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Abstract 

Actnaries use development techniques to estimate fnture losses. Unfortunately, real data is 
subject to both random fluctuations and systematic distortions; only in textbooks can we expect 
smooth, stable development patterns. To correct for thii, developed losses are often weighted 
with a prior estimate to stabilize the results. 

This paper describes a method that applies credibiity directly to the loss development process. 
The approach appeals to our intuition, but it also has a sound theoretical base. While it requires 
little more data than the familiar Iirk ratio method and is almost as easy to use, it responds more 
gracefully to situations in which the data is thin and random fluctuations are severe. 

Introduction 

The method of least squares development is worth consider& whenever random year to year fluctu- 
ations in loss experience are sign&ant. Thii paper provides both a practical guide to its use and a 
discussion of its theoretical underpinnings. The goal is to provide actuaries with the familiarity and 
confidence they need to use the method in their work. Along the way we will uncover some related 
methods which may be used to evaluate losses for new or rapidly changing hues of business, and we 
will establish a conceptual framework that broadens our understanding of loss development. 

Least squares development was proposed by Sin, in his 1957 discussion1 of a paper by Tapley,2 
as a way to establish loss reserves for automobile bodily injury claims. More recently Clarke has used 
it to develop reinsurance losses3 Both Simon and Clarke justify the method on practical grounds-it 
works. DeVylder’ and Robbin apply credibility techniques to loss development, and though these 
authors approach the subject from a slightly &&rent direction, this paper owes much to their ideas. 

We will begin the paper with a simple example that shows how least squares development works. 
This will help the reader to get a feel for the method, and to compare it with more traditional 
approaches. We will then apply the method to several loss models; it often proves to be the right tool 
for the job, although a non-linear Bayesian development function is (in theory) preferable in some 
cases. The next part of the paper develops credibility formulas, similar to those of Biihlmann, which 
describe the best linear approximation to the Bayesian estimate in terms of the means and variauces of 
the loss and loss reporting distributions. In the final part we examine the implications of the method 
for practical work, warn of its limitations, and work out a complete example. 

* Sii L-J., PCAS 44 (1957). pp. 100410. 
2Tapky, D.A., YMonth of Loss Defkiency - for Automobile Bodily h@ry Loses Iatcluding Fksaws for 

Inamed Bat Not Ekpomd Claims,- PCAS 43 (1936), pp. 166-198, 
3 Clarke, HB., decent ikvebpments in braving for Losses in the Laadon kinsmaace Market,” PCAS 75 (1933). 

pp. 4-12.15-18. 
4 Devylder f., ‘%&nation of IBNR Claims by Credibility Theory,“‘~Inmrmace MatLnatics and Economics (hnuary 

lssa), pp. 3540. 
5 F&bbin, L, “A Bayesian Credibility Formub for IBNR Counts,” PCAS 73 (1986). pp. 129-161. 
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How the method works-an example 

The data in Table 1, while hypothetical, is typical of what one might face in developing k.ses for 
a small state. We will assume that the book of business is reasonably stable from year to year, 
and we will ignore inflation for the time being. Even so, the data is so thin that there are serious 
fluctuations-fluctuations that make it hard to apply the link ratio method. We are reluctant to give 

Incurred Loss 

AY 15 mo. 27 mo. 

1985 19,039 23,279 
1986 33,040 41,560 
1987 14,637 18,937 
1988 2,785 5,185 
1989 51,606 54,206 
1990 5,726 15,726 
i991 z = 40,490 y = ? 

Link Ratios 
15-27 

1.223 
1.258 
1.294 
1.862 
1.050 
2.746 

c 

Table 1: State AA, Line BB: Losses limited to $10,000 per occurrence. 

full credibility to the observed loss for 1991 (which is high already) by applying a large factor to it. 
On the other hand, we do not wish to ignore it altogether. 

Let’s take a step back. Focus for a moment upon the 1!5- and 27-month columns of the table. We 
wish to predict the 27-month value for the 1991 accident year. We may base our prediction (if we 
deem it appropriate) upon the E-month value, which is already known. 

Call the value in the G-month column z and the value in the 27-month column y. We wish to 
predict y based on 2. In this task we are guided by the (t, y) pairs from previous years. For any 
value of z-even if it had not been z = 40,490 as we see here-we would have determined in some 
way a corresponding y-value. Let t(z) be our estimate of y, given that we have already observqd 2. 

The link ratio method The traditional link ratio met+od estimates y as L(z) = CC, where c is a 
“selected link ratio”. The value of c is chosen after a review of the observed link ratios from previous 
years-as an average of several years, pexhaps, or as a weighted average. The choice is not easy in 
situations like this one, where the observed link ratios vary greatly from year to year. 

The budgeted loss method If the fluctuation is extreme, or if past data is not available, the value 
of z is sometimes ignored. That is, a value k is chosen, and y is estimated as L(z) = k no matter 
what z may happen to be. This method is known as the “budgeted loss” (or “pegged”) method 
because it fixes the forecast loss y without reference to the observed value 2. The estimate k may 
be chosen either as an average of y values from past years, or by multiplying earned premium for the 
year by an expected loss ratio, or by a number of other methods6 

The problem is depicted graphically in Figure 1. 7 The observed (2, y) values form a collection of 
points in the (2, y)-plane (Fiie la). The link ratio method fits a line through the origin to these 
points; as the observed value 2 increases, the estimate L(z) increases in direct proportion (Figure lb). 
The budgeted loss method, on the other hand, fits a horizontal line; as z increases, L(z) remains 
unchanged (Fire lc). 

‘F~instanrr,oneuurmultiplyearneduposraesbyantstimatedprae~~ Or,ifthedataisforaminor 
coverage which is sold in conjunction with a major covaage, one can multiply devehped lasss for the major coverage 
by a ratio deterhued from the expmkxe of preous yess. Diieralt techuiques may be appropliatc in diReralt 
situations. 

‘I See 3-C. Narvdl’s review of Clarke’s paper (PCAS 76 (lSSS), pp. 197-200.) Our approach here pa&l& Narvell’s. 
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Figure 1: Fitting a line to the loss data ftom Table l-a comparison of methods. 

The least squares method This method estimates L(z) by fitting a line to the points (a, y) using 
the method of least squares. The resulting line is not (except by coincidence) either a horizontal line 
or a line through the origin. Instead it is of the form L(z) = a + bz, where the constants a and b are 
determined by the least squares fit (Figure Id). 

Recall how the least squares coefficients a and b are determined. One 6rst computes the four 
average5 Z, Ii, 2, and Zy. One then sets 

b= 
ZjJ-‘Zg 
g-=2 

and a=J-bZ. 

