
Tails of Copulas 
  

 

Abstract: Actuaries who want to model correlated joint distributions have a choice of 

quite a few copulas, but little basis for choosing one over another. Methods are provided 

here to describe the features of different copulas, so that more informed choices can be 

made. 

 

Copulas differ not so much in the degree of association they provide, but rather in which 

part of the distributions the association is strongest. Often needed for property and casu-

alty applications are copulas that emphasize correlation among large losses, i.e., in the 

right tails of the distributions. Several copulas that do this are discussed.  

 

To describe aspects of the copulas, univariate functions of copulas are introduced, for ex-

ample tail concentration functions. These descriptive functions can be thought of as an 

intermediate step between correlation coefficients, such as Kendall, Spearman, Gini, etc., 

which are zero-dimensional measures of association, and the multi-dimensional copula 

function itself. 

 

The descriptive functions can be used to select copulas having desired characteristics, 

such as tail concentration, and they can also be used in the fitting process to judge how 

well the fitted copulas match those aspects of the data. 



Tails of Copulas 

What are copulas?

Copulas provide a convenient way to express joint distributions of two or more random 

variables. With a copula you can separate the joint distribution into two contributions: the 

marginal distributions of each variable by itself, and the copula that combines these into a 

joint distribution. One basic result is that any joint distribution can be expressed in this 

manner. Another convenience is that the conditional distributions can be readily ex-

pressed using the copula. 

 

Some measures of association depend only on the copula and not on the marginal distri-

butions. Both Kendall’s tau and Spearman’s rank correlation are examples, but the usual 

Pearson linear product-moment correlation depends on the marginal distributions. Corre-

lation coefficients measure the overall strength of the association, but give no information 

about how that varies across the distribution. Through the choice of copula, a good deal of 

control can be exercised over what parts of the distributions the variables are more 

strongly associated. One aspect emphasized below is controlling the strength of the rela-

tionship in the tails of the distributions. For instance, workers compensation and property 

losses might be correlated in the extreme tails, but not elsewhere in the distributions, and 

there are copulas with this kind of behavior.  

 

A previous PCAS example of the use of copulas was provided in Wang [8], who provided 

details of calculation methods for aggregate distributions, with some examples using 

copulas. 

 

Technically, copulas are joint distributions of unit uniform variates. In application, the 

unit uniform variates are viewed as probabilities from some other variates. Then the joint 

distribution of those variates is produced from those probabilities using their individual 

inverse distribution functions. Copulas thus provide a ready method for describing joint 

distributions and simulating correlated variables. Quite a few copulas are available, and 
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they have differing characteristics that lead to different relationships among the variables 

generated.  

 

This paper reviews several popular copulas, introduces some others, and also introduces 

methods for selecting which copulas may be most appropriate for a given application. In 

particular, the behavior of the copulas in the right and left tails can be used to distinguish 

among joint distributions that produce the same overall correlation. 

 

The organization of the paper is first to review copula methods in general, then to exam-

ine several specific copulas, and finally to look at measures that can be used to identify 

key characteristics of copulas. An example is provided to illustrate how these measures 

are applied to some correlated loss data. 

 

1. General Considerations

Copulas  –  Formal Definition 

It would be convenient to be able to express a joint distribution function F(x,y) as a func-

tion of FX(x) and FY(y), the individual (or marginal) distribution functions for X and Y, i.e., 

as F(x,y) = C(FX(x),FY(y)). To do this, C can be defined by C(u,v) = F(FX-1(u),FY-1(v)). This 

gives C(FX(x),FY(y)) = F(FX-1(FX(x)),FY-1(FY(y))) = F(x,y). The function C(u,v) is called a cop-

ula. For many bivariate distributions, the copula form is the easiest way to express and 

generate the joint probabilities. It allows a separate description of the individual distribu-

tions and their association. Copulas work in the multi-variate context also, but this paper 

will primarily look at bivariate copulas, especially those defined by a single parameter. 

 

In this context, a copula is a joint distribution of two unit uniform random variates U and 

V with C(u,v) = Pr( U≤ u, V≤v). Also, c(u,v) will be used to denote the corresponding 

probability density, which is the mixed second partial derivative of C(u,v). The simplest 

copula is the uniform density for independent draws, i.e., c(u,v) = 1, C(u,v) = uv. Two 

other simple copulas are M(u,v) = min(u,v) and W(u,v) = (u+v–1)+, where the “+” means 

“zero if negative.” A standard result, given for instance by Wang[8], is that for any copula 
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C, W(u,v) ≤ C(u,v) ≤ M(u,v). M and W are called the Fréchet upper and lower bounds, re-

spectively. 

Conditioning with Copulas 

The conditional distribution can be defined using copulas. Let C1(u,v) denote the deriva-

tive of C(u,v) with respect to the first argument. When the joint distribution of X and Y is 

given by F(x,y) = C(FX(x),FY(y)), then the conditional distribution of Y|X=x is given by: 

 

 FY|X(y) = C1(FX(x),FY(y)) 

 

For example, in the independent case C(u,v) = uv, the conditional distribution of V given 

U=u is C1(u,v) = v = Pr(V<v|U=u). This is of course independent of u. 

 

If C1 is simple enough to invert algebraically, then the simulation of joint probabilities can 

be done using the derived conditional distribution. That is, first simulate a value of U,  say 

u, then simulate a value of V from C1, the conditional distribution of V|U=u. 

