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The Duration of Liabilities with Interest Sensitive Cash Flows
Abstract

In order to apply asset-liébility'management techniques to property-lability
insurers, the sensitivity of liabilities to interest rate changes, or duration, must be
calculated. The current approach is to use the Macaulay or modified duration
calculations, both of which presume that the cash flows are invariant with respect
to interest rate changes. Based on the structure of liabilities for property-liability
insurers, changes in interest rates -- given that interest rates are correlated with
nflation -- should affect future cash flows on existing liabilities. This paper
analyzes the effect that interest rate changes can have on these cash flows, shows
how to calculate the resulting effective duration of these liabilities, and
demonstrates the impact of failing to use the correct duration measure on asset-

liability management for property-liability insurers.




1. Introduction

Asset-liability management (ALM), as used in the insurance industry, is a process by
which insurers attempt to evaluate and adjust the exposure of the net value of the company (assets
minus liabilities) to interest rate changes. Although, in theory, the volatility of other factors --
e.g., catastrophes, changes in unemployment rates' -- can also affect both asset and liability
values, the current focus of ALM for insurers, as for most other financial instlitutions, is on
interest rate risk. Life insurers were the first in the industry to apply ALM techniques, since they
have significant exposure to interest rate risk due to the long payout patterns of losses and their
high leverage. However, this approach is now being applied to the property-liability insurance
industry as well.

The general approaches used by life insurers to measure the sensitivity of assets to interest
rate risk are applicable to property-liability insurers to the extent that they have similar asset
portfolios. In general, property-liability companies invest more heavily in equities and less in
mortgages, but the overall structure of the investment portfolio is roughly similar. However, the
liabilities of property-liability insurers are different enough that the approaches used by life
insurers are simply not applicable to them, and new techniques must be developed.

The basic approach of ALM involves measuring the durations of assets and liabilities, and
then adjusting one or both until the insurer is not significantly affected by interest rate changes
(essentially, this involves setting the duration of surplus, Dy, equal to zero). If the duration of

liabilities is measured incorrectly, then an insurer trying to immunize itself from interest rate risk

For example, an increase in the unemployment rate is likely to increase the severity of workers compensation
losses and also alter the prepayment patterns on mortgage-backed securities.
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based on the incorrect measure will actually still be exposed to interest rate risk. Much research
has been done on determining the duration of complex financial instruments held by insurers, such
as collateralized mortgage obligations (CMOs) (Fabozzi 1995, Chapter 25), and corporate bonds
with callability provisions. Attention has also been given to determining the appropriate duration
measure of life insurance liabilities (Babbel 1995). However, much less attention has been paid to
the duration of liabilities of property-liability insurers. (The issue has been briefly discussed or
alluded to in, for example, Butsic, 1981; D’Arcy, 1984; Ferguson, 1983; and Noris, 1985.) The
general approach to measuring the duration of liabilities for property-liability insurers has been to
calculate a weighted average of the time to payment for loss reserves (Campbell, 1995; Hodes and
Feldblum, 1996; Staking and Babbel, 1995). This approach is patterned after the work by
Frederick Macaulay (1938), which determined that the sensitivity of the price of non-callable fixed

income securities to changes in interest rates was approximated by this duration measure:

" XPVCF,
Macaulay Duration = Z —_—
i1 PVICF
where PVCF = the Present Value of the Cash Flow at time t,
PVTCF = the Present Value of the Total Cash Flow, and
t = time to payment of the cash flow.
Additional analysis (Panning 1995) has been based on the modified duration measure
(Fabozzi 1995), which is the Macaulay duration value divided by 1+ (where » is the current

interest rate):



Modified Duration = Macaulay Duration

1+r

or alternatively a measure of the slope of the price vs yield curve (see Appendix).

Both the Macaulay and modified duration calculations depend on three basic assumptions:

1. The yield curve is flat
2. Any change in interest rates is a parallel yield curve shift
3. The cash flows do not change as interest rates change

In practice, none of these assumptions is correct. A number of researchers have examined the
effect of the first two assumptions in general. (See Klaffky, Ma, and Nozari, 1992; Ho, 1992; and
Babbel, Merrill, and Panning, 1997.) In addition, the issue of variable cash flows has been widely
recognized for specific classes of assets. Bonds with embedded options (such as call provisions)
and mortgage-backed securities (where prepayments depend on the interest rate level) are
examples of assets on which the expected cash flows change as interest rates change. A measure
termed effective duration has been developed to express the sensitivity of the present value of the
expected cash flows with respect to interest rate changes; this measure specifically reflects the fact
that the cash flows can change as interest rates change (Fabozzi 1995). For assets with variable
cash flows, it is appropriate to calculate the effective duration rather than the modified duration.
The liabilities of property-liability insurers also vary with interest rates, due to the
correlation of interest rates with inflation. As explained by Hodes and Feldblum, "Personal auto
loss reserves are at least partially inflation sensitive. Medical payments in tort liability states, for

instance, depend in part upon jury awards at the date of settlement. The jury awards, in turn, are
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influenced by the rate of inflation, which is correlated (at least in the long run) with interest rates."
(Hodes and Feldblum, 1996, p. 558.) Thus, the appropriate measure of interest rate sensitivity of
the liabilities of property-liability insurers is one that reflects this interest rate-inflation
relationship, or effective duration. Hodes and Feldblum indicate that "A mathematical
determination of the loss reserve (effective) duration is complex." (Hodes and Feldblum, 1996, p.
559) This is the task that is addressed in the remainder of this paper.

In order to accommodate non-parallel yield curve shifts, stochastic interest rate models
must be used. This approach has been advocated for insurance applications by Tilley (1988),
Reitano (1992), and Briys and de Varenne (1997 ). However, as pointed out by Litterman and
Scheinkman (1991), parallel shifts explain over 80% of historical yield curve movements.
Although hypothetical portfolios can be constructed that show significant differences in duration
values under parallel versus non-parallel yield curve shifts, for the asset and liability portfolios of
typical property-liability insurers these differences are likely to be far less important than the
impact of variable cash flows. Thus, this paper focuses on analyzing liability cash flows that vary
with interest rate changes. Further research will explore the impact of stochastic interest models
for both assets and liabilities for representative property-liability insurers.

Section 2 of this paper discusses the nature and relative significance of property-liability
insurance company liabilities. Section 3 examines the three major liability items, and discusses the
timings of cash flows for each of these items. The natures of the cash flows have important
implications for the type and level of impact on liability durations of changes in interest rates.
Section 4 provides a mathematical derivation of a closed-form effective duration formula in a

highly simplified framework. Section 5 describes 2 more detailed numerical model used to



estimate effective durations. Section 6 summarizes the results of empirical estimates and
sensitivity tests of effective duration measures. Section 7 demonstrates the impact on asset-
liability management of using modified versus effective duration measures of liabilities. Section 8

concludes. In addition, an Appendix describes the mathematical underpinnings of duration.