For the 15-27 month devellpment under consideration, and for accident years 19854990, we have 
z = 21,139, 3 = 26,482, 22 = 7.287 x 108, and Zy = 8.326 x 108. This gives us b = 0.968 and 
a = 6,023, which implies that L(t) = 0.968 z + 6,023. For the 1991 accident year we estimate 
y = 0.968(40,490)+6,023 = 45,217. 

The least squares fit is flexible enough to include the link ratio and budgeted loss methods as 
special cases, as follows: 

l When z and y are totally uncorrelated, b will be zero, In this case the estimate is identical to a 
budgeted loss estimate. This makes sense; we should not make y dependent on 2 if we observe 
no relationship between the two. 

l It is also possible for a to be zerw-m ost obviously, when the observed link ratios y/z are all 
equal. In this case the estimate is identical to a link ratio estimate. 

This &xibility is an important advantage of the method. As we shall see below, the least squares 
method is at heart a credibiity weighting system in which the weights are determined by the properties 
of the loss and loss reporting distributions. It can thus adapt to the data at hand, giving more or less 
weight to the observed value of t as appropriate.s 

The Bornhuetter-Ferguson method A third special case is the Bornhuetter-Ferguson method,s 
which estimates ultimate loss as “expected unobserved loss plus actual observed loss”; that is, it sets 
L(t) = a + z for some. a. This method, like ours, seeks a compromise between the link ratio and 
budgeted loas methods. However, our approach allows 6, the coefficient of z, to vary as needed. 
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Bornhuetter and Ferguson always have b = l.=hich can be a real limitation; in particular, Salzmann 
warns against using the Bornhuetter-Ferguson method when losses develop downward. lo 

Potential problems in parameter estimation. Least squares development, like any method that 
uses observed values to estimate underlying parameters, is subject to parameter estimation errors. If 
there is a significant change in the nature of the loss experience, the use of unadjusted data can lead 
to serious errors. Furthermore, even when the book of business is stable, sampling error can iead to 
values for a and b which do not reflect its true character-l1 

In two cases the mismatch is obvious: if either a < 0 or b < 0. In the former case, our estimate 
of y will be negative for small values of z. In the latter case, our estimate of y gets smaller as z 
increases. The actuary should intervene when either of these situations arises: one might substitute 
the link ratio method if a < 0 and the budgeted loss method if b < 0. ’ c 

Hugh White’s question 

It is not hard to come up with a variety of loss development methods. The challenge is in deciding 
which method to use in a given situation. In his review of the Bornhuetter-Ferguson paper, Hugh 
White asks:12 

I offer the following problem. You are trying to establish the reserve for commerckl 
automobile bodily injury and the reported proportion of expected losses as of statement 
date for the current accident year period is 8% higher than it should be. Do you: 

1. Reduce the bulk reserve a corresponding amount (because you sense an acceleration 
in the rate of report); 

2. Leave the bulk reserve at the same percentage level of expected losses (because you 
sense a random fluctuation such as a large loss); or 

3. Increase the bulk reserve in proportion to the increase of actual reported over expected 
reported (because you don’t have 100% confidence in your “expected losses”)? 

Obviously, none of the three suggested “answers” is satisfactory without further extensive 
investigation, and yet, all are reasonable. While it is a gross over-simpliication of the 
question the reserve actuary will face, it still illustrates the limitations of the e&ctiveness 
of expected losses. 

We can identify the three “answer? described above as the budgeted loss method, the Bornhuetter- 
Ferguson method, and the link ratio method, respectively. These three options lie on a continuum-a 
continuum which also includes the many other options implied by the expression L(z) = a + bt. 

Let us try to answer Mr. White’s question-in which direction, and by how much, should we change 
our estimate of outstanding losses when reported losses are not what we expected? Each of the above 
options can be correct in the right circumstances. But how do we know which one to choose? The 
least squares fit makes sense intuitively, but is there any theoretical justification for its use? 

The credibility formulas which we shall develop in this paper are analytical tools that guide us 
in making these decisions. They lend credence to the least squares method, and they provide the 
understanding we need to make adjustments when probiems arise. Of course, no actuarial formula 
can serve as a substitute for the actuary him- or herself, or for a thorough knowledge of the book of 
business; these techniques should supplement, rather than replace, informed judgment. 

lo Sakmanu, FL& Esiimated &aWitics joot Losses and Loss Adjustment Erpensu (1964). p. 41. 
I* This pr&km is not unique b least squares development; the iink ratio method is subject to similar -IS. 
12Wkite, H-G., PCAS 60 (1973), p. 166. 
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Loss and loss reporting distributions- using models to test the method __ 

Although the above example is instructive, we need more than experimental evidence if we wish to 
evaluate the method’s theoretical soundness. The fit in Figure Id looks good. but we may have been 
lucky. We must know the form of the underlying distributions if we wish to prove that the method 
works. 

For this reason we will test the method using various theoretical models. Our first example 
is designed for simplicity and not realism. Later examples use the Poisson and negative binomial 
distributions to model claim counts. If the method handles these latter ‘aistributions successfully, we 
can apply it with some confidence to real-lie problems. 

A simple model Our ilrst model is designed to clarify the techniques we plan to use. Suppose 

l The number of claims incurred each year is a random variable .Y which is either 0 or 1 with 
equal probability. 

l If there is a claim, there is a 5OYo chance that it will be reported by year end. 

(Many of our examples involve claim counts. The techniques also apply to incurred losses or claim 
severity, but the exposition is simplest for claim counts. Note that z and y are integers in this case.) 

Question: If x claims have been reported by year end, what is the expected number outstanding? 
Let the random variable X represent the number of claims (either 0 or 1) reported by year end. 

If Q(z) represents the expected total number of claims, and R(z) the expected number of claims 
outstanding, both given that X = x, we have 

% - Q(x) = E(YIX = z), 

R(x) = E(Y - XIX = x) 
= Q(x) -x. 

We begin with the case x = 0. Bayes’ Theorem tells us13 that 

P(Y = 01x = 0) = 
P(Y = O)P(X = OIY = 0) 

P(Y = O)P(X = OIY = 0) + P(Y = l)P(X = O/Y = 1) 

= 
WW) 

(1/2)(1) + w2w2) 

= 2/3, and similarly 

P(Y = 11x =O) = l/3. 

This means 
Q(0) = E(YJX = 0) = (0)(2/3)-t- (1)(1/3) = l/3; 

that is, if no claims have been reported by year end, the expected total number of claims is l/3. When 
z=l,ourjobiseveneasier. Smceinthiicaseymustalsohavebeen1,wemusthaveQ(1)=1. 
Putting the two together, we have Q(z) = (2/3)x + l/3 where x = 0 or 1, and R(z) = -x/3+ l/3. 