Correlation 

The linear correlation coefficient based on the covariance of two variates is not preserved 

by copulas. That is, two pairs of correlated variates with the same copula can have differ-

ent correlations. However, the Kendall correlation, usually denoted by τ, is a constant of 

the copula. That is, any correlated variates with the same copula will have the τ of that 

copula. 

 

There are different ways of defining τ, but the simplest may be τ = 4E[C(u,v)] – 1. For in-

dependent variates with C(u,v) = uv, E[C(u,v)] = ¼ so τ = 0. Also, for perfectly correlated 

variates U = V, E[C(u,v)] = ½, so τ will be 1. Thus the scaling makes τ look like a correla-

tion coefficient. The key measure though is E[C(u,v)], which is a basic constant of a copula 

and generalizes to the case of several variates. The limiting values are obtained for the 

Fréchet upper and lower bound copulas, with τ = -1 for W and τ = 1 for M. These copulas 

thus express complete negative correlation and complete positive correlation, respec-

tively. 
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                                          2. Some Particular Copulas

Some well-known copulas and a few designed particularly for loss severity distributions 

are reviewed here. 

Frank’s Copula 

Define gz = e-az – 1. Then Frank’s copula with parameter a ≠ 0 can be expressed as: 

 C(u,v)  = -a-1ln[1 + gugv/g1], with conditional distribution 

 C1(u,v) = [gugv+gv]/[gugv+g1]   

  c(u,v) = -ag1(1+gu+v)/(gugv+g1)2 and Kendall’s τ of 

      τ(a)  = 1 – 4/a + 4/a2 ∫0
a t/(et-1) dt 

For a<0 this will give negative values of τ. 

 

C1 can be inverted, so correlated pairs u,v can be simulated using the conditional distribu-

tion. First simulate u and p by random draws on [0,1]. Here p is considered a draw from 

the conditional distribution of V|u. Since this has distribution function C1, v can then be 

found as v = C1-1(p|u). The formula for this, which can be found from the formula for C1, 

is: 

  v = -a-1ln{1+pg1/[1+gu(1–p)]} 

 

Once u and v have been simulated, the variables of interest X and Y can be simulated by 

inverting the marginal distributions, i.e., x = FX-1(u) and y = FY-1(v). 

Gumbel Copula 

This copula has more probability concentrated in the tails than does Frank’s. It is also 

asymmetric, with more weight in the right tail. It is given by: 

C(u,v)  = exp{- [(- ln u)a + (- ln v)a]1/a}, a ≥ 1. 

C1(u,v) = C(u,v)[(- ln u)a + (- ln v)a]-1+1/a(-ln u)a-1/u 

c(u,v) = C(u,v)u-1v-1[(-ln u)a +(-ln v)a]-2+2/a[(ln u)(ln v)]a-1{1+(a-1)[(-ln u)a +(-ln v)a]-1/a} 

τ(a)  = 1 – 1/a 

 

Unfortunately, C1 is not invertible, so another method is needed to simulate variates. 
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Embrechts, etal.[1] discuss the Gumbel copula and give a procedure to simulate uniform 

deviates from a general class of copulas to which it belongs. For the Gumbel this proce-

dure starts by simulating two independent uniform deviates u and v, and then solving 

numerically for 1>s>0 with ln(s)s = a(s–u). Then the pair [exp(ln(s)v1/a), exp(ln(s)(1-v)1/a)] 

will have the Gumbel copula distribution.  

Heavy Right Tail Copula and Joint Burr 

For some applications actuaries need a copula with less correlation in the left tail, but high 

correlation in the right tail, i.e., for the large losses. Here is one: 

C(u,v) = u + v – 1 + [(1 – u)-1/a + (1 – v)-1/a – 1]-a  a>0 

C1(u,v) = 1 – [(1 – u)-1/a + (1 – v)-1/a – 1] -a-1(1 – u)-1-1/a 

c(u,v) =  (1+1/a)[(1 – u)-1/a + (1 – v)-1/a – 1] -a-2[(1 – u)(1 – v)]-1-1/a                                                

τ(a) = 1/(2a + 1) 

 

The conditional distribution given by the derivative C1(u,v) can be solved in closed form 

for v, so simulation can be done by conditional distributions as in Frank’s copula. 

 

Frees and Valdez [2] show how this copula can arise in the production of joint Pareto dis-

tributions through a common mixture process. Generalizing this slightly, a joint Burr 

distribution is produced when the a parameter of both Burrs is the same as that of the 

heavy right tail copula.  

 

Given two Burr distributions, F(x) = 1 – (1 + (x/b)p)-a and G(y) = 1 – (1 + (y/d)q)-a, the joint 

Burr distribution from the heavy right tail copula is: 

 

 F(x,y) = 1 – (1 + (x/b)p)-a – (1 + (y/d)q)-a + [1 + (x/b)p + (y/d)q]-a  

 

The conditional distribution of y|X=x is also Burr: 

 

 FY|X(y|x) = 1 – [1 + (y/dx)q]-(a+1), where dx = d[1 + (x/b)p/q] 
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By analogy to the joint normal, this can be called the joint Burr because the marginal and 

conditional distributions are all Burr. In practice, the degree of correlation can be set with 

the a parameter, leaving the p and q parameters to fit the tails, and b and d to set the 

scales of the two distributions. 