2. The Liabilities of Property-Liability Insurers

The three major balance sheet liability items of property-liability insurers are the loss
reserve, the loss adjustment expense reserve, and the unearned premium reserve. As of 12/31/97,
for the industry in aggregate, these components totaled 84.8% of liabilities (A.M. Best 1998). All
of these three reserves are subject to change, via inflationary pressures, as interest rates change.
The remaining liabilities of property-liability insurers consist primarily of expenses payable,
including taxes, reinsurance, contingent commissions, and declared dividends. These cash flows
are not likely to be affected by interest rate changes. Thus, the remainder of this section describes
the three major liability components for which we zre attempting to measure effective duration.

The loss reserve is the estimate of future pavments that will be made on losses that have
already occurred. Insurers use a variety of techniques to arrive at this value. Some loss reserve
estimates are based on a review of the specific circumstances of individual claims, Claims
department personnel collect information about the claim, including estimates of the value of
property damaged and the extent of bodily injuries. as well as the likelihood that the insurer will
be required to pay the claim. For other claims. average values are established based solely on the
type of coverage involved. In addition, some estimates have to be made for claims that have

already occurred but on which the insurer has no izformation. These claims, termed “Incurred
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But Not Reported” (IBNR) losses, have generally occurred so recently that the insurer has not
had time to receive a claim report or perform any evaluation.

;I‘he total loss reserve, including a provision for IBNR, is determined based on an actuanal
analysis of historical development patterns. For example, if a review of past data revealed that the
individual claim estimates made by claims department personnel tended to be 10% too high, the
overall reserve would adjust for this redundancy. Other adjustments include those for losses that
have not yet been reported, or for trends in reopening claims currently considered closed.
Historical data are examined to determine loss development trends, and these trends are then
applied to current loss data. In general, the trends are based on aggregate historical information -
- thus the combined impact of late reporting, inflation, new legal basis for liability, improvements
in damage assessment and repair, etc., would all be aggregated. (There is one reserving technique
that attempts to isolate the inflationary component rom the other effects (Taylor 1986), but this
approach is not widely used.)

The loss adjustment expense reserve 1s the estimate of expenses associated with settling
claims that have already occurred. Loss adjustmen: expenses are classified into two types:
allocated and unallocated. Allocated loss adjustment expenses (ALAE) consist of items such as
legal fees, independent adjuster costs, court costs, znd investigation expenses, which can be
assigned to specific claims. Unallocated loss adjus:ment expenses (ULAE) consist of the
expenses of the company in operating a claims depzriment that cannot be accurately allocated to

an individual claim. ULAE are assigned to particu’zr lines of business and accident years based on



a statutory formula.? The reserves for both ALAE and ULAE are also set on the basis of
historical patterns.

The unearned premium reserve is a statutorv reserve requirement for insurers. For a
given insurance policy, a company is generally required to reserve a pro-rated portion of the
premium representing the part of the policy term thzt has not yet expired. This reserve is
generally recognized as being excessive. Premiums are set to cover losses, loss adjustment
expenses, and all other expenses. Whereas the losses and loss adjustment expenses occur
throughout the term of the policy, other expenses (sich as commissions, underwriting, and
premium taxes) tend to occur at the inception of the policy. Thus, there is some “equity” in the
unearned premium reserve. The cash flows that wil emanate from the unearned premium reserve
are essentially losses and loss adjustment expenses cn claims that occur after the evaluation date
but during the remaining policy term. Since these events have not yvet occurred, they are
completely sensitive to changes in inflation affecting the value of these future losses.

Since loss reserve estimates are based on hi<orical development patterns, and the
historical development patterns are affected by histcrical economic variables such as interest rates
and inflation, the accuracy of the loss reserve is, in 2ssence, path dependent with respect to those
economic variables. In other words, the level of loss reserves calculated at any point in time will
depend upon how economic variables have pertorred in prior years. However, it 1s not the
accuracy of the current estimate that is of concern -1 measuring the effective duration, but how

future cash flow patterns are influenced by future i-:erest rate changes via inflation.

2 This formula assigns 45% of calendar year unailocated less adjustment expense pavments to the current accident
year, 5% to the immediately prior accident year. and the bz ince in proportion to loss payments by accident year.
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An added complication to the measurement of the sensitivity of insurer assets and
liabilities to interest rate changes is the statutory accounting conventions of the insurance industry.
Specifically, bonds are valued on a book, or amortized, basis. Also, loss liabilities are not
discounted to reflect the time value of money until payment. Thus, statutory valuations are often
not directly affected by changes in interest rates. However, the economic values of these assets
and liabilities are affected by interest réte changes. It is the economic values that are considered
here, since these reflect the true worth of the compzny to its owners.

Each of the three major liability items is discussed in greater detail below. More
specifically, Section 3 sets the groundwork for evaiuating the impact of future interest rate

changes and inflation on the labilities of property-Lzbility insurers.

3. The Timing of Property-liability Insurer Liabilities
A Loss Reserves
A company’s aggregate loss reserve represaats the total amount to be paid in the future on
all claims that have already occurred. However, a variety of different situations can exist with

respect to these claims.

1) A loss reserve can reflect a claim on which the :nsurer is in the process of issuing a check --
the claim has already been fully investigated, ard the insurer has agreed to a settlement
amount with the claimant. The nominal value ¢t the claim amount will not be affected by

changes in interest rates, although the present ~zlue would change slightly.



2) Alternatively, a loss reserve can represent a claim that has caused a known amount of damage
to property or to a person (the medical bills are complete). Thus, the amount of the loss to
the claimant is determined and will not change. However, the insurer and the claimant are still
in dispute over whether the incident is covered, or over the extent of the insurer’s liability for
payment. Again, the nominal amount of the pavment should not change if interest rates
change®. However, the economic value of the lass would change, since the future cash flow
would be discounted by a different interest rate.

3) A third type of loss reserve is for damage that hzs yet to be incurred. The insurer will be liable
for the loss when the claimant experiences it, bu: the value of the loss will only be known in
the future. On an occurrence-based policy, this could apply for medical malpractice to a
person who has not yet suffered the adverse co-sequences of an injury caused by a negligent
physician (e.g., improper diagnosis, long term aZverse consequences from prescribed
medication, surgical errors that will lead to futue complications). Or, in the case of workers
compensation, if a former employee, exposed tc a work related environmental hazard, first
manifests the ailment at some future date, the c.zim will be assigned to policies in effect during
the period of employment. For another exampiz. a company may have sold a defective
product, but the injuries have not yet occurred The insurer is required to establish loss
reserves for these future losses because thev wi be paid based on pror policies. For these
claims, the nominal value of the loss payment wil be affected bv interest rate changes to the

extent that the interest rate change is correlateZ with inflation on the goods or services related

One way this could happen s if the insurer’s clzim scttlement philosophy were to change with interest rates --
for example, if the financial condition of the insurer were w2 become impaired in conjunction with an interest rate
change and the company had to alter its claim sattlement a;croach.
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4)

to the cost of the claim (property damage, medical expenses). The economic value of these
losses will also change with interest rates.

The most common type of loss reserve is for losses on which some of the damages have
already been fixed in value, but the remainder hzs yet to be determined. In addition, the
question of the extent of the insurer’s liability mzy not have been settled. This could apply to
an automobile accident involving property damzge and bodily injury in which the policyholder
of the insurer may be liable. The damage to the claimant’s vehicle is predetermined. The
injured person has received some medical care, ut that care will continue at least up until the
settlement of the claim and perhaps beyond. The nominal value of a portion of these losses,
termed "fixed," will not be affected by interest r:te changes, but the remaining portion of the

losses will be affected by future inflation.