Return now to the graphical viewpoint (Figure 2.) There are but three possibilities for the point 
(x, TJ): it will be (0,O) half the time, (0,l) one quarter of the time, and (1,l) one quarter of the time. 
The best (Bayesian) estimate of y, given x, is a line with slope b = 2/3 and y-intercept a = l/3. 

13The student may wish to r&r to Henog, TN.. An introduction to Bayesian credibiIi@ and related topics (CAS, 
198.5) for an excellent intr0ductiOn t0 aayesian probability. 
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Figure 2: The simple model . . . 

Since we have neither a = 0, b = 0, nor b = 1, this relationship is compatible with neither the 
link ratio method, the budgeted loss method, nor the Bomhuetter-Ferguson method. It is, however, 
compatible with the least squares method; with enough observations, the least squares estimator will 
approach Q(z) - l4 

A Poisson-Binomial example We now consider a more realistic example. Suppose claim counts 
for a small book of business have the following properties: 

l The number of claims incurred each year is a random variable Y which is Poisson distributed 
with mean and variance 4. 

l Any given ciaim has a 50% chance of being reported by year end. 

l The chance of any claim being reported by year end is independent of the reporting of any other 
claim, and is also independent of the number of claims incurred. 

A sample data set, generated at random, is shown in Table 2. Even though each year’s experience is 
taken from the same distribution, the observed values differ greatly- 

At year end At ultimate Link ratio 

1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 

1 1.00 
- 9 4.50 

2 2.00 
2 - 
7 1.17 
5 2.50 
3 3.00 
Y ? 

Table 2: Poisson-Binomial example with p = 4 and d = l/2. 

Here X is a bmomiai random variable with parameters (y, l/2). This means X is produced by a 
Poisson-Bmomial mixed process-a Poisson process which produces y followed by a binomial process 
with y as the 8rst parameter. 

Again we ask for the expected number of outstanding claims, given that z claims have been 
reported by year end. We will solve this problem in two ways: the long way and the short way. We 

“l%isexaqAealsodanomtrates an often ova-looked fact: althougll the least 
afimdionofypassestluoughtheorigin,thelineupnsing 

z3qumslinex=y/2cxp~zas 
yzsafuactionofxdoesnot. 
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will also consider the link ratio method, but as we shall see, it does not offer an entirely satisfactory 
solution. 

The long way (Bayesian analysis) Bayes’ Theorem tells us that, for y > t, 

P(Y = y/x = 2) = P(Y = y)P(X = XlY = y) 
xi P(Y = i)P(X = ZiY = i) 

(4w4/y!)(2-y c) j . 
= zz(4ie-4/i!)(2-i Q) . 

2Y’Ze’2 

= (y-x)!’ . . 

It follows that 

1 
= x+2 

(where we use our knowledge of the Poisson distribution with mean 2 to evaluate the expressions in 
square brackets.) The expected number of outstanding claims is thus R(x) = Q(x) - z = 2. This 
may seem surprisii, but it is true in general: when the claim distribution is Poisson and the claim 
reporting distribution is binomial, the expected number of outstanding claims does uot depend on the 
number already reported. 

The short way Once we know that R(z) = 2, the special properties of the Poisson distribution 
lead us to a quicker derivation. Consider the Poisson process that generates Y to be composed of 
the sum of two independent Poisson processes with mean 2: one process generating claims that will 
be reported by year end, and the other generating claims that will not be reported by year end. 
Begardless of the result of the first process, the expected value of the result of the second process is 2 ; 
this is R(x). 

Unfortunately, this shortcut will not work for other distributions; in most cases we will have to 
return to the method that we used above. 

The link ratio method Let us now apply the fdar link ratio method to the above problem. To 
use the link ratio method, one selects a ratio c and uses it to obtain estimates 

E(YIX = x) a cx, 
E(Y - xjx = x) M (c - 1)z. 

Since there is no c for which cz z x + 2, this method cannot possibly produce the correct Bayesiau 
estimate Q(z) for every value of z. However, there are several options for c. 

option 1. If we wish to obtain an unbiased estimate, we must ask that E((c- 1)X) = 2. This imphes 
that c = 1+ 2/E(X) = 2. 

Option 2. Instead we can minimize the mean squared error (MSE) of our estimate. Thii is equivalent 
to the problem of miniiig E(((c - 1)X - 2)2) = (c - 1)2 V&(X) + ((c - l),??(X) - 2)’ = 
SC2 - 2Oc+ 18. The minimum is found at c = S/3. Unfortunately, as we can see by comparison 
with Option 1, this estimate is biased low. The biased estimate can have a lower MSE than the 
unbiased estimate because its variance is lower. 
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Option 3. One commonly used method uses E(Y/X) ( or au estimate thereof) for the iiik ratio-l5 
This presents problems when the data is thii, as iu Table 2, since Y/X is not defined where 
X = 0. If we throw these cases out and compute instead c = 

w/x ix # 0) = (l- P(X = o))-‘gP(x = x)y = =) 
X=1 

= (l-e -2)-l g y2 = z.2 -* 

= 

e 2.153, 
7. 

we obtain an estimate which is biased high, despite the exclusion of cases in which x = 0. 

Option 4. A better approach (described by Salzmann16 as the “iceberg technique”) selects 

d = E(X/Y jY # 0) = l/2, c= d-l = 2. 

This is the same value of c that produced the unbiased estimate of Option 1; iu this example, 
it is clearly superior to Option 3. 

While some values of c are better than others, no link ratio estimate is as good as the Bayesian 
estimate Q(x). For c = 5/3 the MSE is 10/3, for the unbiased estimate c = 2 it is 4, and for 
c = 2.153 it is approximately 4.752. In comparison, for Q(x) (which is also unbiased) the MSE is 2. 

The general Poisson-Binomial case If we generalize our example to the situation where Y is 
Poisson distributed with mean p, and where any given claim has probability d of being reported by 
year end, the methods described above yield 

Q(x) = x+/41 -4, 
R(z) = jf(l-qd). 

The expected number of outstanding claims is simply the total number of claims originally expected 
times the expected percentage outstanding; as noted above, it does not depend upon the number 
of claims already reported. We conclude that the Bornhuetter-Ferguson estimate-and hence Mr. 
White’s second answer-is optimal in the Poisson-Bion&l case. 