The Normal Copula 

Useful for its easy simulation method and generalized to multi-dimensions, the normal 

copula is lighter in the right tail than the Gumbel or HRT, but heavier than the Frank cop-

ula. The left tail is similar to the Gumbel. 

 

To define the copula functions, let N(x;m,v) denote the normal distribution function with 

mean m and variance v, N(x) abbreviate N(x;0,1), and B(x,y;a) denote the bivariate stan-

dard normal distribution function with correlation = a. Also let p(u) be the percentile 

function for the standard normal, so N(p(u)) = u. Then with parameter a, which is the 

normal correlation coefficient: 

 

C(u,v) = B(p(u),p(v);a) 

C1(u,v) = N(p(v);ap(u),1-a2) 

c(u,v) = 1/{(1-a2)0.5exp([a2p(u)2-2ap(u)p(v)+a2p(v)2]/[2(1-a2)])} 

τ(a) = 2arcsin(a)/π   

 

The Kendall tau is somewhat less than a.  The following table shows a few values. 

a 0.15643 0.38268 0.70711 0.92388 0.98769

τ 0.10000 0.25000 0.50000 0.75000 0.90000

  

Simulation uses the conditional distribution C1. Simulate p(u) from a standard normal 

and then p(v) from the conditional normal C1. The standard normal distribution function 

can then be applied to these percentiles to get u and v. 
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Visualizing Copulas 

The copula densities can be graphed as surface plots, and these are somewhat informa-

tive, but to get a better feeling for what the copulas will do in practice it is helpful to look 

at the joint distributions they produce from a standard sample distribution. The unit log-

normal (where ln(x) is standard normal) is used for this in the contour plots of the joint 

densities for the copulas defined so far, using τ = .35.  
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The normal and Frank copulas graphed in Figures 1 and 2 do not produce a strong rela-

tionship between large losses, although the normal shows a slightly stronger relationship, 

whereas the Frank is stronger around the mode. 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast, the Gumbel copula keeps a strong relationship even for the large losses, as 

seen in the higher values of the density function in the upper right of Figure 3. 
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The heavy right tail (HRT) copula is even stronger in right tail correlation than is the 

Gumbel. While difficult to see in Figure 4, it is also weaker in the left tail. This will be 

more clear with the tail concentration functions discussed below. 
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Figure 4 
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Kreps’ Partial Perfect Correlation Copula Generator 

A family of copulas has been developed by Rodney Kreps [6]. This is based on a method 

for generating copulas that are mixtures of perfectly correlated and totally independent 

variates This is easier to describe as a simulation procedure, and then look at the copulas. 

  

Pareto(1,4) with h=(uv)^.3
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The basic idea is to draw two perfectly correlated deviates in some cases and two uncorre-

lated deviates otherwise. More specifically, let h(u,v) be a symmetric function of u and v 

mapping the unit square to the unit interval. To implement the simulation, draw three 

unit random deviates u, v, and w. If h(u,v) < w, simulate x and y as FX-1(u) and FY-1(v) re-

spectively. Otherwise take the same x 

but let y = FY-1(u) = x. Thus some draws 

are independent and some are perfectly 

correlated. The choice of the h function 

provides a lot of control over how often 

pairs will be correlated and what parts 

of the distributions are correlated. 

  

some interval like j < u,v < k to p

independence or perfect correla

interval, or it could be set to a co

to provide correlation in 100p%

cases in that interval. Another ch

h(u,v) = (uv)a. This creates more

correlation for larger values of u

with the parameter a controlling

much more.  
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Figures 5 and 6 illustrate simulations in the case where h(u,v) = (uv)0.3 and both X and Y 

are distributed Pareto with F(x) = 1 – (1 + x)-4. The correlated and uncorrelated instances 

clearly show up separately, in either the log or regular scale.  

 

For larger values of a, h(u,v) is smaller, so it is less likely that h(u,v) exceeds the random 

value w and thus less likely that the case u=v will be selected. For small values of a, on the 

other hand, h(u,v) will be larger, approaching one as a goes to zero. Thus h(u,v)>w is 

more likely, so u=v will also be more likely. The partial perfect correlation copula genera-

tor thus provides a good deal of flexibility and control over how much correlation is in-

corporated and where in the distribution it occurs.  

 

To describe the copulas that result, it will be convenient to adopt the notation used in 

spreadsheets where a logical expression in parentheses will evaluate to zero if the expres-

sion is false and to one if it is true.  Thus (u=v) is one if u=v and zero otherwise, etc. 
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Although Kreps considers more general 

situations, a relatively simple copula results 

in the case where h(u,v) breaks out as a 

product of a univariate function evaluated 

at u and v, i.e., h(u,v) = h(u)h(v). If we 

define H(x) = ∫0
x
h(t)dt, the copula formulas 

become:  

 

C(u,v) = uv – H(u)H(v) + H(1)H(min(u,v)) 

C1(u,v) = v – h(u)H(v) + H(1)h(u)(v>u) 

c(u,v) = 1 – h(u)h(v) + H(1)h(u)(u=v) 

 

For a concrete example, pick an a between zero and one, and let h(u) = (u>a). Thu

u and v exceed a, the simulated values of u and v will be identical, and otherwise

will be independent. If x>a, H(x) =  ∫a
x
dt = x – a, and if not, H(x) = 0. Thus H(u) = 

