVENT GENERATION: PUTTING IT ALL TOGETHER

A hybrid model that unites statistics with numerical modeling

- Numerical modeling provides thousands of years of large-scale, 3D meteorological "ingredients" for storms
- Statistics are used to place tornado, hail, and straightline winds in each cell using probability distributions and historical data
- Result is verified and calibrated against historical observations and damage surveys where appropriate

CHALLENGE: HIGH-FREQUENCY EVENTS

State	% AAL HF
Alabama	9%
Oklahoma	10%
Texas	14%
Louisiana	16%
Wyoming	24%
New York	28%
Massachusetts	45%
Nevada	77%
Washington	82%

- High-frequency events can contribute over 50% of the annual AAL in some regions, particularly in the West
- Impractical to model as individual events
- SCS model's solution:
 - Determine percentage of claims from high-frequency events, verify with CAPE as proxy for thunderstorms
 - 1 pseudo-event per state
 - Model as an annual occurrence (frequency = 1) for the aggregate contribution of high-frequency events to the location AAL

2011 IED, All Lines, All Subperils

CHALLENGE: HIGH-FREQUENCY EVENTS

High-frequency event: Isolated t-storms/wind

	Low-Frequency Events	High-Frequency Events
Storm Type	Cat events	Non-Cat events
Examples	Thunderstorms Straight-line winds Tornadoes Lightning	Isolated Thunderstorms Downbursts Hailstorms
Storm size	Large-scale (1000s of sq mi or km)	Small-scale (10s of sq mi or km)
RiskLink Stochastic footprint?	Yes	No
Regional Impact	Dominant in Midwestern Plains	Dominant in West

HAZARD

HAIL

Intensity 2 Hail Pad
Intensity 1 Hail Pad
Stochastic Hail Swath

Ellipses fitted to the SPC points for the event of 3 May 1999, along with the WDT polygons from radar.

Hailstorms

- Many hail swaths per day possible
- Calibrated with 50 years of observations
- Hail swaths often occur in clusters
 - Modeled at two intensity levels
 - Intensity related to hail stone size and density
 - Intensity distribution varies geographically
 - Number of hail swaths, size, and intensity distribution dependent on storm size
 - Footprint morphology calibrated on historical and radar data

STRAIGHT-LINE WINDS

- Ranging from microburst to derecho (1 mn/yr vs. 25 year)
- Derecho widespread, long-lived convective windstorm
- Size: 3 miles to 100+ miles wide
- Duration: minutes to 24 hr
- Wind speeds: up to 100 mph gust
- Methods of reconstructing straight-line winds
 - Storm Prediction Center historical reports
 - Airport locations, mesonet stations, Global Summary of the Day
 - Examine roughness

TORNADO

Tornado intensity based on Rankine vortex model.

- Outbreak modeled by maximum F-intensity tornado
- Historical tornado reports are clustered into larger outbreaks (similar to hail)
- Intensity size distributions based on Rankine vortex model
- Adjusted with high-resolution damage surveys (from scientific literature, consultants)

LIGHTNING

- Losses from lightning strikes (non-fire)
- Two main damage modes:
 - Damage at point of entry (singe or burn marks)
 - Electrical system (electronics that are plugged in)
- Typically low damage ratios
- Highly correlated with hail hazard so modeled on top

VULNERABILITY

PERIL-SPECIFIC VULNERABILITY FUNCTIONS

- Distinct functions for Hail, Tornado, and Wind
- Hail → kinetic energy
 - Key vulnerability components:
 - General roof shape (e.g. steep, low slope)
 - Roof cover (e.g. asphalt, shake, tile, built-up, single-ply)
 - Roof age (critical age ~10-15 years for most types)
- Tornado → F-rating
 - Relates damage to approximate wind speed range
- Straight-line winds → peak gust
 - Dominant range of wind speeds < 80 mph
 - Tree damage
- Use of claims data and consultants for calibration/validation

FUTURE MODEL UPDATES: RISKLINK

- Interim update of SCS model in January 2014
- Fundamentals of event generation module still strong
- 2008-2012 taught us new lessons that we wish to integrate
 - Add information on tail events and EPs from 2008-2012 SCS seasons
 - Integrate new client data to further refine hazard and vulnerability

FUTURE MODEL UPDATES: RMS(ONE)

Spring 2014: SCS translated for use on RMS(one)

More powerful platform to make the model work for you:

- Conduct sensitivity tests
- Leverage your own claims data and research
- Gain competitive advantage