The Negative Biiornial-Binomial case Although the Poisson distribution is often used to model 
claim counts, the negative binomial distribution is a better choice in some situations.17 Let us 
therefore consider the situation where the distribution of Y is negative bmomial with parameters 
(r, p) , and where any given claim has probabiity d of being reported by year end. Using the techniques 
of Bayesian analysis described above, we compute 

P(Y = y/x = 2) = 
[r+:-‘)p’(l - PP] [of71 - Q-=] 

LL [ c+i-r)p’(l - p)i] [ c)d=(l - ,i-t] 

(x+f)+(Y-x)-- 
Y--z > 

[(I - d)(l - p)jy-*[l - (1 - d)(l - P)]=+~, 

-This method seamstobebasedontheheuristic -@ion that E(Y) can be appmxhatd 
The~~~isthBtthe~~MliaMesXandY/Xarroftcnnegativtly~ 

by E(X)E(Y/X) - 
hpracticc,sothat E(Y) < 

E(X)E(Y/X). This issue is dkassed by J.N. Stanard in “A Sii~n TM of pe Erro~ofLo6sResrrve 
%thationTecbniques,~ PCAS72 (1965),p.124. 

=op. c&p. 31. 
“S%fOr~&Dropldn,L-~ %~Considerations~ A~~bikRatiPgSyskmsU~I&i~i&&&i~ 

Records”,PCAS 46 (1959),pp.165-176. 
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which is a negative binomial distribution in y iVith parameters (T + P. 1 - ( 1 - d)( 1 - p)) , shifted by t . 
This implies that 

R(x) = (1-4(1-P) (x+r) 
l-(l-d)(l-p) * 

Except in the trivial case where d = 1, this is an increasing linear function in 1: _ Take for example 
P = 4 and d = p = l/Z, so that E(Y) = 4 and Var(Y) = 8. Here R(z) = +/3 + 4/3 and 
Q(t) = (4/3)2 + 4/3. Thii does not correspond exactly to any’of. Mr. White’s answers-while 
an increase in reported claims does lead to an increase in our estimate of outstanding claims, the 
relationship is not proportional. Since a = b = 4/3, neither the link ratio method, the budgeted loss 
method, nor the Bornhuetter-Ferguson method gives the correct estimate. 

How can we make intuitive sense of this result? The negative binomial distribution has .-ore 
variance than the Poisson distribution with the same mean; as a result, we have less confidence in 
our prior estimate of expected losses. Given a value of z that is larger than predicted, we are thus 
relatively more willing to increase our estimated ultimate claim count than we were when Y was 
Poisson; this implies a larger b. 

The tied prior case Suppose the random variable Y is not random at all; that is, there is some 
value k such that Y is sure to equal k (perhaps we are seliing single-premium whole Iife policies.) In 
this case, Q(z) = k for any value of x (regardless of the distribution of X.) The expected number of 
outstanding claims is then R(t) = k - x . 

This situation corresponds perfectly to White’s first answer-we decrease our estimate of outstand- 
ing claims by an amount equal to the increase in reported claims, leaving the total incurred count for 
the year unchanged. 

The fixed reporting case For the other extreme, suppose there is a number d # 0 such that the 
percentage of claims reported by year end is always d; that is, P(X = dyjY = y) is 1 for aI1 y. In 
this case Q(t) = d-l z and the expected number of outstanding cIaims is R(z) = (d-l - 1)~. 

Thii is our old friend the link ratio method, which corresponds perfectly to White’s third answer.18 

A non-linear example In each of the examples considered above, the Bayesian estimate Q(z) is 
linear in CC, and is thus of the form a + bx. This is not always true. The foIlowing example, which 
illustrates a pragmatic approach, leads to a non-liiear Q(t). 

Company management believes the number of claims Y for the year is uniformly distributed on 
(2,3,4,5, @-that is, P(Y = y) = l/5 for y = 2,3,4,5,6. (Here E(Y) = 4 and Vat(Y) = 2.) Any 
given claim has a 50% chance of being reported by year end. Armed with these assumptions, we 
proceed to compute Q(x). The calcuiations (Table 3) correspond exactly to those in our first model. 

In this example R(z) = Q(x) - t is not linear. It is also not monotonic; it is generaIIy decreasing, 
but it increases slightly between z = 1 and z = 2. It makes sense that R(x) should decrease; since 
Y has less variance than a Poisson distribution with the same mean, we have more confidence in our 
prior estimate of expected losses, and we are relatively less willing to revise our estimated ultimate 
claim count based on what has been reported so far. 

This example corresponds somewhat to White’s thiid answer, although not as much as the fixed 
prior example discussed above. It also models real-lie pressures in a convincing, if simplistic, way-as 
long as the losses remain within a “comfort range”, the analysis is permitted to take its course, but 
when the indication strays outside the bounds, there is a tendency to ignore it. The variance of Y here 
seems unreasonably low; it probably reflects management psychology better than it reflects reality. 

The method of Bayes&ndsvelopment Despite the difficulties involved, the technique used in 
this section has considerable practical applicability. If we are willing to estimate the distributions of 

18 Note, however, that this model is extra&y unrealistic: the behavior described couid hardfy occur in real life unless 
the claims department werexx&iIlgtheclaimsup! 
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Y 

2= 

2= 

- 
2 3 4 3 6 

pw =zandY=y) 

16/320 8/320 4/320 2/320 l/320 
321320 241320 X/320 lOj320 61320 
16/320 241320 24/320 20/320 S/320 

S/320 X/320 20/320 201320 
41320 lo/320 S/320 

2/320 61320 
l/320 

P(Y = ylX = 2) 

16/31 S/31 4131 2/31 l/31 
32/88 24/88 X/88 10/88 6/88 
16/99 24199 24199 20/99 15/99 

SF-4 16/64 2Of64 20164 
4129 10/29 15/29 

2/8 6/8 
l/l 

Total 

311320 
88/320 
991320 

. 641320 
29J320 
S/320 
l/320 

-Q(x) R(z) c 

83131 = 2.677 2.677 
266188 =2.909 1.909 
390199 = 3.939 1.939 
308/64=4.812 1.812 
X6/29 = 5.379 1.379 

46/8 = 5.750 0.770 
6/l= 6.000 0.000 

Table 3: Y uniform on {2,3,4,5,6} and d = l/2. 

Y and X]Y , we can produce Bayesian estimates of ultimate claim costs. Even if the equations cannot 
be solved exactly, it is not hard to app roximate the answer to any desired degree of accuracy. We can 
also test the sensitivity of the answer to changes in the distributions chosen. 

The l&ear approximation (Bayesian credibility) 

The tial example in the previous section brings us to a fork in the road. While it is certainly possible 
for the actuary to compute a pure Bayesian estimate Q based on assumed distributions for Y and for 
X]Y , such a procedure requires a good deal of knowledge ahout the loss and loss reporting processes- 
knowledge we may not be willing to assume. For this reason we shall now consider a linear estimate 
that is based on the concept of Bayesian credibiility. 