 

Figure 7
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(u – a)(u>a). Also, H(1) = 1 – a, and H(min(u,v)) = [min(u,v) – a](u>a)(v>a). The copula 

formulas above can then be computed directly for this h. The Kendall correlation is τ(a) = 

(1 – a)4.  Sometimes this copula is called PP max, for partial perfect max function. The scat-

ter plot of a simulated sample is graphed in Figure 7 for the case τ = ½.  
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Another example is to take h(u) = 

ua. Then H(u) = ua+1/(a+1), and 

H(1) = 1/(a+1). Here,  

τ(a) = 1/[3(a+1)4] + 

8/[(a+1)(a+2)2(a+3)]. As a 

increases, this approaches zero, 

reflecting the fact that selecting 

u=v becomes less likely, and at a 

= 0, τ =1, as this gives the perfect 

correlation case. 

Figure 8 

 

Figure 8 shows simulated pairs for the case τ = ½. More correlated pairs occur at higher 

values of u and v, as can be seen from the growing paucity of independent pairs when 

going to the upper right. 

3. Distinguishing among copulas

A few functions are introduced here to help illustrate different properties that can distin-

guish the various copulas. These functions can also be approximated from data, and so 

can be used to assess which copulas more closely capture features of the data. 

Tail Concentration Functions 

Given a copula, right and left tail concentration functions can be defined with reference to 

how much probability is in regions near <1,1> and <0,0>. For any z in (0,1) define: 

L(z)  =  Pr(U<z,V<z)/z and R(z) = Pr(U>z,V>z)/(1 – z). In terms of the copula functions, 

L(z) is just C(z,z)/z.  To calculate R(z), note that 1 - Pr(U>z,V>z) = Pr(U<z) + Pr(V<z) - 

Pr(U<z,V<z) = z + z – C(z,z). Then R(z) can be calculated by R(z) = [1 – 2z +C(z,z)]/(1 – z). 

Also, note that Pr(U<z,V<z) = Pr(U<z|V<z)Pr(V<z). But Pr(V<z) is just z, as copulas are 
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defined with uniform unit marginals, so L(z) = Pr(U<z|V<z) = Pr(V<z|U<z), and simi-

larly R(z) = Pr(U>z|V>z).  Joe [4] uses the term “upper tail dependence parameter” for R 

= R(1) = lim(z→1)R(z), and “lower tail dependence parameter” for L = L(0) = 

lim(z→0)L(z). 

 

The left tail function approaches unity for z near 1, so does not distinguish much between 

copulas there, and similarly for the R function near 0. Thus they can be combined into an 

LR function which is L below ½ and R above ½.. This is graphed in Figure 9 for the copu-

las discussed above and for the Clayton copula, a heavy left tailed copula discussed later.  
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A basic feature that distinguishes copulas in the right tail is whether R=R(1) = 0 or some-

thing greater. The Gumbel, HRT, and partial perfect copulas all have R>0. The HRT is 

heavier in the right tail than the Gumbel, but less so than the partial perfect copulas. The 

Clayton is the only copula here showing positive left tail dependence. The HRT and PP 

Max copulas are very lowly dependent in the left tail. In fact, for the PP Max L(z) function 

the variates are independent in the left tail. Thus for low z, L(z) = 1.  The normal and 

Frank copulas do not show tail dependence in the limits, but away from the extremes the 

normal shows greater tail concentration than the Frank on both sides. 

For  the four copulas with R > 0, R is shown below: 

 Gumbel HRT PP Power PP Max 

R 2 – 21/a  2– a  1/(1+a) 1 – a 

Since R and τ are functions of the same parameter, they can be viewed as functions of 

each other. Once one is determined, the other is fixed for single-parameter copulas. Figure 

10 graphs this relationship. 
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A good starting point for choosing a copula would be to look at the target pair <τ,R> and 

find which copula is closest. But since for the copulas above R is usually greater than 

τ, lower values of R would not be matched by any of them. R is somewhat tricky to de-

termine for empirical data, as the far tail values have increasingly less data. Some projec-

tion of the lower values of R(z) might be necessary. Also the fitting should look at the R(z) 

function, not just R. 

Cumulative Tau 

Other descriptive functions can be defined that show different aspects of copulas. The 

cumulative tau function decomposes the integral defining the Kendall tau. Recall that tau 

is defined as –1+4∫0
1∫0

1 C(u,v)c(u,v)dvdu. The cumulative tau can be defined as J(z) =          

–1+4∫0
z∫0

z C(u,v)c(u,v)dvdu/C(z,z)2. 

 

The full double integral is a probability weighted average of C(u,v), i.e., EC(u,v). To com-

pare to this on the square from (0,0) to (z,z), the partial integral has to be divided by the 

weights, hence the first power of C(z,z) in the denominator.  This quotient will give the 

average value of C(u,v) in the square from (0,0) to (z,z). This will increase as a function of 

z for any copula. The second C(z,z) divisor expresses this average relative to C(z,z), i.e., 

shows how the average C compares to the maximal C in the square. This may or may not 

increase as a function of z, which makes it a more interesting property of the copula.  