Calculating the effect of inflation on rangibiz losses, such as medical expenses, wage

losses, and property damage, although complicated. is relatively straightforward once the

appropriate inflation indices are determined. Howe.er, quantifying the effect of inflation on the

value of intangibles in a liability claim, termed “ger=ral damages” in a legal context, presents

additional challenges. These components include 1:zms such as pain and suffering, loss of

consortium, and hedonic losses. It is difficult to dezzrmine exactly how these values are

established. Are they based on the value at the 1im: of the loss or the time of the verdict in a jury

trial? Is the pain and suffering of a broken arm tha: occurred in 1986 evaluated the same as, or

less than, a similar broken arm that occurred in 19%>_ if both are being settled at the same time?

Due to the difficulty in putting a numencal .1lue on an intangible such as pain and
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suffering, general rules of thumb arise that try to relzte the pain and suffering award to the
medical expenses incurred by the patient. Thus. a broken arm that generated $15,000 in medical
bills is worth roughly three times as much as anothes broken arm that generated only $5,000 in
medical bills. (This does not mean that the pain anc suffering from a soft tissue injury, such as a
sore neck, which generated $15,000 in medical expenses would be worth as much as a broken
arm with the same amount of medical expenses.) On this basis, the general damages on liability
claims will be impacted by interest rate changes to t3e same extent that medical expenses are
affected. However, a typical question asked by a pizintiff’s attorney in a bodily injury case is how
much a member of the jury would require to be willng to undergo the same pain that the client
has experienced. Since this is asked, rhetorically, nzar the end of the claim settlement process,
conceivably the jury will implicitly adjust the value ¢t the claim to the then-current cost of living.
In this case, the entire loss reserve_for general damezes would be sensitive to future inflation
changes.

Determining the effective duration of reserves “sill. therefore, depend on a model for dividing
the future payments into a fixed component, which = not sensitive to future inflation, and an
inflation sensitive component, which will vary with subsequent inflation. This model is developed

and described below.

B. Loss Adjustment Expenses
Loss adjustment expense reserves are estabzshed for future payments, in a manner similar
to loss reserves. These expenses will be paid over Zie time during which the remaining losses are

settled. Loss adjustment expenses are assigned to 1ze accident year in which the loss that



generated these expenses occurred; they are assigned either directly (for allocated loss adjustment
expenses) or indirectly (for unallocated loss adjustmeant expenses). The same approach used for
determining the proportion of loss reserves that are fixed in value can be used for loss adjustment
expense reserves. However, since the rate with which these expenses become fixed in value can
differ from the loss itself, they may be modeled separately using different parameter values.

Loss adjustment expenses are different from loss reserves in the following respect. As an
insurer generates loss adjustment expenses, such as 9y hiring outside adjusters, it would generally
pay these expenses shortly after the work 1s complezad. The loss adjustment expense reserve,
then, represents costs that are fixed in value to a much lower degree than loss reserves. Also, the
legal costs associated with defending a claim that gees to court will not be established until the
very end of the loss settlement process. In addition the allocation process for unallocated loss
adjustment expenses assigns a portion of the genera claim department’s expenses to the accident
year of the claim when the loss is paid. Thus, for less adjustment expense reserves, few of these
costs will be fixed in value when the claim occurs ard a relatively high portion of the total costs

will be based on the cost of living when the claim is -inally settled.

C Unearned Premium Reserve

Since the unearned premium reserve essentizlly represents exposure to losses that have not
even occurred yet, this hability is fully sensitive 10 fzture inflation. The expected cash flow
emanating from the unearned premium reserve will shift to the extent that any change in interest
rates is correlated with inflation. If it is assumed trat the insurer writes policies with terms not

more than one year, then all of the claims emanztinz from the unearned premium reserve will



occur in the next accident year. The payments on trese losses will follow the claim payout pattern
of the insurer, except that {osses will occur approximately in the middle of the first half of the year
(assuming annual policies written evenly throughou: the year), as opposed to in the middle of the
year as would be assumed for accident year data. Tnus, the duration of the unearned premium
reserve at the end of a year would be the weighted zverage of the time until payment of the most
recent accident year, plus 3/4 of a year. For example, the unearned premium reserve as of
12/31/99 will cover losses that will occur, on average, on 4/1/00. For the loss reserve for
accident year 1999, the average loss would have occurred at the middle of the year, or 7/1/99.
Thus, the duration of the unearned premium reserve as of 12/31/99 is 3/4 of a year more than the

duration of the accident year 1999 loss reserves.

4. Mathematical Model of the Effective Duration of Reserves

In Section 5, we will present a detailed numerical model for determining effective
duration. In this section, we develop a simplified mzthematical model of an effective duration
formula. This formula will provide a method to deizrmine the general value of the effective
duration of insurance liabilities, as well as a point ¢ reference for the more detailed calculations
discussed later.

In this section, it is assumed that all pavmer.s are fully sensitive to inflation. In this case,
the price level at which an insurer makes a claim pz-ment depends only upon the date of that
payment. Put in the context of “fixed” costs descrized in the last section. here it is assumed that

there are no fixed costs. This provides a framewors in which a closed-form solution can be easily



derived, assuming an appropriate payment pattern. The measurement of duration assuming partial
fixed costs will be derived iﬁ Section 5.
Define the following variables:
R, = the (correct) nominal reserve at time t,
¢ = the (constant) annual payout ratio, and
r = the relevant interest rate.
Assume that the payout, over time, of property-liab:ity reserves is represented by a “proportional

decay” model: each year, proportion ¢ of the beginring reserve is paid out.' Thus,

= (1-0R,_,

Under this assumption, the present value of :he initial reserve is expressed as

= (l-¢)"eR, Ry 1-c.t  CR
PV(Ry) = s 0y = 2
=1 (1 +rY l-ci=1 |+r r-c

where the final form of the equation is derived from he formula for an infinite geometric
progression.® Now, we can derive an expression fo- the Macaulay duration as follows:
Z“’: (1-c)y'eRt

=1 (1 +I‘)'
PV(R,)

Macaulay duration = D. =

By again using the properties of infinite geometric rrogressions, the numerator of the Macaulay

4 . . - ..
Theoretically, this assumes that payouts arz made izrever. although after some vears they become negligible
in size. Finite-length payout pattcrns are considzrec in Secusn 3.
For 0<x<l. the valuc of x + x* + X'+ = x /1 ]-x.
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duration formula reduces to

cRy(1-r)

- (r+c)’

Dividing by the previous expression for PV(R,). the Macaulay duration is

Since the modified duration is the Macaulay duratica divided by (1+r), we have

L

r+c

Modified duration = MD, =

In order to determine the effective duration of property-liability insurer liabilities, we must
calculate the present value of those liabilities in threz different ways: with the original interest rate,
with an increased interest rate, and with a decrease¢ interest rate. Under this approach, after
calculating the present value assuming the original interest rate, we assume that the interest rate
increases (e.g., by 100 basis points), and then that tze interest rate decreases (e.g., by 100 basis
points). The effective duration is then calculated as