Bay&an credibiity as described by BiMmanr~~~ uses not the Bayesian estimate itself, but the 
best linear approximation to it. The approximation, though less accurate than the pure Bayesian 
estimate, is simpler to compute, easier to understand and explain, and less dependent upon the 
underlying distributions. As we study the application of Bay&an credibility to loss development, our 
approach will follow the path laid down by BUmann. 

Let Q(z) be the Bayesian estimate discussed in the previous section, and let L be the best 
zy approximation to Q; that is, L is the linear function that minim& Ex([Q(X) - L(X)12). If 

z =a+bz,wemustminimize 
Ex([QW - a - bX12). 

The foIlowing is a standard statistical resuIt:20 

Development Formula 1 Given random vatiables Y describing uttimafe losses and X destibing 
reported losses, let Q(x) = E(YIX = x). Then ihe best linear approzimaiion to Q (in the sense --- 

lsBiihlnann, H, “Exgmim RatingaadCrediity". The ASTINBdletin4 (1967),pp.l99-207. 
20 See for insbnce Meya~, G., ihport 01 t.h Cdihilitp Svbcommitteet Development and Testircg of Empi&al Baga 

Cd~biZitp Procedwes for Cla.ssijhttioa R&making, ISO (1960), p. 61. 
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described above) is the function 

L(z) = (z - E(X)) c~u~~~~’ + E(Y). 

This equation agrees with our expectations; if t = E(X), we have L(z) = E(Y), but if z differs 
from E(X), our estimate differs by a proportional amount. This formula provides us with an answer 
to Mr. White’s question, at least if we are willing to make do with thelinear approximation: 

c 
1. If Cov(X,Y) < Vat-(X), a large reported amount should lead to a decrease in the reserve. 

2. If Cov(X,Y) = Var(X), a change in the reported amount should noi eflect the reserve. - v 
3. If Coo(X, Y) > Var(X) , a large reported amount should lead to an increase in the reserve. 

We conclude that each of the three answers is correct in the right circumstances- 

Practical application of the first formula-least-squares development 

If we had hoped by using Bayesian credibility to avoid making assumptions about the distributions of 
Y and X, we may be disillusioned to see terms involving these random variables in our formula. This 
concern is not entirely justified; if we have a series of past years for which we are willing to assume a 
common Y and X, we can estimate the means, variance, and covariance from the data. Taking the 
simple-minded approach, we estimate Cuv(X, Y) by xr-yy, Var(X) by x2-r2, E(X) by I?, 
and E(Y) by P. This gives us - -- L(z) = (2 - px;- ;r + ‘L. 

Turning back to the data in Table 2, we have z = 13/7, ‘i7 = 29/7, m = Z/7, and x2 = 47/i’. 
Thus b = 0.969, Q = 2.344, and L(z) 5t: 0.969 z + 2.344. Of course, this is only an approximation to 
the true Bayesian estimate Q(z) = z + 2; sampling error makes it unlikely that we will reproduce Q 
exactly. Even so, the MSE of our estimate is app roximately S-081-better than the best link ratio 
estimate and not much worse than the true Bayesian estimate. 

As the reader has no doubt recognized, this is the least squares procedure that was introduced at 
the start of the paper. If it were not for sampling error, the least squares method would give us the 
best linear approximation to the Bayesian estimate. Thii is true regardless of the distributions of X 
and Y. 

Note, however, that even if the method is working perfectly, the least squares fit may not yield a 
high correlation. The points (z, y) can be expected to lie above and below the fitted line y = L(z) 
because VUQ$ IX) is not zero. 

A simulation test of least-squares development The fit that we obtained in the previous section 
using data from Table 2 is remarkably good; we will not always do so well. To test the effectiveness 
of this method, and to compare it to the traditional link ratio method, we will use a simnlation test. 

For each trial, seven y-values and corresponding z-values were generated at random using the 
distributions used for Table 2. Two estimates were then produced: one exactly as outlined above, and 
one using the link ratio method with c = y/x. The MSE was computed for each. 

The results are shown in Table 4. This comparison is “fair”: neither method uses prior assumptions 
about the underiying distributions, since both work solely with the observed data. As we see, when 
the data fluctuates as much as it does here, either method can go astray. Even so, the least squares 
method produces a superior estimate in the great majority of cases. In addition, some of its poorer 
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Trial 5 d MSE Link Ratio MSE 

1 0.167 4.095 3.573 2.214 5.133 
2 2.6'35 1.079 12.395 3.444 '3 II._ '96 
3 0.308 3.462 2.964 3.000 14.000 
4 1.362 1.447 2.291 1.895 3.645 
5 1.500 1.429 2.684 2.214 5.133 
6 -0.175 4.450 4.771 l&6 3.407 
7 0.750 1.643 2.860 1.571 3.388 
8 1.356 1.422 2.271 1.941 3.785 
9 0.750 2.750 2.188 1.882 3.612 - 

10 1.500 1.500 2.750 3.000 14.000 c 
11 0.130 3.815 3.521 2.800 11.040 
12 1.574 -0.704 5.079 1.385 3.811 
13 0.939. 0.970 3.333 1.462 3.586 
14 0.464 4.773 5.465 1.800 3.440 
15 0.957 1.787 2.092 2.000 4.000 
16 1.138 1.319 2.202 1.600 3.360 
17 0.667 1.476 3.639 2.143 4.694 
18 1.542 0.708 2.630 1.923 3.728 . 
19 1.958 0.500 4.010 2.250 5.375 
20 0.537 2.870 2.432 . 2.364 6.248 

Average 1.001 2.040 3.658 2.122 6.384 

Table 4: Comparison of the least squares method with the link ratio method. 

performances (trials 6 and 12) can be identified by the appearance of a negative coefficient and 
judgmentally weeded out as suggested previously. This correction would further increase the accuracy 
of this method. 

Note too that the link ratio method is biased. The average link ratio of 2.122 in Table 4 is higher 
than the unbiased value of 2.000. Thii is no accident; we can prove using a power series approximation 
that the expected link ratio produced by thii method is about 2.085. The least squares method may 
have some sampling bias as well in the determination of t and b , but the bias appears to be signi6cantly 
less than for the link ratio method. 

when is least-squares development appropriate? The careful reader will have noticed the 
caveat put forth above: the least squares fit makes sense “if we have a series of years for which we 
arewi&ngtoassumeacommonYandX.” For what real-life book of business can it truly be said 
that a single pair of distributions is appropriate for all years? And what good is a method that relies 
on such an unlikely assumption? 