SCS APPLICATIONS & CONSIDERATIONS

IMPLICATIONS AND APPLICATIONS

- Ratemaking (primary companies)
 - Statewide level
 - Territorial
 - Class Plans
 - Policy Terms
- Transfer of Risk (e.g., reinsurance)
- Concentration of Risk

HOW EVENTS ARE DEFINED

*synoptic = large scale atmospheric phenomenon

- Any <u>vertically</u> developed thunderstorm that produces damage due to hail, tornado, and/or a straight-line wind
- Can occur in all states and provinces in the U.S. and Canada any time during the year
- Peril model and catastrophe model
- Event can be
 - Synoptic* system
 - Used in RiskLink to capture high-frequency losses

EXPERIENCE DATA

Low frequency

- PCS definition
 - >=\$25M industrywide, and
 - >=\$5M for any state
 - Gross loss
 - Lifetime of synoptic system
- Company ID
- − ~\$Ms

High frequency

- Remainder "follows" low freq
- One "event" per year for each state
- \$10,000s to \$100,000s

HIGH FREQUENCY AND LOW FREQUENCY SCS LOSSES

	Contributes to AAL	EP curve	Discrete Events
Low Freq	Yes	AEP / OEP	Yes
High Freq	Yes	Becomes meaningful when combined with low- frequency losses	Thousands of actual occurrences every year. One event each year per state/province with varying hazard at more granular level.

AAL BY PRIMARY CHARACTERISTICS

- Reference Structure: 200k structure, 150k contents, 40k ALE (\$250 deductible)
- Selected location in Midwest

' <u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	7/4				
Scenario	Construction	Occupancy	Yr Built	# of Stories	AAL	CV
1	Unknown	Unknown	Unknown	Unknown	\$82	32.7
2	Wood	Unknown	Unknown	Unknown	\$107	27.0
3	Wood	SFD	Unknown	Unknown	\$123	23.6
4	Wood	SFD	1995	Unknown	\$113	25.0
5	Wood	SFD	1995	2	\$97	27.2

AAL BY PRIMARY CHARACTERISTICS

Scenario	Construction	Occupancy	Yr Built	# of Stories	AAL	CV
6	Wood	SFD	2005	2	\$95	27.8
7	Wood	SFD	1965	2	\$107	25.5

Scenario	Construction	Occupancy	Yr Built	# of Stories	AAL	CV
6	Wood	SFD	2005	2	\$95	27.8
8	Wood	SFD	2005	1	\$115	24.7

PRIMARY CHARACTERISTICS: NUMBER OF STORIES

13% Damage Ratio

Risk is primarily determined by the roof system covering and its value relative to the remainder of the structure

- Brick veneer structure example
- \$100,000 per story replacement cost
- \$15,000 for roof

7% Damage Ratio

5% Damage Ratio

SECONDARY MODIFIERS

Secondary modifiers are invoked only when sufficient primary characteristics are known: occupancy, construction class, year of construction, and building height

Hail	Tornado	Straight-line Wind
 Roof System Covering Cladding Type Roof Age Mechanical and Electrical Systems 	Foundation SystemRoof AnchorWind MissilesTree DensityCladding	Tree DensityRoof System CoveringRoof Sheathing Attachment

DEDUCTIBLES

- Given that AAL is driven in large part by hail, damage ratios for SCS tend to be on the smaller side (5-10%)
- These types of loss ratios can be very sensitive to the deductible chosen when modeling SCS

Real-world case study:

- Take a book of business for a particular state, and change the deductible from \$250 to 1% of the limit
- Determine the change to AAL and RP losses as a result

Loss Metric / Return Period	Change
AAL	-25%
5	-20%
10	-20%
50	-15%
100	-15%
250	-10%
500	-10%

MAY NEED ADDITIONAL EXPECTED \$\$

- Included
 - Tree fall
 - Debris removal
 - Power outage if there is direct damage to the location
- Non-modeled losses
 - Flood
 - Fire following
 - Power outage off premises unless there is direct damage to the location
- Can model auto

MORE INFORMATION

- RMS document in response to ASOP #38: Using Models Outside the Actuary's Area of Expertise (Property and Casualty)
- Provides basic understanding of the model
- Non-proprietary just ask

THE FUTURE: RESILIENT RISK MANAGEMENT

RESILIENT RISK MANAGEMENT

BENEFITS OF OWNING YOUR VIEW OF RISK