 

The normalization to the range of a correlation with the –1 and 4 is a matter of conven-

ience and familiarity, and gives J(1) = τ. The integration can be done numerically, al-

though for some copulas, formulas are given in Appendix A. The shape of the J function 

depends on the copula and the tau. It is graphed for several taus for each copula in Fig-

ures 11 – 16. All the graphs end up at τ for z=1, but can start off high or low, and can in-

crease or decrease at varying rates. 

 

Some other descriptive functions are discussed in Appendix B.
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4. Flipping a Copula

The notation S(x) = 1 – F(x) is often used to describe the survival function Pr(X>x). The 

joint survival function S(x,y) = Pr(X>x, Y>y) is not 1 – F(x,y), however, as that would be 

the probability that either X>x or Y>y, but not necessarily both. In fact, S(x,y) = 1 – FX(x) – 

FY(y) + F(x,y), i.e., Pr(X>x, Y>y) = 1 – [Pr(X<x) + Pr(Y<y)] + Pr(X<x, Y<y). 

 

Similarly for a copula C(u,v) = Pr(U<u, V<v) the survival function of the copula, i.e., 

CS(u,v) = Pr(U>u, V>v), is CS(u,v) = 1 – u – v + C(u,v). Since C(FX(x),FY(y)) = F(x,y), we 

have CS(FX(x),FY(y)) = S(x,y). 

 

For a copula C, define CF(u,v) = CS(1 – u, 1 – v) = u + v – 1 +C(1 – u, 1 – v). Then 

CF(SX(x),SY(y)) = CS(FX(x),FY(y)) = S(x,y). Note that CS is not a copula as it is zero at (1,1), 

but CF is a copula. Call CF the flipped copula of C.  When the flipped copula is applied to 

the survival functions it gives the joint survival function for the copula. However, the 

flipped copula can be applied to distribution functions, and then it can have quite differ-

ent properties than the original copula has. The next copula is an example. 

Clayton’s Copula 

This copula has a heavy concentration of probability near (0,0) so it correlates small losses. 

It is not intuitively interesting for property-liability claims, but it may have some applica-

tion. 

 

C(u,v) = [u-1/a + v-1/a – 1]-a  a>0 

C1(u,v) = u-1-1/a[u-1/a + v-1/a – 1] -a-1 

c(u,v) =  (1+1/a)[uv]-1-1/a[u-1/a + v-1/a – 1] -a-2 

τ(a) = 1/(2a + 1) 
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What is interesting here is that the heavy right tail copula is actually the flipped Clayton 

copula. The tau is the same for both copulas1, and the tail concentration functions are 

swapped. This is actually how the HRT copula was defined, and suggests defining other 

copulas by flipping known copulas. The copula would have to have some asymmetry to 

make this worthwhile. One candidate would be Gumbel’s copula. 

The Flipped Gumbel 

Gumbel’s copula is heavier in the right tail than the left. Flipping it would produce a cop-

ula with the opposite property: 

 

C(u,v)  = u + v – 1 + exp{-([-ln(1–u)]a +[-ln(1–v)]a)1/a}, a ≥ 1. 

C1(u,v)=1–exp{-([-ln(1–u)]a +[-ln(1–v)]a)1/a}{[-ln(1–u)]a +[-ln(1–v)]a}1/a –1[-ln(1–u)]a-1/[1–u] 

c(u,v) =(1–u)-1(1–v)-1{[-ln(1–u)]a +[-ln(1–v)]a}-2+1/a[ln(1–u)ln(1–v)]a-1 x 

[a+{[-ln(1–u)]a +[-ln(1–v)]a}1/a –1]exp{-([-ln(1–u)]a +[-ln(1–v)]a)1/a} 

τ(a)  = 1 – 1/a 

5. Applications

Loss Adjustment Expense 

Two recent actuarial papers fit parameters to the joint distribution of loss and loss ad-

justment expense for a liability line using 1500 claims supplied by Insurance Services Of-

fice, Inc. The two studies may or may not have used the same data, but they present scat-

ter plots that are similar. They both use copulas to describe the joint distribution. 

 

There were a couple of methodological differences between the two papers. Frees and 

Valdez [2] assume Pareto marginals for both distributions, but compare fits for several 

copulas. Klugman and Parsa [5], on the other hand, compare fits for a number of severity 

distributions, but select Frank’s copula arbitrarily. The papers may have taken different 

approaches to the censoring of claims by policy limits as well. Klugman and Parsa say 

                                                      
1 Tau for a sample is the average value of sign[(u – x)(v – y)] among all distinct pairs (u,v), (x,y). 

This value is the same for the flipped pairs (1–u, 1–v), (1–x, 1–y), so tau will be the same for the 

original and the flipped sample for any copula. 
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they omit claims for which either loss or expense is zero, so they can get true severity dis-

tributions for both. Frees and Valdez probably do this as well. 

 

Frees and Valdez used the K(z) function discussed in Appendix B to select among copu-

las. Plotting the empirical K(z) against the values from several copulas, they found the 

Gumbel looked best. The Gumbel also gave the best value for the Akaike information cri-

terion (AIC). Optimizing the AIC is equivalent to finding the copula with the highest 

maximum likelihood in this case, as all the copulas they tried had one parameter. The best 

fit they found was produced by the Gumbel copula with a = 1.453. This gives τ = 0.31. 

Klugman and Parsa estimate the Frank a = 3.07438, which also gives τ = 0.31. 