Rom a practical point of view the issue is one of relativity: if year to year changes are due largely 
to systematic shifts in the book of business, other methods may be more appropriate.21 On the other 
hand, if random chance is the primary cause of fluctuations, then the present method commends 
it&f to our attention. And it is in this very case that the actuary is in most need of an objective 
approach; one can correct for systematic distortion, but the temptation when facing variabiity like 
that in Table 2 is to throw up one’s hands in despair and ignore the data entirely. 

Furthermore, one can adjust for known or suspected distortions before using least squares devel- 
opment. If we are studying incurred loss data, a correction for inflation is almost certainly advisable; 
we should fit our line only after putting the years on a constant-dollar basis. Similarly, if the book of 

=1~An~tdixussionofthetypesafappraachesone~tdrrinthaesitpationsappearsin&rguist,J.~,~d 
shaman, RE., Cos lherve Adecluacy Testiag A Co~vc. +tanatic Appmad~” PCAS 64 (1978). p. 10. 
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business expands, but does not change in character, we can divide each year’s losses by an exposure 
measure to eliminate the resulting distortion2” Other adjustments may be made using techniques 
such as those discussed in the Berquist-Sherman paper cited above. 

A credibility form of the development formula 

In this section we consider an alternative form of Development Formula 1 that provides us with 
additional insight. Following Biihlmann, we seek to express L in terms.of 

Ey( Vur(Xpq) = “Expected value of the process variance” (EVPV) and 
Vizry(E(X~Y)) = “Variance of the hypotheticaI mean” ( VaM) 

(basicaNy, EVPV represents variability resulting from the loss reporting process whiIe VlZtf repre- 
sents variability resulting from the ioss occurrence process.) Bayesian credibility as it is customarily 
presented uses one or more observations of a random variable to predict future values of that same 
variable.= Here our task is slightly different: we wish to estimate the value of the random variable 
Y by observing X, a differently distributed, though reiated, random variable. This leads to a for- 
mula that differs slightly in form from the usual formula for Bayesian credibility, and that requires an 
additional hypothesis. The proof is given in the Appendix. 

Development FormuIa 2 Stlppose there is a real number d # 0 such thuf E(X[Y = y) = dy for 
all y- Then the best linear approzimation fo Q (in the sense described previously) is the function 

z - E(X) 
U=) = d vl?Mvzv*v + E(Y) 

= 2; + (1 - Z)E(Y), 

where 
Z= 

VHM 
VEM + EVPV’ 

This formula views L as a credibiity weighting of the link ratio estimate z/d with the budgeted 
loss estimate E(Y). If EVPV = 0 we give f&I weight to the link ratio estimate, as in the fixed 
reporting example discussed above. If VBM = 0, as in the fixed prior example, we set L(z) = E(Y). 
But when there is uncertainty about both the reporting pattern and the prior estimate, we use a 
weighted average, with weights EVPV and V.M .24 

Let us apply Formula 2 to some of the other examples discussed above. 

l For our simple modei with at most one c&m per year, the process variance is 0 when Y = 0 
and l/4 when Y = 1. (FWaII that a binomial process with parameters (n, d) has mean nd and 
variance nd(1 - d) .) Thus EVPV = (l/2) 0 + (l/2)(1/4) = l/8. The hypothetiCa mean is 0 
when Y = 0 and l/2 when Y = 1, so VHM = l/16. Thus 2 = VBM/( VBM + EVPV) = l/3 
and L(t) = (1/3)(2/d) + (2/3)E(Y) = (2/3)z + l/3. Of course, this agrees with our previous 
estimate since L(z) must equaI Q(z) whenever Q is linear. 

l In the Poisson-Binomial case with parameters p and d, we have EVPV = E(yd(1 - d)) = 
pd(l-d) and VHM = V&d) = pd? This gives us 2 = p&/(/d + pd(l - cl)) = d and 
L(z)=z+~(l-d). 

22ITweassumetbatthenearbPsiaesis~~nith~old,bothE(X) and E(Y) willin a-ease in propoeion 
to expomre, while Vat(X) and Cov(X,Y) willin- inpropotiontothesquareoftbeexposum. This impI& we 
can divide by exposms to adjust data for use in Development FormuIa 1. 

33 To be pmise, we slmuld speak of a seqprence of ipdepepdant identicaSly distributed, random mriables. 
34~+~mightdaimthat ~ETMMSUIB our distnast of de underwriter while EVPV -0urdistwtof 

theciaimsdepartmmt! 
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l More generally, we have 2 3 d whenever the least, squares estimate coincides with the Born- 
huetter-Ferguson estimate. This makes sense in that 2 should increase from 0 to 1 over time, 
but there is no reason to expect that it will always do so in exact proportion to d. 25 

l fn the Negative Binomial-Binomial case with parameters (r,p) and d, we have p = E(Y) = 
~(1 - p)/p. Thus EVPV = pd(l - d) while VIfM = Var(Yd) = #/p. In this case, Z = 
d/(d+ ~(1 - d)) and L(z) = z/(d + p(1 - d)) + pp(l - d)/(d+p(l - d)). Since ViW is larger 
here than in the Poisson-Binomial case, while EVPV is the same,-2 is larger, and the link ratio 
estimate receives more weight. 4 

2= Q(Z) L(z) . . 0 2.677 2.667 
1 2.909 3.333 
2 3.939 4.000 
3 4.812 4.667 
4 5.379 5.333 
5 5.750 6.000 
6 6.000 6.667 

Table 5: Linear approximation: Y uniform on {2,3,4,5,6} and d = l/2. 

l Next consider the non-linear example worked out in Table 3. We have d = l/2 and EVPV = 
E(Y)d(l - d) = 1. With VHM = Vur(Yd) = l/2, we obtain 2 = (l/2)/(3/2) = l/3 and 
L(s) = (2/3)+ + 8/3. Since VBM is smaller than in the Poisson-Binomial case, while EVP V is 
the same, 2 is smaller, and the link ratio estimate receives less weight. Here L does not equal 
Q, but it is the best linear approximation to it. As Table 5 demonstrates, the fit is reasonably 
good considering the rather artii5.5a.l distribution of Y . 

l Finally, let us return to the example of Table 1, with b = 0.968, a = 6,023, Z = 21,139, and 
ji = 26,482. If we set d = Z/a = 0.798, then 2 = bd = 0.773. The least squares estimate 
which we obtained for this problem can thus be seen to assign a weight of 0.773 to the link ratio 
estimate (with link ratio d-l = 1.253) and a weight of 0.227 to the budgeted loss estimate. 

A differe.nt application of Bayesian credibility The underlying assumption of the least squares 
method-that year to year changes in loss and loss reporting distributions are small, or can be cor- 
rected for-will sometimes fail. When thii happens we can apply Bayesian credibility methods by 
estimating the terms EVPV and VBM in Development Formula 2. 