Effective duration = ED v - B
fjective duration = r: = -
¢ 2pv(ar)

where PV = the present value o the expec:ad cash flows if interest rates decline by Ar,
PV, = the present value of the expe:zed cash flows if interest rates increase by Ar,

and

—
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PV, = the initial present value of the expected cash flows.
The key in calculating the effective duration is to account for the impact of hypothetical changes
in the interest rate on the future cash flows emanating from the liability items. For property-
liability reserves, the primary impact on cash flows of a change in interest rates is via inflation:
since interest rates are correlated with inflation, and inflation increases future nominal claim
payments, changes in interest rates will affect the level of future cash outflows, and thus the
present value of those outflows. Therefore, in order to calculate the effective duration, we need
to adjust the formulas above to reflect this inflationary impact.
Define the following additional variables:
Y. o.=r /- Ar = the increased or decreased interest rate', and
I . or. = the inflationary adjustment after the change in interest rate.
The inflationary adjustment contemplates the correlation between changes in interest rates and
inflation (actually, not just overall inflation, but claim inflation for the specific type 6finsurance at
issue).
We can now adjust the present value equation above in preparation for calculating the

effective duration:

PV.(R,) = Z’“: (1-¢)"TeRy(1+i ) _ cRoi((l-C)(lﬂ-_)), _ eR(1+i)

t=1 (1+r) I-cia 1+r, Fo¥c+ci -0,

A similar equation applies for the present value of reserves under the assumption of an interest

rate decrease. Thus, we derive the following formula for the effective duration:
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rec L+i_ 1+,

2Ar r_+c+ci_-i r.+c+ci -,

These formulas can be used to indicate the relative magnitudes of the various duration
measures. For example, assume the following illustrative parameter values: » = 0.05, Ar =0.01, ¢
= 0.40, and the correlation between interest rate anc inflation changes is 0.50 (thus, 7, = 0.005,
and i_.=-0.005). Given these values, the formulas atove provide the following duration measures:
Dy, =2.333, MD, =2.222, and ED, = 1.056. This example illustrates the potentially significant

differences between effective duration and the more common, traditional measures of duration.

S. Modeling the Interest Rate Sensiuvity of Loss and LAE Reserves

One of the difficulties in measuring the interszst rate sensitivity of liabilities is the need for
extensive data. What information is publicly availatie to determine the impact of interest rate
changes on the cash flows of losses? For the loss ard loss adjustment expense reserve, the
expected nominal cost of these amounts at the end ¢ each year are reported in aggregate, by
accident year, by line of business, in the Annual Sta:zment. Although the expected payment dates
for these values are not listed, the actual payments r=ade in each historical year -- categorized by
accident year and by line of business -- are included This allows a comparison of the actual
payments with the expected payments and permits ::e generation of a profile of when the
aggregate loss reserves are likely to be paid in the fzture. However, there is no public information
on when the value of an unpaid loss is set in value. Thus, this relationship needs to be modeled.

For this model, the following assumptions z=2 made. At the time the loss occurs,
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proportion k& of the eventual cost of the claim is “deiermined” -- i.e., a proportion of the future
cost is “fixed” and no longer open to change from interest rate and inflationary changes. In
addition, proportion m of the loss will not be determuned until the time the claim is settled.
Examples of loss costs that will go into & are mediczl treatment sought immediately after the loss
occurs, the wage loss component of an injury claim. and property damage. Examples of loss costs
that will go into 77 are medical evaluations that are done immediately prior to determining the
settlement offer, general damages to the extent they are based on the cost of living at the time of
settlement, and loss adjustment expenses connected with settling the claim.

The remaining (1-k-m) portion of the expenses are modeled in three ways, to allow for
differing rates at which the claim values could become fixed: these expenses could be fixed in
value linearly over the time period from loss to settlzment, or in a manner that would represent a
concave function or a convex function. Figure 1 illustrates the three different functions proposed
for the proportion of loss reserves that are fixed in ~alue, and therefore not subject to inflation,
over time.

A representative function that displavs these attributes is:

S=k=[(1=k-m)x(1/T)]

where f(f) represents the proportior. of ultimate paid claims "fixed" at time ,
k = the proportion of the clezm that is fixed in value immediately,
m = the proportion of the clam that is not fixed in value until the claim is
settled,

n =1 for the linear case.
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n < 1 for the concave case,
n > 1 for the convex case, and

T = the time at which the claim is fully and completely settled.

For example, assume an insured causes an automobile accident in the middle of 1997, and
the victim requires immediate medical attention. This is the £ portion of the claim that is
predetermined immediately; assume, for example, that it represents 15% of the total cost of the
claim. Further, assume that m is zero. After the accdent, the victim receives medical care on an
ongoing basis until the claim is eventually settled in the middle of the year 2000. These
continuing care expenses will be influenced by inflation. At the end of 1997, half of a year of
continuing expenses has been obtained. The total lergth of time before the claim will be settled is

three years (2000-1997). Thus, for the linear case (+=1),

f0.5) = .15+[(1—_15)x(9§)1]

In this case, /{0.5) = 0.292, meaning that at the end o 1997, 29.2% of the loss reserve for this

1997 accident year claim is fixed in value. with the rzmainder subject to future inflation.

6. Duration Measures for Insurer Liabilities
A. Empirical Estimates
In order to implement our model of erfective duration, values of several parameters must

be determined:
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. Loss payout pattern

. Economic parameters
> Interest rate
> Correlation between interest and inflation
> Growth rate of insurance writings
. Cost determination parameters
> k (the proportion of claim value that is fixed immediately)
> m (the proportion of claim value that is not fixed until the claim is settled)
> n (the shape parameter of the fixed-clzim-proportion function)

Each of these parameter values is discussed in greater detail below.

A key component to determining effective duration is identifying the future cash flows.
For property-liability insurance, this involves determning the timing of future loss payments as
loss reserves run off. For a particular corporate appication of this effective duration procedure,
the company’s historical loss payment information b+ line of business can be used as a basis for
estimating future claim payouts. For purposes of this paper, we used aggregate industry
information available from A.M. Best (1998). Due 10 their size and importance, two lines of
business were used in our analysis: private passenge: auto liability (PPAL) and workers
compensation (WC). An additional advantage of using these two lines of business is that their
cash flows have different timing characteristics: WC pays out more slowly, in general, than PPAL.
This distinction allows us to test the potential imipac: of calculating effective duration under

different payout environments.



Aggregate industry payout data folr PPAL and WC were each used in two different ways.
First, the raw empirical data were used. Empirical loss payment patterns were generated from an
actuarial analysis of historical calendar and accident vear payment data. The second approach
was to fit statistical distributions to the raw empiriczl payment patterns. This was done using
software called “BestFit” (a product of Palisade Corporation), which provides best-fit parameter
values to sample data for a variety of theoretical disributions. For both PPAL and WC, a gamma
distribution was used for illustrative purposes as the “smoothed alternative” to the raw empirical
payment pattern.

The loss payment patterns used in our tests “were as shown in Table 1.
[Insert Table | here]

This table reflects the payout patterns through ten vzars, which is the timeframe in which
aggregate industry data is available in any particular edition of A M. Best's Aggregates and
Averages. For our purposes, the WC patterns are extrapolated out to 30 years, and the PPA
patterns to 15 (empirjcal) and 19 (smoothed) vears.