 

A convenient way to compare heavy-tailed severity fits is to look at the median and the 

heaviness of the tail, which can be quantified as the smallest positive moment that does 

not converge. For the Pareto, for example, this moment is just the shape parameter.  

 

If we express the Pareto as F(x) = 1 – (1+x/b)–a , then Frees and Valdez find: for loss, a = 

1.122, b = 14,036, and for expense, a = 2.118 and b = 14,219. Klugman and Parsa find the 

best severity fits with the inverse Burr, which can be expressed as F(x) = (1+(x/b)–c)–a. 

They estimate2 for loss, a = 1.046 = c, b = 11,577.7, and for expense, a = 1.57658, b = 

10,100.2, c = 0.573534. These parameters are converted to median and tail heaviness ( = c 

for the inverse Burr) below. There is reasonably close agreement among these values ex-

cept for the tail heaviness for loss expense, for which the divergence is a little greater. 

 Loss Median Loss Tail Expense Median Expense Tail 

Frees & Valdez 12,000 1.12 5500 2.12 

Klugman & Parsa 12,275 1.05 5875 1.58 

 

                                                      
2 The inverse Burr with a = c they call the inverse paralogistic, which is actually a name I coined 

some years ago. For the loglogistic, F(x) = 1–(1+(x/b)a)–1, whereas the Pareto has F(x) = 1–

(1+(x/b)1)–a, so the combined form F(x) = 1–(1+(x/b)a)–a could be called the paralogistic. The in-

verse of a distribution in this context is the distribution of 1/X from that distribution, which gener-

ates the inverse Burr, inverse paralogistic, etc. 
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Neither paper looked at the heavy right tail copula. For τ of 0.31, this is not too different 

from the Gumbel. In fact it is similar to the Gumbel in the right tail and more like the 

Frank in the left tail. This suggests that the joint Burr discussed above, which is built from 

the HRT copula, may provide a reasonable approximation to the loss and expense distri-

bution, particularly in the right tail. This could be useful for excess-of-loss reinsurance es-

timates, especially when data is scarce. Recall that the joint Burr distribution is given by:  

 

 F(x,y) = 1–(1+(x/b)p)-a –(1+(y/d)q)-a +[1+(x/b)p +(y/d)q]-a  

 

The a parameter comes from the HRT copula, with τ = 1/(1+2a). For τ = 0.31, the implied 

a is 1.11. The tail heaviness factors are ap and aq, so p and q can be estimated from these 

parameters for this value of a. The tail heaviness can be estimated from available data or 

industry values could be used. A simple choice given the table above would be to take the 

loss factor as 1.11, which would give p = 1. A reasonable choice for q might be 1.5. Finally, 

b and d can be estimated from the respective medians. E.g., for b and p, the median is 

b(21/a –1)1/p. For a = 1.11, then, b = (median)1.151/p. The medians from Klugman and Parsa 

with p = 1 and q = 1.5 give (rounded):  

 

 F(x,y) = 1–[1+x/14150]-1.11–[1+(y/6450)1.5]-1.11+[1+x/14150 +(y/6450)1.5]-1.11  

Given a loss of x, the conditional distribution of loss expense is also Burr: 

 FY|X(y|x) = 1–[1+(y/dx)1.5]–2.11 with dx = 6450 +11x 2/3  
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Simulated Hurricane Losses 

MD & DE Joint Empirical Probabilities

DE vs. MD copula

A simulation of n=727 losses from a hurricane loss generator for a sample data set of 

Maryland and Delaware 

exposures will be used as an 

example of some of the issues 

that arise in copula estimation. 

As the emphasis is on the 

copula, not the marginal 

severities, the simulated losses 

were converted to probabilities 

by dividing the loss ranks for 

each state by n+1=728. The 

probability pairs were grouped 

into 20 intervals of 5% 

probability in each state for the 

graph here. The graph in Figure 

17 shows there is a positive 

relationship between the loss 

with some degree of concentration ne

pendix C. A scatter plot of the empiri
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Figure 17

probabilities for the two states, 

ar (0,0) and (1,1). This is given in table form in Ap-

cal probabilities is shown in Figure 18.  

 
 
Figure 18
1.000

The usual estimate for the Kendall tau is 

to compute the average value over all 

pairs of observations (ui,vi), (uj,vj), i<j of 

sign[(ui – uj)(vi – vj)]. In this case the 

estimate is τ = .4545.  

 

 An empirical copula can also be built at 

each point by counting the other points 

that are less in both states. As there are 
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n–1 other pairs, the count divided by n–1 can be taken as an estimate of the copula at that 

point. For this data, the maximum empirical copula value is 0.9821 and the average is 

0.36363. Four times this less 1 is another estimate of tau, and this also is 0.4545. 

 

DE and MD L(z) & R(z)
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1.0

Empirical L and R functions can be computed similarly. An estimate for L(z) can be ob-

tained as C(z,z)/z where C(z,z) is 

computed as the proportion of 

pairs with u and v both less than z. 

Then with this C, R is estimated by 

by R(z) = [1 – 2z +C(z,z)]/(1 – z). 

These functions are graphed in 

Figure 19. The limiting values L 

and R are problematic immedi-

ately, in that they appear to be 

positive, yet much less than tau. All the copulas reviewed above have either R=0 or R>τ.  