Consider an example. We wish to develop personal automobile losses for a state which has just 
instituted a strict verbal tort threshold. Suppose 

l Expected losses under the old system would have been $20 million, but industry studies estimate 
that the reform should save 40% in the first year. 

l In the past about 62% of incurred losses have been reported by year end, but under no fault 
this figure is expected to rise to 75%. 

We are thus expecting an ultimate loss of $12 million, with $9 million reported by year end. 

2sI would like to thank Dr. FLobbii for point.& out to me that the &mlnxetti-Fw estimate is a weighted 
average of the link ratio and budgeted loss estimates. 
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When the year-end data is available, howmer, the reported bs~ is only S6 million. This presents 
us with a dilemma. The savings resulting from the reform may be greater than expected; if so, we 
should reduce our estimate of ultimate loss. On the other hand, there may be temporary reporting 
delays as claim adjusters become familiar with the new coverages. In this case, it would be a mistake 
to reduce our estimate. What do we do while we await better information? 

Neither the least squares method nor the link ratio method makes sense here. Both methods 
assume that past experience is a reliable guide to the future. Thisassumption is not justified when 
there has been a major change in coverage. On the other hand, ou;,doubts about the estimated 
savings make the budgeted loss estimate uncertain. 

The Bay&an credibility method provides us with a reasonable solution to this problem. To use 
this method we must estimate the means and standard deviationsof twp random variables: the lo_ss Y 
and the reporting ratio X/Y .26 

We already have estimates of the means: E(Y) is $12 million and E(X/Y) is 75%. Suppose we 
estimate u(Y) to be $3 million and u(X/Y) to be 14%.27 

We can then compute 

VHM = Vizr(0.75 Y) = (0.75 x $3 milIion)2 = 5.06, 
EVPV = E((O.l4)2Y2) = (O.l4)2[Var(Y) + E(Y)7 = 3.00. 

Thus 2 = 5.06/(5.06 + 3.00) = 0.628 and L(z) = O-628(2/0.75) + (1 - O-628)($12 million) = 
$9.5 million. 

The estimate is larger than the link ratio estimate $6 million/(O.75) = $8 million and smaller than 
the budgeted loss estimate $12 million. This reflects our relative uncertainty concerning these two 
estimates. It is also slightly larger than the Bornhuetter-Ferguson estimate, which would be S9 million, 
&cause b = O-628/0.75 is less than 1. This implies that we have placed slightly less confidence in the 
low reported loss (or, equivalently, more confidence in the high prior estimate) than if we had used 
the Bornhuetter-Ferguson method. 

To use this method we must be willing to select the means and standard deviations. Fortunately, 
the answer is not extremely sensitive to changes in these selections. For instance, if we change a(XIY) 
to 10% in the example above, L(z) becomes $8.9 million. If instead we change a(Y) to $2 million, 
L(z) becomes $10.3 million. 

The caseload effect 

In Development Formula 2, we assumed that the expected number of claims reported is proportional 
to the number of claims incurred. Thii might be seen as a flaw in our analysis; since a claim is more 
likely to be reported in a timely fashion when the caseload is low, we expect the development ratio 
E(XIY = y)/y to be not a constant but a decreasing function of y. 

Fortunately, a constant development ratio is not essential for a credibility-based development 
formula. In this section we make the more general assumption that EfXlY = y) = dy i- 20, where 
d # 0 (one can presume that both d and zo are positive.) This gives a development ratio of d+ q/y, 
which does indeed decrease as y gets larger. On the other hand, it gives us E(XIY = 0) = 20 > 0. 
This may perhaps be undesirable, but no one who has had dealings with a real-iife claims department 
is likely to be shocked by this assumption. When x0 = 0 we obtain Development Formula 2 as a 
special case. The proof is given in the Appendix. 

26 We assume for the purpc~~ of this example &at the mean and standard deviation of X/Y do not depend on Y _ 
This may not be strictly true, butit& likely to work we3 enough in practice. 

2f It is wise to validate sax& assumpt~ns by d&cussing the situation witb underwriters, daims officers, and wy 
nranagmnnr. 
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Development Formula 3 Suppose there are?eai numbers d # 0 and xo such that E(X(Y = y) = 
dy + zo for all y- Then the function L defined above can be written as 

L(2) = 27 + (1 - Z)E(Y), 

where 
Z= 

VHM : 
VHM + EVPV’ . 

We conclude that the least squares method can make sense even in cases where the development 
ratio varies with the caseload. It may be impossible in practice to determine the values of z. and of 
d, but we do not need these values to apply the least squares method. - c 

A final example 

In this section we will look at a fully worked out example based on real data that has been disguised 
slightly. Suppose we are given earned premium and incurred losses for a small book of business. 

I?Eported Loss ($000) 
AY EP (SOOO) 12 mo. 24 mo. 36 mo. 48 mo. 60 mo. 

1985 4260 102 104 209 650 847 
1986 5563 0 543 1309 2443 3003 
1987 7777 412 2310 3083 3358 4099 
1988 8871 219 763 1637 1423 
1989 10465 969 4090 3801 
1990 11986 0 3467 
1991 12873 932 

Table 6: State CC, Line DD: Total limits losses. 

One could use link ratios to develop these losses, but the least squares method is the better choice 
if we believe that the changes in the book of business are accurately reflected in the earned premiums. 
Because of the significant grotih in volume, we will divide the losses by the premium to put the 
accident years on a more nearly equal basis. This gives us a triangle of reported loss ratios: 

Rmorted Loss Ratio 

AY 12 mo. 24 mo. 36 mo. 48 mo. 60 mo. 

1985 0.024 0.024 0.049 0.153 0.199 
1986 0.000 0.098 0.235 0.439 0.540 
1987 0.053 0.297 0.396 0.432 0.527 
1988 0.025 0.086 0.185 0.160 
1989 0.093 0.391 0.363 
1990 0.000 0.289 
1991 0.072 --- 

Table 7: &ported loss ratios. 
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Unlike the data in Table 1, this data includes accident years at many different maturities. Following .___ 
Clarke, we begin by developing the most mature years to ultimate. We then use the information 
obtained from those years to develop successively less mature years, ending with the 1991 year. 

Losses may continue to develop after sixty months; to assume development stops at. the end of 
the triangle is to assume the world ends at the horizon. For this line of business, we believe that 
losses will increase by an additional 10% from sixty months to ultimate. Based on this assumption, 
we estimate the ultimate loss ratios for accident years 1985, 1986, and. 1987 to be 0.219, 0.594, and 
0.580 respectively. . 