The selected economic parameters are basec largely on current and historical economic
relationships. A “base case” 5% interest rate was szlected in accordance with the level of short-
term government rates in effect during the late 2997s. A 40% relationship between interest rates

and claim inflation was selected based on the historcal relationship between these two economic



variables.® Finally, a 10% growth rate is assumed, based on judgment. This growth rate
parameter reflects the fact that a typical insurance compény carries reserves for a number of
different accident years. The distribution of reserves by accident year is a function of the growth
rate in ultimate accident year incurred losses, and the runoff patterns. The 10% growth
assumption assumes that ultimate accident year losses are growing at 10% per year, which reflects
the growth in both the number of policies written and claim cost inflation.

The selection of cost determination parameters is very difficult. Publicly available loss
- development information (e.g., Best's Aggregates and Averages or the NAIC data tapes) includes
loss payments made each year, by accident year, on a by-line basis. This is not sufficient to
determine the fixed and vartable portions of loss reserves. Even within a company, the data
needed to determine these relationships is not generally maintained in an easily accessible format.
To address this issue, several large insurers were approached and asked to participate in a study
to help estimate the parameters used in this model. These companies were asked to report
information on a small sample of claims that were settled several years after the date of loss.
None of the companies could provide an answer to the question of when the general damages
portion of a claim is fixed in value. It appears that there is simply too much uncertainty about the
process used to establish this figure to know if it is based on costs at the time of the loss, the time
of the settlement, or some interim time.

One company did provide especially detailed reports on a sample of auto liability insurance

®The selected relationship is based upon regressions of historical annual changes in U.S. Treasury bill returns
(independent variable) and historical annual changes in inflation rates (dependent variable) for CP1, PPA bodily injury
liability, PPA property damage liability, and WC. The regression coefTicients varied greatly -- by both magnitude and
statistical significance -- according to the type of inflation and the period being tested. The test periods ranged from
20 to 60 years. The intercept term in the regressions were sclected as zero, Insurance claim inflation data were taken
from Masterson (1968 and subsequent); T-bill and CPI data were taken from Ibbotson (1996).
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claims. These reports showed all the medical, wage loss, and property damage costs associated
with the claims, the date any of these expenses were incurred by the claimant, and the total claim
payment made by the company. For most of these cases, the final claim paid exceeded the total
costs the claimant had incurred. This is expected, since the itemized expenses represented special
damages, and the final payment would also include the intangible general damages. However,
there was one case in which the policyholder was not fully liable for the claim and the total
payment was less than the plaintiff’s expenses.

The general pattern of the expenses was as 0llows. At the time of the loss, the plaintiff
| incurred significant medical éxpenses, prdperty damage, and wage loss. After the initial medical
treatment, the plainfiﬂ‘incurred some continuing medical expenses, either for additional treatment
or for rehabilitation. These expenses most frequenty ended before the claim was finally settled.
This would suggest that the function for the value ¢t the fixed claim is concave (n<1), at least for
the special damages portion of the claim.

The results of this sample indicate that a mc-e extensive and detailed examination of this
process would be very helpful in determining the aroropriate parameters for measuring effective
duration. For purposes of getting initial empirical estimates of effective duration, we have chosen
to begin with k= 0.15, m = 0.10, and n = 1.0. These values will be varied in the next subsection,
in order to determine the potential sensitivity ot effactive duration results to the magnitude of
these parameters.

Based on these selected parameters. and a 4~ of 100 basis points, and using a spreadsheet

model to implement the calculations, the effective ¢uration indications in Table 2 were derived:
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9%}



[Insert Table 2 here]

The essential finding is that effective duration measures -- which properly account for the
inflationary impact of interest rate changes on future loss reserve payments -- are approximately
25% below their modified duration counterparts. This relationship appears to be consistent,
based on the illustrative PPA and WC tests above, regardless of line of business, or whether
empirical or smoothed payout patterns are utilized.

In addition to duration, another quantity that is important to asset-liability management --
convexity -- is also displayed in Table 2. Just as the impact of inflation on future cash flows must
be measured via effective duration, the second derivative of the price/interest rate relationship (see
appendix) is appropriately measured by effecrive convexity in an inflationary environment. The
results in Table 2 show that there is a significant difference between the traditional and effective

measures of convexity. The effective convexity formula used to derive the values in Table 2 was:

PV + PV - 2PV,
PVO(AI‘)2

Effective convexin: =

B. Sensitivity of Effective Duration to Parameter Values
As indicated above, effective duration meastres can provide significantly different
evaluations of property-liability insurer inzerest rate sensitivity than the traditional modified

duration measures. Use of the appropriate eitective duration measure is therefore critical when



utilizing asset-liability management techniques. Simularly, it is important to have an understanding
of which parameter values have the greatest impact on the magnitude of the effective duration
calculation. In Table 3, various parameters have been changed -- one at a time -- to demonstrate
the level of sensitivity of effective duration values with respect to those parameters. (Since the
empirical and smoothed pattern results were so similar above, to promote clarity only the

empirical patterns were used for each line of business.)

[Insert Table 3 here]

The main result from Table 3 is the significant sensitivity of effective duration to the
interest rate - inflation relationship. In particular, this parameter expresses how much inflationary
pressure is associated with a 100 basis point change in interest rates. If there is no correlation
between interest rates and inflation, the modified duration and effective duration are the same. If
the correlation is as high as 80%, the effective duration is approximately one-half the modified
duration. The relationship between changes in intersst rates and changes in inflation -- both CPI
and line of business claim inflation -- has historically been very volatile. Our results suggest that
additional efforts to determine reasonable values for this relationship parameter would be
worthwhile.

Another observation from the table is that th2 results are not overly sensitive to some of
the cost determination parameters. Given the difficulties, mentioned above, of determining values
for the parameters, this is a somewhat comforting finding. For companies undertaking asset-

liability management, simply using effective durztion measures of their liabilities is more important



than having the exact parameter values. However, these companies should be encouraged collect
data that will allow them to monitor the sensitivity of their results to different cost determination

function specifications.

7. Use of Effective Duration in Asset-Liability Management

In previous sections, the deficiencies of traditional measures of duration in an inflationary
world were identified, and an alternative measure -- effective duration -- was described. In this
section, the impact of using effective, as opposed to modified, duration on a company’s asset-
liability management process is illustrated. The example used is a hypothetical workers
compensation insurer; it is assumed that this company has asset and liability values which are
related in a manner consistent with aggregate industry balance she¢t figures.

The effective duration analysis in the prior section concentrates on loss and allocated loss
adjustment expense reserves and runoffs. A complete asset-liability management analysis would
also consider unallocated loss adjustment expenses and unearned premium reserves (the timings of
which are described in Section 3 of this paper). For simplicity, and because they represent a
relatively small part of an insurer’s liabilities, unallocated loss adjustment expenses are considered
together with losses and ALAE in the illustrative example in this section. However, the
reasonableness of this assumption would need to be evaluated in any specific corporate
application of asset-liability management.