The tails are fairly symmetrical, which poses additional fitting difficulties for single-tailed 

copulas like the HRT, PP Max, and Clayton. The Frank and normal copulas are thus likely 

to fit best, even though they are too light in the extreme tails. 

Figure 19 

 

An empirical cumulative tau can also be calculated. For each z, the empirical C(u,v) can be 

computed for each (u,v) pair with both u and v less than z. Then the average of these val-

ues estimates the average copula in the square from (0,0) to (z,z). This divided by C(z,z), 

times four less one, is the estimate of J(z).  
DE and MD J(z)
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Figure 20  

Its graph in Figure 20 is not like 

the J(z) for any of the copulas for 

small values of z, but the empiri-

cal calculation is based on few 

points when z is small. For larger 

z it is most similar to the almost 

linear J of the Frank copula.
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M(z) for MD|DE<z
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Appendix B can be calculated either 

for DE|MD or MD|DE. Figure 21 

graphs MD|DE. It is most like the M 

function for the normal copula. 

 

The descriptive functions thus suggest 

that the normal and Frank copulas 

should provide the best fits to this 

data, but they will be light in the tails.  

 

Maximum likelihood 

estimation of the  nd Fits

al
wer

rank Normal 

4.92 0.624 

183 176 

0.45 0.43 
Figure 22
parameter was 

performed for several 

of these copulas. The 

parameter and the 

maximal likelihood 

are shown below. As 

all the copulas here 

have a single pa-

rameter, the ordering 

of the likelihood 

function is the same 

as those from the 

various information 

criteria like AIC, etc. 

Flipped Gumbel 

1.68 

161 

0.40 
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The partial perfect copulas are difficult to estimate by MLE, as it is rare to have observa-

tions with exactly equal marginal probabilities. Nonetheless these copulas may be reason-

able as scenario generators. An alternative is to estimate the parameter by matching tau. 

For the PP Power copula this gives a = 0.314. However for this data some of the descrip-

tive functions seem to make this copula unlikely.  

 

The likelihood function favors the Frank copula in this case. Some of the descriptive func-

tions are graphed for the fit and the data for this copula and in some cases some other 

copulas in Figures 22 and 23. The L and R functions are combined in the graph above. 

R(z) is shown for z>0.5, and L(z) for z <  0.5. The Frank copula looks like a close fit all 

along except in the tails, where the normal is a little better. The PP Power appears to be 

too heavy in the right tail for this data.  

 
J(z) Data and Fits
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The graph at left shows the 

J(z) function for the data and 

the normal and Frank copu-

las. The two copulas provide 

quite different fits to this 

data, but it is a subjective 

matter as to which is better, 

with the Frank probably 

having the edge for its close 

fit for z>0.5. The Frank 

copula has a lower sum of 

squared errors, but this disappears if the first two points (at –1) are omitted. 

Figure 23 

 

Even though the Frank copula provides the best fit according to the likelihood function, 

there are fitting problems in the tails. Somewhat heavier-tailed copulas with strength in 

both tails would be useful here. See Appendix D for an example. Another alternative 

would be to use the Frank copula but model the extreme events separately. 
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6. Conclusion

Copulas provide a convenient way to model and simulate correlated variates. Several 

copulas with varying shapes are available for modeling these relationships. Shape differ-

ences among copulas can be discerned with the descriptive functions. These can be used 

both in fitting copulas to data and in applying informed judgment to select a copula for a 

given application. 

 

Statisticians have identified a fair number of copulas – e.g., see [7]. The use of the descrip-

tive functions provides an avenue for researching their properties. There may also be 

more descriptive functions that can reveal other aspects of a copula. For instance, the J 

and M functions looked at average probabilities between 0 and z. Mirror functions could 

look at the same probabilities between z and 1, analogous to the way that R mirrors L. It 

would also be possible to define more functions over non-rectangular parts of the unit 

square, such as the region where C(u,v) is less than z, as in the K function, or sections like 

u and v both less than z. 

 

This paper focused on bivariate copulas but many of the concepts can be generalized to 

the multi-variate case. The descriptive functions have multi-variate analogs except for 

M(z) which would have to be done pairwise. Only the normal and partial perfect copulas 

fully generalize to multi-variate forms that allow specification of all pairwise correlations, 

but there are other multivariate copulas – e.g., see [4]. 

 

In summary, actuaries now have a number of copulas to chose among and a number of 

techniques for refining that choice, yet more copulas and more techniques could still be 

worth uncovering. 
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Appendix A – J(z) 
For a copula with distribution function C(u,v) define: 

 I(z) = ∫0
z∫0

z C(u,v)c(u,v)dvdu. Then J can be expressed as: 

 J(z) = 4I(z)/C(z,z)2 – 1. 

For the following distributions the formula for 4I(z) is given. 

Gumbel: 

(2–1/a)exp[21+1/aln(z)] – 4(-ln(z))a(1–1/a) ∫y
∞

 e–2w w–a dw, where y = -21/aln(z) 

Heavy Right Tail: 

8z –8+ 4(2y–1)–a + [4a(1–z)2 +2(1+(2y–1)–2a)(a+1)]/[2a+1] + 8a∫1
y (w+y –1)–a–1w–a dw, 

where y=(1–z)–1/a.  