We next turn our attention to the 1988 year. We shall estimate the ultimate loss ratio for this 
year by looking at the relationship between the reported loss ratio at 48 months (our z value) ryld the 
ultimate loss ratio (our y value.) We base this relationship upon the observed 48month and prokcted 
ultimate values for accident yeas 1985-1987. For these three years we have I = 0.341, 3 = 0.464, 
p= O.l34,andzy= 0.181 (it will be convenient to display these values directly beneath the 48month 
column of the triangle.) This gives us b = 1.301, Q = 0.020, and y = 0.020 + (1.301)(0.160) = 0.229 
as the ultimate loss ratio for 1988. 

ReDorted Loss Ratio 
12 mo. 24 mo. 36 mo. 48 mo. 60 mo. Ultimate 

1985 0.024 0.024 0.049 0.153 0.199 0.219 
1986 0.000 0.098 0.235 0.439 0.540 0.594 
1987 0.053 0.297 0.396 0.432 0.527 0.580 
1988 0.025 0.086 0.185 0.160 0.229 
1989 0.093 0.391 0.363 
1990 0.000 0.289 
1991 0.072 

f 0.341 
B 0.464 
2 0.134 
zy 0.181 

b 1.301 
a 0.020 

; 
1.360 
0.957 

Table 8: Estimation of the ultimate loss ratio for 1988. 

We can also compute some supplemental values that, while not essential to our analysis, help us 
to understand the results. Our estimated ultimate loss ratio for 1988 is the weighted average of a link 
ratio estimate and a budgeted loss estimate. We have c = g/Z = 1.360, giving a link ratio estimate 
ofy=cz= (1.360)(0.160) = 0.218. For the budgeted loss estimate we have y = jj = 0.464. The 
credibility assigned to the link ratio estimate is Z = b/c = 0.957, giving a least squares estimate of 
y = (0.957)(0.218) + (0.043)(0.464) = 0.229. We expect a high credibility for the link ratio estimate 
here; at this stage of maturity, only a srnail portion of the variance in z arises from the reporting 
process- In fact, it is not uncommon for a to be negative in this part of the triangle; when thii 
happens we set Z = I and use a simple link ratio estimate, ignoring the budgeted loss estimate. 

We move next to the 1989 accident year, this time using the relationship between the reported 
loss ratio at 36 months and that at ultimate. We can now base the computation of a and b upon the 
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values for 1985-1988, building on the work done in the previous step. When the ultimate loss ratio 
for 1989 has been determined, we continue working backwards to determine those for 1990 and 1991. 

.-.. 

AY 

1985 
1986 
1987 
1988 
1989 
1990 
1991 

Reported Loss Ratio 
12 mo. 24 mo. 36 mo. 48 ma. 60 mo. Ultimate 

0.024 0.024 0.049 0.153 0.199 0.219 
0.000 0.098 0.235 0 -439 0.540 0.594 
0.053 0.297 0.396 0.432 0.527 0.580 
0.025 0.086 0.185 0.160 0.229 - 
0.093 0.391 0.363 0.576 - 
0.000 0.289 0.557 
0.072 0.197 

55 0.032 0.179 0.216 0.341 
Ii 0.456 0.439 0.405 0.464 

2 0.002 0.052 0.062 0.134 
zy 0.016 0.096 0.106 0.181 

b 1.027 0.884 1.162 1.301 
a 0.422 0.281 0.154 0.020 
i 14.078 0.073 . 0.361 2.452 0.620 1.873 0.957 1.360 

Table 9: Estimation of ultimate loss ratios. 

In this example 2 increases steadily as the accident years mature and reported losses become more 
credible. The value of c decreases, as-one would expect. SiiarIy, the value of a (which is what 
our estimate of ultimate losses would have been if no losses had been reported) decreases over time. 
These patterns provide a way to cross-check the work; data fluctuations can lead to unusual results, 
and one should not believe the analysis if it makes no sense. 

In the final step we apply the ultimate loss ratios to earned premium to obtain ultimate losses. 

Ultimate 
AY EP Loss Patio 

1985 4260 0.219 
1986 5563 0.594 
1987 7777 0.580 
1988 8871 0.229 
1989 10465 0.576 
1990 11986 0.537 
1991 12873 0.497 

Lass ($000) 

932 
3303 
4509 
2030 
6028 

Table 10: Computation of ultimate losses. 

The procedure used in this section is easy to use and requires only commonly available data. It 
is less fragile than the link ratio method, as this example demonstrates-a link ratio analysis of thii 
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data would require a great deal of judgment in selecting the factors. In addition, we can present the 
analysis in a convenient tabular form which allows us to examine the assumptions that lie beneath it. 

Conch&on 
-. 

Least squares development as presented by Simon and Clarke is not only practically useful, but also 
justifiable on theoretical grounds. When random year to year fluctuations in loss experience are 
severe, it tends to produce more reasonable estimates of ultimate loss. than the more familiar link 
ratio method, and it does so without requiring a great deal of additional data. 

Least squares development is by no means a panacea. Like any method, it works best when it is 
used with a clear understanding of its limitations, and in conjunction with other appropriate met_hods. 
When there are significant exposure changes or other shifts in the loss history, one can go astray unless 
one makes the necessary corrections. Even under favorable circumstances the method is subject to 
the type of sampling errors that are always present when one estimates parameters from observed 
data. 

Nevertheless, least squares development is a method that deserves a place in every actuary’s 
toolbox. At my own company we now use thii method in certain analysis situations; it can be most 
helpful in developing losses for small states, or for lines that are subject to serious fluctuations. This 
is especially true if one can use earned premium to adjust losses from past years to a level consistent 
with the current year. 

Finally, the ideas presented here provide us with a conceptual framework that also helps us to 
understand more traditional development methods, and to see the relationships between them. Such 
an understanding must be our goal as we seek to deal intelligently with reserving and ratemaking 
iSSUeS. 

Appendix-Proof of Development Formulas 2 and 3 

Proof of Development Fo77nul4 2: As usual, Vw(Xj = 5% + EVPV. Since E(XIY = y) = dy by 
hypothesis, it follows that VHM = Vary(E(XIY = y)) = Var(dY) = ds Var(Y). This means that 
Cov(X,Y) = Cov(Ey(X1Y),Y) = Cov(dY,Y) = dVar(Y) = VHM/d. 

The result now follows from Development Formula 1. We have 

L(z) = (z- E(X)f;($..) + E(Y) 

= (z - my)) vg;y;;pv + E(Y) 

= 25 + (1 - Z)E(Y), 

where 
Z= 

VHM 
VHM + EVPV’ 

Proof of Development Fomzul4 3: If we let W = X - 20, then W and X share a common EVPV 
and VBM _ We can thus apply Development Formula 2 to W and Y to prove the formula. 
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