The duration of the unearned premium reserve was described in Section 3. The one
adjustment that must be made with respect to asset-liability management is to only consider the

portion of the UPR which 1s associated with tuture losses and loss adjustment expenses -- it is



only this portion which represents a liability for future cash flows which may be impacted by
inflation. The duration for this portion of the UPR is calculated by determining the duration of
the loss and LAE reserve for the most recent accident year, and adding 0.75. The other portion
of the UPR -- the “equity” in the UPR -- represents prepaid expenses associated with prior
writings of insurance policies, and is essentially an accounting construct which is unrelated to
Suture cash flows. Thus, this portion of the UPR is not considered in the following illustration.

For illustrative purposes, all other liability items on the insurer’s balance sheet are
considered to have a Macaulay duration of 1.0 (and thus, at an interest rate of 5%, a modified
duration of 0.952).

The duration of an insurer’s surplus is as follows (Staking and Babbel, 1995):

DgS=D,A-D,L

where § = surplus,
D = duration,
A = assets, and
L = labilities.
In order to immunize its surplus (setting D, =0) from interest rate risk, an insurer needs to set the

duration of its assets as follows:
A

L
D =DZ%
La

Thus, the appropriate determination of the duration of liabilities is critical for asset-liability

management.
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Based on the aggregate industry balance sheet figures for WC insurers reported in A M.

Best (1998), Table 4 shows the liability distribution for an insurer with assets of $1 billion.”
[Insert Table 4 here]

The hability durations were calculated as described above and in Section 6 based on the empirical
WC payout pattern. The resulting overall (value-weighted) liability modified duration is 3.823;
while the effective duration of total liabilities is 2 801.

If the insurer wanted to immunize surplus from interest rate swings based on modified
duration, the duration 'of assets would need to be 2.714. However, based on effective dufation,
the duration of assets should be 1.989. An insurer that attempted to immunize its exposure to
interest rate risk by matching the duration of assets with the modified duration of liabilities,
instead of effective duration, would find that it stll would be exposed to interest rate risk. Based
on these values, the insurer would have a duration of surplus of 2.501: each 1 percentage boint
increase in the interest rate would decrease surplus by 2.501 percent (where surplus here is
defined as the economic value of statutorv surplus plus the equity in the unearned premium

reserve).

"Workers compensation insurers tend to have a sligatly higher proportion of their liabilities in loss and loss
adjustment expenses, and a inuch lower proportion in th: unearned premium reserve, than other insurers. In
applications of this technique, the actual values for these tiabilitics, and for the relationship between assets and
liabilities, for the company should be used.



8. Conclusion and Future Research

This paper has demonstrated a method for determining the effective duration and
convexity of property-liability insurer liabilities, and has provided some general estimates of these
values. Based on the results derived, it appears that there can be significant differences between
the traditional measures of duration -- i.e., Macaulav and modified duration -- and effective
duration. Of these measures, only effective duration is capable of properly accounting for the
impact of inflationary pressures on liability cash flows that are associated with potential changes in
interest rates. This means that effective duration is the appropriate tool for measuring the
sensitivity of the liabilities of property-liability insurers to interest rates when performing asset-
liability management. Use of the wrong duration measure can lead to an unintended mismatch of
assets and liabilities, and an unwanted exposure 1o interest rate risk.

In addition to inflation, interest rate changes may also be correlated with other financial
and economic vari.ables. For example, a decrease in interest rates i§ often -- on average --
associated with an increase in stock prices (since the discount rate on future dividends and capital
ggins is lower). Similarly, changes in interest rates in the U.S. may certainly impact international
financial relationships. To the extent to which these other variables are factors in a jury’s damage
award considerations, they must also be contemplatad in an effective duration framework. For
example, if the stock market has increased in value significantly between the time of an accident
and the final jury verdict, a well-structured commert from the plaintiff’s attorney to the jury may

lead to a higher award on the grounds that the plairuff could have invested the monies lucratively



if they had been available at the time of the accident.® These types of issues are beyond the |
analytical scope of this paper, and are left for future research.

In this paper, we have approached the measurement of effective duration from the
standpoint of a shift in a constant interest rate. Future research should examine the impact of a
stochastic interest rate model on effective duration and asset-liability management. Interesting
and important work in the non-insurance literature on effective duration, yield curves, and
stochastic interest rates (e.g., Babbel, Merrill, and Panning, 1997) has significant future
applicability to the issues addressed in this paper. In addition, stochastic interest rate models are
beginning to appear in the property-liability insurance industry, especially within the context of
dynamic financial énalysis (D’Arcy and Gorvett, et al, 1997 and 1998). In analyses in which
assets are valued according to a stochastic rate assumption, it is appropriate to value liabilities on

the same basis. This will be an important area for future research.

The appropriate analytical framework in this case may involve option pricing theory -- it is possible that the
Jjury award may depend on the maximization of alternatives invelving such considerations as inflationary environment.
stock market performance, etc.
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Cumulative Proportion of Ultimate Accident Year Losses Paid
(Based on Age After Beginning of Accident Year)

Table 1

PPA Liability Workers Compensation
Age (Years) Empincal Smoothed Empirical Smoothed

1 386 398 225 362
2 .701 672 486 496
3 .843 827 .635 .588
4 919 909 727 658
5 958 953 785 713
6 977 976 822 757
7 986 988 847 793
8 991 994 867 .823
9 994 997 880 .848
10 995 998 .891 .869

(V)
(Y]




Summary of Duration Measures for Loss Reserves
(Based on “Base Case” Parameter Assumptions)

Table 2

PPA Liability Workers Compensation

Empirical Smoothed Empirical Smoothed
Macaulay Duration 1.516 1.511 4.485 4.660
Modified Duration 1.444 1.439 4.271 4438
Effective Duration 1.089 1.085 3.158 3.285
Convexity 5.753 3214 50.771 45.060
Effective Convexity 1.978 1.807 16.038 14383




Table 3
Analysis of the Sensitivity of Effective Duration Measures of Loss Reserves
(Based on Single-Parameter Changes From “Base Case” Values*)

PPA Empirical WC Empirical
Macaulay Duration** 1.516 4.485
Modified Duration** 1.444 4271
Effective Duration
Base Case 1.089 3.158
Inflation-Interest Relationship:
80% 0.733 2.036
60% 0911 2.596
40% 1.089 3.158
20% 1.267 3.721
0% 1.445 4286
k= 0.25 1.128 3.284
0.20 1.108 3.221
0.15 1.089 3.158
0.10 1.069 3.095
0.05 1.049 3.032
m= 020 ) 1.067 3.104
0.15 1.078 3.131
0.10 1.089 3.158
0.05 1.099 3.185
0.00 1.110 . 3.212
n= 1.40 1.045 3.040
1.20 1.065 3.092
1.00 1.089 3.158
0.80 1.120 3.245
0.60 1.160 3.362
g= 0.20 1.070 2.849
0.15 1.079 2.985
0.10 1.089 3.158
0.05 1.101 3.367
0.00 1.116 3.589

* Base case values are: k=0.15, m=0.10, n=1.00. g=0.10, a 5% interest rate, and a 40%
relationship between interest rate and inflation movements.
** These duration figures reflect base case parameter values. When parameter g is changed
according to the range above, Macaulay and modified durations also change slightly:
PPA: D =1.501 to 1.540, and MD =1.429to 1.466
WC: D=4.128t04.910. and MD =3.932t04.676
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Table 4
Example of Asset-Liability Management
for a Hypothetical Workers Compensation Insurer
(% figures are in millions)

Dollar Modified Effective

Value Duration Duration
Loss and LAE Reserves 590 4271 3.158
UPR (portion for losses and LAE only) 30 3.621 1.325
Other Liabilities 90 0.952 0.952
Total Liabilities 710 3.823 2.801
Total Assets 1,000
Indicated Asset Duration to Immunize Surplus: 2.714 1.989

(OS]
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Appendix
Derivation of the Formulae for the Sensitivity of a Cash Flow
to Interest Rates Based on the Taylor Series

The basic objective of a duration measure is to determine the sensitivity of the present
value of a cash flow th a change in interest rates. This is an important factor for financial
institutions, since interest rate risk is such a signiﬁcant source of uncertainty for these companies.
Several measures of interest rate risk have been developed in finance. An understanding of these
different measures can best be grasped by examininé their basic mathematical foundations.