Partial Perfect Max 

z4 + (z>a)(a4 – 4a3 + 2(1 + 2z)a2 – 4az + 2z2 – z4) 

Partial Perfect Power 

z4 +4(a+1)–2[(y4–2y3/3+y2/2)(a+1)–2 +za+3(a2+3a+4)(a+2)–1(a+3)–1 –z2(a+2)(a2+2a+2)(a+2)–2], 

where y=za+1. 

Clayton 

y–b(b+1–b/y)(b+2)/(b+1), where b=2a and y=2/z1/a–1.  

BB1 

2(1+(ac)– 1)y2 – 4(a+1)y2+a/[ac(a+2)] –4x(ac)-1∫0
y (w– a–1)–c w1+a [(ac+1)w- a–a–1] dw, where 

x=2(z– a–1)c, and y=(1+x1/c)–1/a.  
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Appendix B – Other Descriptive Functions 

Cumulative Conditional Mean 

A function of interest is the conditional expected value of V|U=z. However this is often 

difficult to estimate from data, as there are usually not too many values of V for any given 

value of U.  So a related function is chosen: the expected value of V given U<z. Let 

 M(z) = E(V|U<z) = ∫0
z∫0

1 vc(u,v)dvdu/z 

Since E(V) = ½, every copula will have M(1) = ½  so the differences in M among copulas 

will be for lower values of z and the shape of the curve approaching z = 1.  

Often the integral has to be done numerically, but for a few copulas it is done explicitly at 

the end of this appendix. Graphs of this function for several copulas are shown in Figures 

24 – 29. For this function, the lower τ is, the closer the values stay to ½. 
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PP Max M(z), τ  = .1, .5, .9
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Copula Distribution Function 

Genest and Rivest [3] define a function K(z) which is basically Pr(C(u,v)<z). It is the area 

of the unit square in which Pr(C(u,v)<z). An empirical K(z) can be calculated for any z as 

the proportion of empirical values of C(u,v) that are less than z. Although C(u,v) ap-

proaches one as u and v approach one, it is possible that C is low for most values of u and 

v, which would make K(z) high for most z’s. Or C could grow fairly quickly through 

lower values of u and v, which would tend to make K(z) smaller.  

 

Genest and Rivest show how to calculate K for a number of copulas. In particular,  

Copula K(z) 

Gumbel z(1 – ln z1/a) 

Frank z + a–1(1–eaz)ln[(1–e–az)/(1–e–a)] 

 

Hurricane Application 

M(z) for the hurricane data and the Frank and normal copulas is graphed in Figure 30. 

The normal copula is the one with the better fit for small events, and the Frank fits better 

in the middle of the range.  

 

A scatter plot of the empirical K percentiles as a function of the Frank K percentiles (often 

called the QQ plot)  is shown in Figure 31, along with the line x=y. The values are very 
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close to the line. This supports the fit, but as K(0) = 0 and K(1) = 1 for any copula, empiri-

cal or parametric,  fit problems in the tails are difficult to discern with this function. 
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M(z) Formulas 

Partial Perfect Maximum 

M(z) = ½ – ½ (z > a)(1 – a)(1 – z)(z – a)/z 

Partial Perfect Power 

M(z) = ½ + (za+1 – za)/[(a+1)(a+2)] 
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Appendix D – Joe’s BB1 Copula 
Several examples of two-parameter bivariate copulas are provided by Joe [4]. One that has a 

closed form for tau and can be heavy in both tails he labels BB1. It is a generalization of the 

Gumbel and Clayton copulas. 

 

C(u,v) = {1+[(u-a – 1)c + (v-a – 1)c]1/c}-1/a  , a > 0, c ≥ 1 

C1(u,v) =  {1+[(u-a – 1)c + (v-a – 1)c]1/c}-1/a – 1[(u-a – 1)c + (v-a – 1)c]1/c – 1(u-a – 1)c – 1u–a – 1    

c(u,v) = {1+[(u-a – 1)c + (v-a – 1)c]1/c}-1/a – 2[(u-a – 1)c + (v-a – 1)c]2/c – 2 × 

{ac + 1 + a(c– 1) [(u-a – 1)c + (v-a – 1)c]– 1/c} (u-a – 1)c– 1u–a– 1 (v-a – 1)c– 1v–a– 1 

τ = 1 –2/[c(a+2)] 

R(1) = 2 – 21/c ,  L(0) = 2– 1/(ac)    

 

The Gumbel is the limiting case a → 0. The Clayton arises when c = 1, but here the a parameter 

is the reciprocal of the Clayton a parameter in the text. 

 

With R, L, and τ all closed form it is possible to find a and c to set two of them and then see 

what the third is. Not all combinations are possible. Figure 32 graphs L as a function of R for 

several values of τ. For each τ, there is an inverse relationship between R and L. Either can get as 

low as needed, approaching zero, for any value of τ, but then the other becomes large. Each be-

comes somewhat higher than τ if the other one is low. Higher τ allows higher R and L. The left 

tails appear to be somewhat heavier than the right tails, so flipping this copula could be useful 

for some applications. 

 

This copula was not all that useful for the hurricane data, in that it is so heavy-tailed. The MLE 

log-likelihood was 170, which was not as good as some other copulas. The a and c were 0.386 

and 1.434, which gave τ = 0.415, L = 0.286, and R = 0.379. So the τ was a little low and the tail 

parameters higher than the data would suggest. 
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 BB1 L as a Function of R, tau = .1, .2, …, .9
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