The Taylor series states that the value of a function at any point can be approximated by
the value of a series of derivatives of the function valued at another point, with each derivative
multiplied by the difference between the two points raised to the same power as the order of the
derivative and divided by the factorial of that order. The accuracy of the approximation is
determined by the number of derivatives taken. Mathematically, the Taylor series is represented

as:

S(n)=f{n)+ )?f(l)(ro + h_f(Z)(ro)“*' i.f(s)(ro)+---~+ ﬂ./“(”1)("0)4‘----
2! 3! m!

where

t, = initial interest rate

1, = new interest rate

h=r-r,

The Taylor series will be used to evaluate a simple interest rate function, but one that is



typical for fixed income assets. This function is the present value of a §1 million ten year zero-

coupon bond, which is simply the present value '$I,OO0,000, or:

1,000,000

()=~ o

The first four derivatives of this function are:

FO (-10)(1,000,000)  -10,000,000

(1+ r)11 - (1+ r)”
ey (=11)(=10)(1,000,000) 110,000,000
/= (1+ r)"? T (1+)"
o (- 12)(- 11)(-10)(1,000,000) - 132,000,000
- (1+r)" T (1+4)°
o (- 13)(= 12)(- 11)(- 10)(1,000,000)  17,160,000,000
B (1+ )™ ()¢

Figure 1-A illustrates the present value function for this zero coupon bond. As can be
seen from this figure, the present value of the bond is inversely related to interest rates and the
function is convex. This represents the typical relationship for bonds with a fixed coupon rate and

payment pattern.

In order to apply the Taylor series, we need an initial interest rate, which will be set at
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10%, and a new interest rate to be used to value the function. The accuracy of each order of
Taylor series approximation is illustrated graphically over the range of 0 to 30 percent.

Figure 2-A illustrates the bond value and the Taylor series approximations based on the
first, second, third and fourth orders. For small changes, all of the approximations appear to
provide a fairly reasonable fit. However, for larger changes -- for example, at an interest rate of
20 percent -~ it is clear that the higher order approximations provide progressively better fits to
the actual bond value.

Figure 3-A illustrates the present value function and the first four order approximations
over the range of 8 to 12 percent. Within this range, the second, third and fourth order
approximations are visually indistinguishable from each other and from the bond value itself. The
first order approximation is clearly distinct, however. Based on this mathematical background,
the attempts to quantify interest rate sensitivity can be examined.

The first attempt to develop a measure of the sensitivity of a cash flow to interest rates
was performed by Frederick Macaulay in 1938. The measure he developed, termed the Macaulay
duration, is the present-value-weighted average time to receipt of the cash flows, divided by the

initial present value of the cash flows, and is expressed by the following formula:

Y UCE /(1+1,)
D= (=1

M-

CF /(14 1)’

..
]
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where CF, = the cash flow received at time t

r, = initial interest rate

The numerator of the Macaulay duration is close to the first derivative of the function for
the present value of the cash flow. If the denominator of the expression in the numerator were
(1+1¢)"*! instead of (1+r,), then the numerator would be equal to the negative of the first
derivative of the function for the present value of the cash flow. When the Macaulay duration is
used to estimate the effect of a change in interest rates, the Macaulay duration is multiplied by the
change in the interest rate, or r,-r,, and, in recognition of the inverse relationship between the
present value and interest rates, also by -1.

For example, the Macaulay duration of the zero-coupon bond is:

Y 10CE, /(14 r,)"°
D= =10
Z CFlo/(“"'o)lo

The change in the present value of the cash flow is estimated to be f{i,)(-1)(10)(r,-r,). In
this example, for every | percentage point increase in interest rates, the present value of the cash
flow is estimated to decrease by 10 percent. The accuracy of this estimate, for an r, = 10
percent, is illustrated on Figure 4-A. Similar to the first order Taylor series approximation, this

estimate is only accurate for very small changes in interest rates.
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The next approach to measure the sensitivity of the present value of a cash flow to interest

rates is termed modified duration. The formula for modified duration is:

_ fm(ro)

MD =
f(r)

This expression is mathematically equivalent to the Macaulay duration divided by (1+r).
Apparently, the negative of the first derivative is used simply to avoid having a negative number
for the duration measure. Since the slope of the present value function for almost all financial
assets 1s negative, then the first derivative would naturally be a negative. Taking the negative of
this derivative transforms it to a positive value.

The modified duration of the ten year zero-coupon bond is. for an initial interest rate of

10%:

MD= (-1 (-10)(1,000,000)/ (1.10)" : -3,504,939 5,000
=D 1,000,000/ (1.10)" =D 385543

To use the modified duration estimate to determine the new present value of a cash flow, the

change in the present value is:
% Price Change = (- )(MD)(r, - r,)
Here, multiplying the modified duration by negative one cancels out the negative of the
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slope that was taken in determining modified duration. The accuracy of this estimaté, foranr, =
10 percent, is also illustrated on Figure 4-A. Modified duration is exactly the same as a first order
Taylor series approximation, and is also only accurate for small changes in interest rates.

In order to compare the Macaulay and modified duration measures to the Taylor series
approximation requires the rearranging of terms. Since duration attempts to measure the

sensitivity of the present value to interest rate changes based on a first order approximation, the

correct duration measure would be as follows:

S()-f(n) _ (h- ) ()
f(n) f(n)

Macaulay duration is -fV(r,)(1+r,)/f(r,). Modified duration is -f")(r,)/f(r,). The
determination of the present value of the cash flow based on a first order Taylor series
approximation is shown below. Seen in this framework, it is apparent why the modified duration

is multiplied by negative one, the initial present value and the difference in interest rates.

f)= fO)+ (=) f ()
= f(r,)+ (r, - r,)(- DN(Modified Duration) /" (r,)

In order to increase the accuracy of the interest rate sensitivity measure, an additional
term, called convexity, has been introduced in finance. The measure for convexity is the second

derivative of the price with respect to interest rates, divided by the price of the bond, or:
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2)
Convexity = S ()

f(r)

Applying convexity to determine the price change:

1
% Price Change = (- 1)( MD)(r, - r,) + = Convexity(r, - r,)?
1 0 2 1 0

This expression is similar to the second order Taylor series approximation. Using the first
and second derivatives only, and rearranging to determine the change in the value of the function,

as a percentage of the original value, leads to:

Jr)-f(n) (n- ro)f(l)(ro)+ (r - ro)zf(z)(ro)

S (%) (%) 201 (r)

Convexity is multiplied by Y2 to correspond with the 2! in the Taylor series approximation
and multiplied by the yield change squared also to correspond with the Taylor series
determination.

The convexity of the ten year zero-coupon bond is, for an initial interest rate of 10%:

(- 11)(-10)(1,000,000)/(1.10)"* 35,049,390
1,000,000/ (1.10)"° © 385,543

Convexity = = 90.909



Figure 5-A illustrates the effect of introducing the convexity ex'pression to determine the
present value of the cash flow. This is exactly the same as the second order Taylor series
illustrated in Figure 2-A.

Despite the importance of accurate measures for interest rate sensitivity, there are no
specific financial expressions for third or higher order approximations of the Taylor series. These
terms are used in some calculations of interest rate sensitivity, however. In practice, calculations
of these more accurate expressions are no more difficult than the modified duration and convexity
determinations.

Table 1-A shows the actual values for the present value of the $1 million ten year zero-
coupon bond for interest rates ranging from 6 to 14 percent, and the estimated values based on
modified duration, convexity, and the third and fourth order Taylor series expansions. For
interest rates near the initial 10 percent interest rate, the duration and convexity estimates are very
close to the actual values. For larger interest rate changes, the higher order terms provide a much
better approximation.

Although typically the relationship between the present value of a cash flow and interest
rates is convex, this is not always the case. In some instances the relationship is concave over part
of the range. For example, if the maturity of the bond is a function of interest rates, a concave
relationship can be obtained. In finance, this is termed negative convexity, rather than the
mathematical term concavity. This type of function is illustrated in Figure 6-A, in which the
maturity of a zero-coupon bond is 100 r. Thus, if interest rates are 10 percent, the bond matures
in 10 years. Ifinterest rates fall to 6 percent, the bond matures in six years; if interest rates rise to

12 percent, the bond matures in 12 years. This relationship is representative of actual payoff
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patterns for collateralized mortgage obligations and callable bonds.
As shown in this appendix, the financial measures used for interest rate sensitivity are all
based on the Taylor series expansion. Although some of the terminology used in finance is new,

the basic application is a standard mathematical technique.
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Portion of Ultimate Payments Fixed

0.1

Figure 1
Formula for "Fixed" Costs

f(t)=k+[(1-k-m)*(t/T)"]

Portion of Payment Period (T)




Present Value

Figure 1-A
Present Value of a $1 Million Ten Year Zero Coupon Bond
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Present Value

Figure 2-A
Present Value of a $1 Million Ten Year Zero Coupon Bond
with Taylor Series Approximations
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Bond Value
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Present Value of a $1 Million Ten Year Zero Coupon Bond

with Taylor Series Approximations
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Figure 4-A
Present Value of a $1 Million Ten Year Zero Coupon Bond
with Macaulay and Modified Duration Estimates
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Figure 5-A
Present Value of a $1 Million Ten Year Zero Coupon Bond
with Modified Duration and Convexity Estimates

Present Value

$1,200,000.00
$1,000,000.00

$800,000.00

$600,000.00 N\
\\
™.
N Bond Value
$400,000.00 N — ~— — Modified Duration Estimate
e I e R Convexity Estimate
$200,000.00 ~ e
-
\\
-
~
- ~
$- T T T T \'\ T
~
9 0.05 0.1 0.15 0.2 ~ 025 03
\ -
$(200,000.00) =
\.\_
N,

$(400,000.00)

Interest Rates




Bond Value

Figure 6-A
Present Value of a $1 Million Zero Coupon Bond
with Maturity a Function of Interest Rates
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Table 1-A

Accuracy of Estimated Values of $1 Million Ten Year Zero-Coupon Bond
Initial Interest Rate = 10%

Estimates Based On:

Interest Rate Actual Value Modified Duration Convexity Third Order Fourth Order
6.00% $558,394.78 $ 525,740.85 $553,780.36 $557,858.84 $558,340.84
6.25% $545,394.32 $ 516,978.50 $541,622.60 $544,983.16 $545355.50
6.50% $532,726.04 $ 508,216.15 $529,683.91 $532,416.16 $532,698.71
6.75% $520,380.68 $ 499,453.81 $517,964.27 $520,151.87 $520,361.92
7.00% $508,349.29 $ 490,691.46 $506,463.68 $508,184.290 $508,336.80
7.25% $496,623.19 $ 481,929.11 $495,182.16 $496,507.47 $496,615.15
7.50% $485,193.93 $ 473,166.76 $484,119.70 $485,115.42 $485,188.97
7.75% $47405334 $ 464,404 42 $473,276.29 $474,002.17 $474,050.43
8.00% $463,193.49 $ 455642.07 $462651.95 $463,161.76 $463,191.88
8.25% $452,606.67 $ 446,879.72 $452 24666 $452,588.19 $452,605.85
8.50% $442285.42 $ 438,117.37 $442060.42 $44227551 $442,285.04
8.75% $432,222.47 $ 429,355.03 $432,093.26 $432,217.73 $432,222.32
9.00% $422,41081 $ 420,592.68 $42234515 $422,408.88 $422,410.76
9.25% $412,843.59 $ 411,830.33 $4128t6.1C $412,842.98 $412,843.58
9.50% $403,514.19 $ 403,067.98 $403,506.1C $403,514.07 $403,514.19
9.75% $394,416.17 $ 39430564 $394415.17 $394416.16 $394,416.17
10.00% $385,543.29 $ 385,543.29 $385,543.2¢ $385,543.29 $385543.29
10.25% $376,889.48 $ 376,780.94 3$376,890.47 3$376,889.48 $376,889.48
10.50% $368,448.86 $ 368,018.59 $368,456.71 $368,448.75 $368,448.86
10.75% $360,215.71 % 359,256.25 $360,2¢2.07 $360,215.13 $360,215.72
11.00% $352,184.48 $ 350,493.90 $352,246.37 $352,182.64 $352,184.53
11.25% $34434977 $ 341,731.55 $344,469.7¢ $344,34532 $344 34992
11.50% $336,706.36 % 332,969.20 $336,9712.26 $336,697.19 $336,706.72
11.75% $329,249.16 $ 324,206.86 $329,573.7¢ $329,232.26 $329,249.92
12.00% $321,973.24 315,444 51 $322,454.35¢ $321,944 58 $321,974.70
12.25% $314,873.78 $ 306,682.16 $315554.0¢ 3$314,828.16 $314,876.41
12.50% $307,946.15 $ 297919.81 $308,872.7% $307,877.03 $307,950.58
12.75% $301,185.80 $ 289,157.47 $302,4%0.5z $301,08521 $301,192.89
13.00% $294,588.35 $ 280,395.12 $296,1687.35 $294,446.74 $294,599.25
13.25% $288,149.52 $ 27163277 $290,1432% $287,95563 $288,165.69
13.50% $281,865.15 $ 262,870.42 $284,338.1¢ $281,605.92 $281,888.46
13.75% $275,73122 $ 254108.08 $278.722.1f $275391.62 $275,763.95
14.00% $269,743.81 $ 24534573 $273.3352¢ 3$269,306.77 $269,788.77



